Re: [PATCH v8 08/13] drivers: memory: add DMC driver for Exynos5422

From: Krzysztof Kozlowski
Date: Thu Jun 06 2019 - 06:07:58 EST


On Wed, 5 Jun 2019 at 18:54, Lukasz Luba <l.luba@xxxxxxxxxxxxxxxxxxx> wrote:
>
> This patch adds driver for Exynos5422 Dynamic Memory Controller.
> The driver provides support for dynamic frequency and voltage scaling for
> DMC and DRAM. It supports changing timings of DRAM running with different
> frequency. There is also an algorithm to calculate timigns based on
> memory description provided in DT.
> The patch also contains needed MAINTAINERS file update.
>
> Signed-off-by: Lukasz Luba <l.luba@xxxxxxxxxxxxxxxxxxx>
> ---
> MAINTAINERS | 8 +
> drivers/memory/samsung/Kconfig | 17 +
> drivers/memory/samsung/Makefile | 1 +
> drivers/memory/samsung/exynos5422-dmc.c | 1265 +++++++++++++++++++++++
> 4 files changed, 1291 insertions(+)
> create mode 100644 drivers/memory/samsung/exynos5422-dmc.c
>
> diff --git a/MAINTAINERS b/MAINTAINERS
> index a6954776a37e..d57cf4be1e51 100644
> --- a/MAINTAINERS
> +++ b/MAINTAINERS
> @@ -3470,6 +3470,14 @@ S: Maintained
> F: drivers/devfreq/exynos-bus.c
> F: Documentation/devicetree/bindings/devfreq/exynos-bus.txt
>
> +DMC FREQUENCY DRIVER FOR SAMSUNG EXYNOS5422
> +M: Lukasz Luba <l.luba@xxxxxxxxxxxxxxxxxxx>
> +L: linux-pm@xxxxxxxxxxxxxxx
> +L: linux-samsung-soc@xxxxxxxxxxxxxxx
> +S: Maintained
> +F: drivers/memory/samsung/exynos5422-dmc.c
> +F: Documentation/devicetree/bindings/memory-controllers/exynos5422-dmc.txt
> +
> BUSLOGIC SCSI DRIVER
> M: Khalid Aziz <khalid@xxxxxxxxxxxxxx>
> L: linux-scsi@xxxxxxxxxxxxxxx
> diff --git a/drivers/memory/samsung/Kconfig b/drivers/memory/samsung/Kconfig
> index 79ce7ea58903..c93baa029654 100644
> --- a/drivers/memory/samsung/Kconfig
> +++ b/drivers/memory/samsung/Kconfig
> @@ -5,6 +5,23 @@ config SAMSUNG_MC
> Support for the Memory Controller (MC) devices found on
> Samsung Exynos SoCs.
>
> +config ARM_EXYNOS5422_DMC
> + tristate "ARM EXYNOS5422 Dynamic Memory Controller driver"
> + depends on ARCH_EXYNOS
> + select DDR
> + select PM_DEVFREQ
> + select DEVFREQ_GOV_SIMPLE_ONDEMAND
> + select DEVFREQ_GOV_USERSPACE
> + select PM_DEVFREQ_EVENT
> + select PM_OPP
> + help
> + This adds driver for Exynos5422 DMC (Dynamic Memory Controller).
> + The driver provides support for Dynamic Voltage and Frequency Scaling in
> + DMC and DRAM. It also supports changing timings of DRAM running with
> + different frequency. The timings are calculated based on DT memory
> + information.
> +
> +
> if SAMSUNG_MC
>
> config EXYNOS_SROM
> diff --git a/drivers/memory/samsung/Makefile b/drivers/memory/samsung/Makefile
> index 00587be66211..4f6e4383bab7 100644
> --- a/drivers/memory/samsung/Makefile
> +++ b/drivers/memory/samsung/Makefile
> @@ -1,2 +1,3 @@
> # SPDX-License-Identifier: GPL-2.0
> +obj-$(CONFIG_ARM_EXYNOS5422_DMC) += exynos5422-dmc.o
> obj-$(CONFIG_EXYNOS_SROM) += exynos-srom.o
> diff --git a/drivers/memory/samsung/exynos5422-dmc.c b/drivers/memory/samsung/exynos5422-dmc.c
> new file mode 100644
> index 000000000000..6fca9e4c45ff
> --- /dev/null
> +++ b/drivers/memory/samsung/exynos5422-dmc.c
> @@ -0,0 +1,1265 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * Copyright (c) 2019 Samsung Electronics Co., Ltd.
> + * Author: Lukasz Luba <l.luba@xxxxxxxxxxxxxxxxxxx>
> + */
> +
> +#include <linux/clk.h>
> +#include <linux/delay.h>
> +#include <linux/devfreq.h>
> +#include <linux/devfreq-event.h>
> +#include <linux/device.h>
> +#include <linux/io.h>
> +#include <linux/mfd/syscon.h>
> +#include <linux/module.h>
> +#include <linux/of_device.h>
> +#include <linux/pm_opp.h>
> +#include <linux/platform_device.h>
> +#include <linux/regmap.h>
> +#include <linux/regulator/consumer.h>
> +#include <linux/slab.h>
> +#include <memory/jedec_ddr.h>
> +#include "../of_memory.h"
> +
> +#define EXYNOS5_DREXI_TIMINGAREF (0x0030)
> +#define EXYNOS5_DREXI_TIMINGROW0 (0x0034)
> +#define EXYNOS5_DREXI_TIMINGDATA0 (0x0038)
> +#define EXYNOS5_DREXI_TIMINGPOWER0 (0x003C)
> +#define EXYNOS5_DREXI_TIMINGROW1 (0x00E4)
> +#define EXYNOS5_DREXI_TIMINGDATA1 (0x00E8)
> +#define EXYNOS5_DREXI_TIMINGPOWER1 (0x00EC)
> +#define CDREX_PAUSE (0x2091c)
> +#define CDREX_LPDDR3PHY_CON3 (0x20a20)
> +#define EXYNOS5_TIMING_SET_SWI (1UL << 28)

You have mixed indentation here (spaces instead of tabs).

> +#define USE_MX_MSPLL_TIMINGS (1)
> +#define USE_BPLL_TIMINGS (0)
> +#define EXYNOS5_AREF_NORMAL (0x2e)
> +
> +/**
> + * struct dmc_opp_table - Operating level desciption
> + *
> + * Covers frequency and voltage settings of the DMC operating mode.
> + */
> +struct dmc_opp_table {
> + u32 freq_hz;
> + u32 volt_uv;
> +};
> +
> +/**
> + * struct exynos5_dmc - main structure describing DMC device
> + *
> + * The main structure for the Dynamic Memory Controller which covers clocks,
> + * memory regions, HW information, parameters and current operating mode.
> + */
> +struct exynos5_dmc {
> + struct device *dev;
> + struct devfreq *df;
> + struct devfreq_simple_ondemand_data gov_data;
> + void __iomem *base_drexi0;
> + void __iomem *base_drexi1;
> + struct regmap *clk_regmap;
> + struct mutex lock;
> + unsigned long curr_rate;
> + unsigned long curr_volt;
> + unsigned long bypass_rate;
> + struct dmc_opp_table *opp;
> + struct dmc_opp_table opp_bypass;
> + int opp_count;
> + u32 timings_arr_size;
> + u32 *timing_row;
> + u32 *timing_data;
> + u32 *timing_power;
> + const struct lpddr3_timings *timings;
> + const struct lpddr3_min_tck *min_tck;
> + u32 bypass_timing_row;
> + u32 bypass_timing_data;
> + u32 bypass_timing_power;
> + struct regulator *vdd_mif;
> + struct clk *fout_spll;
> + struct clk *fout_bpll;
> + struct clk *mout_spll;
> + struct clk *mout_bpll;
> + struct clk *mout_mclk_cdrex;
> + struct clk *dout_clk2x_phy0;
> + struct clk *mout_mx_mspll_ccore;
> + struct clk *mx_mspll_ccore_phy;
> + struct clk *mout_mx_mspll_ccore_phy;
> + struct devfreq_event_dev **counter;
> + int num_counters;
> +};
> +
> +#define TIMING_FIELD(t_name, t_bit_beg, t_bit_end) \
> + { .name = t_name, .bit_beg = t_bit_beg, .bit_end = t_bit_end }
> +
> +#define TIMING_VAL(timing_array, id, t_val) \
> +({ \
> + u32 __val; \
> + __val = t_val << timing_array[id].bit_beg; \
> + __val; \
> +})
> +
> +#define TIMING_VAL2REG(timing, t_val) \
> +({ \
> + u32 __val; \
> + __val = t_val << timing->bit_beg; \
> + __val; \
> +})
> +
> +#define TIMING_REG2VAL(reg, timing) \
> +({ \
> + u32 __val; \
> + reg <<= (31 - timing->bit_end); \
> + reg >>= (31 - timing->bit_end); \
> + __val = reg >> timing->bit_beg; \
> + __val; \
> +})
> +
> +struct timing_reg {
> + char *name;
> + int bit_beg;
> + int bit_end;
> + unsigned int val;
> +};
> +
> +static const struct timing_reg timing_row[] = {
> + TIMING_FIELD("tRFC", 24, 31),
> + TIMING_FIELD("tRRD", 20, 23),
> + TIMING_FIELD("tRP", 16, 19),
> + TIMING_FIELD("tRCD", 12, 15),
> + TIMING_FIELD("tRC", 6, 11),
> + TIMING_FIELD("tRAS", 0, 5),
> +};
> +
> +static const struct timing_reg timing_data[] = {
> + TIMING_FIELD("tWTR", 28, 31),
> + TIMING_FIELD("tWR", 24, 27),
> + TIMING_FIELD("tRTP", 20, 23),
> + TIMING_FIELD("tW2W-C2C", 14, 14),
> + TIMING_FIELD("tR2R-C2C", 12, 12),
> + TIMING_FIELD("WL", 8, 11),
> + TIMING_FIELD("tDQSCK", 4, 7),
> + TIMING_FIELD("RL", 0, 3),
> +};
> +
> +static const struct timing_reg timing_power[] = {
> + TIMING_FIELD("tFAW", 26, 31),
> + TIMING_FIELD("tXSR", 16, 25),
> + TIMING_FIELD("tXP", 8, 15),
> + TIMING_FIELD("tCKE", 4, 7),
> + TIMING_FIELD("tMRD", 0, 3),
> +};
> +
> +#define TIMING_COUNT (ARRAY_SIZE(timing_row) + ARRAY_SIZE(timing_data) + \
> + ARRAY_SIZE(timing_power))
> +
> +static int exynos5_counters_set_event(struct exynos5_dmc *dmc)
> +{
> + int i, ret;
> +
> + for (i = 0; i < dmc->num_counters; i++) {
> + if (!dmc->counter[i])
> + continue;
> + ret = devfreq_event_set_event(dmc->counter[i]);
> + if (ret < 0)
> + return ret;
> + }
> + return 0;
> +}
> +
> +static int exynos5_counters_enable_edev(struct exynos5_dmc *dmc)
> +{
> + int i, ret;
> +
> + for (i = 0; i < dmc->num_counters; i++) {
> + if (!dmc->counter[i])
> + continue;
> + ret = devfreq_event_enable_edev(dmc->counter[i]);
> + if (ret < 0)
> + return ret;
> + }
> + return 0;
> +}
> +
> +static int exynos5_counters_disable_edev(struct exynos5_dmc *dmc)
> +{
> + int i, ret;
> +
> + for (i = 0; i < dmc->num_counters; i++) {
> + if (!dmc->counter[i])
> + continue;
> + ret = devfreq_event_disable_edev(dmc->counter[i]);
> + if (ret < 0)
> + return ret;
> + }
> + return 0;
> +}
> +
> +/**
> + * find_target_freq_id() - Finds requested frequency in local DMC configuration
> + * @dmc: device for which the information is checked
> + * @target_rate: requested frequency in KHz
> + *
> + * Seeks in the local DMC driver structure for the requested frequency value
> + * and returns index or error value.
> + */
> +static int find_target_freq_idx(struct exynos5_dmc *dmc,
> + unsigned long target_rate)
> +{
> + int i;
> +
> + for (i = dmc->opp_count - 1; i >= 0; i--)
> + if (dmc->opp[i].freq_hz <= target_rate)
> + return i;
> +
> + return -EINVAL;
> +}
> +
> +/**
> + * exynos5_switch_timing_regs() - Changes bank register set for DRAM timings
> + * @dmc: device for which the new settings is going to be applied
> + * @set: boolean variable passing set value
> + *
> + * Changes the register set, which holds timing parameters.
> + * There is two register sets: 0 and 1. The register set 0
> + * is used in normal operation when the clock is provided from main PLL.
> + * The bank register set 1 is used when the main PLL frequency is going to be
> + * changed and the clock is taken from alternative, stable source.
> + * This function switches between these banks according to the
> + * currently used clock source.
> + */
> +static void exynos5_switch_timing_regs(struct exynos5_dmc *dmc, bool set)
> +{
> + unsigned int reg;
> + int ret;
> +
> + ret = regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, &reg);
> +
> + if (set)
> + reg |= EXYNOS5_TIMING_SET_SWI;
> + else
> + reg &= ~EXYNOS5_TIMING_SET_SWI;
> +
> + regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, reg);
> +}
> +
> +/**
> + * exynos5_init_freq_table() - Initialized PM OPP framework
> + * @dmc: DMC device for which the frequencies are used for OPP init
> + * @profile: devfreq device's profile
> + *
> + * Populate the devfreq device's OPP table based on current frequency, voltage.
> + */
> +static int exynos5_init_freq_table(struct exynos5_dmc *dmc,
> + struct devfreq_dev_profile *profile)
> +{
> + int i, ret;
> + int idx;
> + unsigned long freq;
> +
> + ret = dev_pm_opp_of_add_table(dmc->dev);
> + if (ret < 0) {
> + dev_err(dmc->dev, "Failed to get OPP table\n");
> + return ret;
> + }
> +
> + dmc->opp_count = dev_pm_opp_get_opp_count(dmc->dev);
> +
> + dmc->opp = devm_kmalloc_array(dmc->dev, dmc->opp_count,
> + sizeof(struct dmc_opp_table), GFP_KERNEL);
> + if (!dmc->opp)
> + goto err_opp;
> +
> + idx = dmc->opp_count - 1;
> + for (i = 0, freq = ULONG_MAX; i < dmc->opp_count; i++, freq--) {
> + struct dev_pm_opp *opp;
> +
> + opp = dev_pm_opp_find_freq_floor(dmc->dev, &freq);
> + if (IS_ERR(opp))
> + goto err_free_tables;
> +
> + dmc->opp[idx - i].freq_hz = freq;
> + dmc->opp[idx - i].volt_uv = dev_pm_opp_get_voltage(opp);
> +
> + dev_pm_opp_put(opp);
> + }
> +
> + return 0;
> +
> +err_free_tables:
> + kfree(dmc->opp);
> +err_opp:
> + dev_pm_opp_of_remove_table(dmc->dev);
> +
> + return -EINVAL;
> +}
> +
> +/**
> + * exynos5_set_bypass_dram_timings() - Low-level changes of the DRAM timings
> + * @dmc: device for which the new settings is going to be applied
> + * @param: DRAM parameters which passes timing data
> + *
> + * Low-level function for changing timings for DRAM memory clocking from
> + * 'bypass' clock source (fixed frequency @400MHz).
> + * It uses timing bank registers set 1.
> + */
> +static void exynos5_set_bypass_dram_timings(struct exynos5_dmc *dmc)
> +{
> + writel(EXYNOS5_AREF_NORMAL,
> + dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
> +
> + writel(dmc->bypass_timing_row,
> + dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW1);
> + writel(dmc->bypass_timing_row,
> + dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW1);
> + writel(dmc->bypass_timing_data,
> + dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA1);
> + writel(dmc->bypass_timing_data,
> + dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA1);
> + writel(dmc->bypass_timing_power,
> + dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER1);
> + writel(dmc->bypass_timing_power,
> + dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER1);
> +}
> +
> +/**
> + * exynos5_dram_change_timings() - Low-level changes of the DRAM final timings
> + * @dmc: device for which the new settings is going to be applied
> + * @target_rate: target frequency of the DMC
> + *
> + * Low-level function for changing timings for DRAM memory operating from main
> + * clock source (BPLL), which can have different frequencies. Thus, each
> + * frequency must have corresponding timings register values in order to keep
> + * the needed delays.
> + * It uses timing bank registers set 0.
> + */
> +static int exynos5_dram_change_timings(struct exynos5_dmc *dmc,
> + unsigned long target_rate)
> +{
> + int idx;
> +
> + for (idx = dmc->opp_count - 1; idx >= 0; idx--)
> + if (dmc->opp[idx].freq_hz <= target_rate)
> + break;
> +
> + if (idx < 0)
> + return -EINVAL;
> +
> + writel(EXYNOS5_AREF_NORMAL,
> + dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
> +
> + writel(dmc->timing_row[idx],
> + dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW0);
> + writel(dmc->timing_row[idx],
> + dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW0);
> + writel(dmc->timing_data[idx],
> + dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA0);
> + writel(dmc->timing_data[idx],
> + dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA0);
> + writel(dmc->timing_power[idx],
> + dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER0);
> + writel(dmc->timing_power[idx],
> + dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER0);
> +
> + return 0;
> +}
> +
> +/**
> + * exynos5_dmc_align_target_voltage() - Sets the final voltage for the DMC
> + * @dmc: device for which it is going to be set
> + * @target_volt: new voltage which is chosen to be final
> + *
> + * Function tries to align voltage to the safe level for 'normal' mode.
> + * It checks the need of higher voltage and changes the value. The target
> + * voltage might be lower that currently set and still the system will be
> + * stable.
> + */
> +static int exynos5_dmc_align_target_voltage(struct exynos5_dmc *dmc,
> + unsigned long target_volt)
> +{
> + int ret = 0;
> +
> + if (dmc->curr_volt > target_volt) {

A nit: I would prefer to use the same style as in
exynos5_dmc_align_bypass_voltage(), so "return 0" after "if", to have
consistent pattern easily understand which function bumps and which
lowers the voltage.


> + ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
> + target_volt);
> + if (!ret)
> + dmc->curr_volt = target_volt;
> + }
> +
> + return ret;
> +}
> +
> +/**
> + * exynos5_dmc_align_bypass_voltage() - Sets the voltage for the DMC
> + * @dmc: device for which it is going to be set
> + * @target_volt: new voltage which is chosen to be final
> + *
> + * Function tries to align voltage to the safe level for the 'bypass' mode.
> + * It checks the need of higher voltage and changes the value.
> + * The target voltage must not be less than currently needed, because
> + * for current frequency the device might become unstable.
> + */
> +static int exynos5_dmc_align_bypass_voltage(struct exynos5_dmc *dmc,
> + unsigned long target_volt)
> +{
> + int ret = 0;
> + unsigned long bypass_volt = dmc->opp_bypass.volt_uv;
> +
> + target_volt = max(bypass_volt, target_volt);
> +
> + if (dmc->curr_volt >= target_volt)
> + return 0;
> +
> + ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
> + target_volt);
> + if (!ret)
> + dmc->curr_volt = target_volt;
> +
> + return ret;
> +}
> +
> +/**
> + * exynos5_dmc_align_bypass_dram_timings() - Chooses and sets DRAM timings
> + * @dmc: device for which it is going to be set
> + * @target_rate: new frequency which is chosen to be final
> + *
> + * Function changes the DRAM timings for the temporary 'bypass' mode.
> + */
> +static int exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc *dmc,
> + unsigned long target_rate)
> +{
> + int idx = find_target_freq_idx(dmc, target_rate);
> +
> + if (idx < 0)
> + return -EINVAL;
> +
> + exynos5_set_bypass_dram_timings(dmc);
> +
> + return 0;
> +}
> +
> +/**
> + * exynos5_dmc_switch_to_bypass_configuration() - Switching to temporary clock
> + * @dmc: DMC device for which the switching is going to happen
> + * @target_rate: new frequency which is going to be set as a final
> + * @target_volt: new voltage which is going to be set as a final
> + *
> + * Function configures DMC and clocks for operating in temporary 'bypass' mode.
> + * This mode is used only temporary but if required, changes voltage and timings
> + * for DRAM chips. It switches the main clock to stable clock source for the
> + * period of the main PLL reconfiguration.
> + */
> +static int exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc *dmc,
> + unsigned long target_rate,
> + unsigned long target_volt)
> +{
> + int ret;
> +
> + /*
> + * Having higher voltage for a particular frequency does not harm
> + * the chip. Use it for the temporary frequency change when one
> + * voltage manipulation might be avoided.
> + */
> + ret = exynos5_dmc_align_bypass_voltage(dmc, target_volt);
> + if (ret)
> + return ret;
> +
> + /*
> + * Longer delays for DRAM does not cause crash, the opposite does.
> + */
> + ret = exynos5_dmc_align_bypass_dram_timings(dmc, target_rate);
> + if (ret)
> + return ret;
> +
> + /*
> + * Delays are long enough, so use them for the new coming clock.
> + */
> + exynos5_switch_timing_regs(dmc, USE_MX_MSPLL_TIMINGS);
> +
> + return ret;
> +}
> +
> +/**
> + * exynos5_dmc_change_freq_and_volt() - Changes voltage and frequency of the DMC
> + * using safe procedure
> + * @dmc: device for which the frequency is going to be changed
> + * @target_rate: requested new frequency
> + * @target_volt: requested voltage which corresponds to the new frequency
> + *
> + * The DMC frequency change procedure requires a few steps.
> + * The main requirement is to change the clock source in the clk mux
> + * for the time of main clock PLL locking. The assumption is that the
> + * alternative clock source set as parent is stable.
> + * The second parent's clock frequency is fixed to 400MHz, it is named 'bypass'
> + * clock. This requires alignment in DRAM timing parameters for the new
> + * T-period. There is two bank sets for keeping DRAM
> + * timings: set 0 and set 1. The set 0 is used when main clock source is
> + * chosen. The 2nd set of regs is used for 'bypass' clock. Switching between
> + * the two bank sets is part of the process.
> + * The voltage must also be aligned to the minimum required level. There is
> + * this intermediate step with switching to 'bypass' parent clock source.
> + * if the old voltage is lower, it requires an increase of the voltage level.
> + * The complexity of the voltage manipulation is hidden in low level function.
> + * In this function there is last alignment of the voltage level at the end.
> + */
> +static int
> +exynos5_dmc_change_freq_and_volt(struct exynos5_dmc *dmc,
> + unsigned long target_rate,
> + unsigned long target_volt)
> +{
> + int ret;
> +
> + ret = exynos5_dmc_switch_to_bypass_configuration(dmc, target_rate,
> + target_volt);
> + if (ret)
> + return ret;
> +
> + /*
> + * Voltage is set at least to a level needed for this frequency,
> + * so switching clock source is safe now.
> + */
> + clk_prepare_enable(dmc->fout_spll);
> + clk_prepare_enable(dmc->mout_spll);
> + clk_prepare_enable(dmc->mout_mx_mspll_ccore);
> +
> + ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_mx_mspll_ccore);
> + if (ret)

What about error path and disabling clocks?

> + return ret;
> +
> + /*
> + * We are safe to increase the timings for current bypass frequency.
> + * Thanks to this the settings we be ready for the upcoming clock source
> + * change.
> + */
> + exynos5_dram_change_timings(dmc, target_rate);
> +
> + clk_set_rate(dmc->fout_bpll, target_rate);
> +
> + exynos5_switch_timing_regs(dmc, USE_BPLL_TIMINGS);
> +
> + ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_bpll);
> + if (ret)

Ditto.

> + return ret;
> +
> + clk_disable_unprepare(dmc->mout_mx_mspll_ccore);
> + clk_disable_unprepare(dmc->mout_spll);
> + clk_disable_unprepare(dmc->fout_spll);
> +
> + /*
> + * Make sure if the voltage is not from 'bypass' settings and align to
> + * the right level for power efficiency.
> + */
> + ret = exynos5_dmc_align_target_voltage(dmc, target_volt);
> +
> + return ret;
> +}
> +
> +/**
> + * exynos5_dmc_get_volt_freq() - Gets the frequency and voltage from the OPP
> + * table.
> + * @dmc: device for which the frequency is going to be changed
> + * @freq: requested frequency in KHz
> + * @target_rate: returned frequency which is the same or lower than
> + * requested
> + * @target_volt: returned voltage which corresponds to the returned
> + * frequency
> + *
> + * Function gets requested frequency and checks OPP framework for needed
> + * frequency and voltage. It populates the values 'target_rate' and
> + * 'target_volt' or returns error value when OPP framework fails.
> + */
> +static int exynos5_dmc_get_volt_freq(struct exynos5_dmc *dmc,
> + unsigned long *freq,
> + unsigned long *target_rate,
> + unsigned long *target_volt, u32 flags)
> +{
> + struct dev_pm_opp *opp;
> +
> + opp = devfreq_recommended_opp(dmc->dev, freq, flags);
> + if (IS_ERR(opp))
> + return PTR_ERR(opp);
> +
> + *target_rate = dev_pm_opp_get_freq(opp);
> + *target_volt = dev_pm_opp_get_voltage(opp);
> + dev_pm_opp_put(opp);
> +
> + return 0;
> +}
> +
> +/**
> + * exynos5_dmc_target() - Function responsible for changing frequency of DMC
> + * @dev: device for which the frequency is going to be changed
> + * @freq: requested frequency in KHz
> + * @flags: flags provided for this frequency change request
> + *
> + * An entry function provided to the devfreq framework which provides frequency
> + * change of the DMC. The function gets the possible rate from OPP table based
> + * on requested frequency. It calls the next function responsible for the
> + * frequency and voltage change. In case of failure, does not set 'curr_rate'
> + * and returns error value to the framework.
> + */
> +static int exynos5_dmc_target(struct device *dev, unsigned long *freq,
> + u32 flags)
> +{
> + struct exynos5_dmc *dmc = dev_get_drvdata(dev);
> + unsigned long target_rate = 0;
> + unsigned long target_volt = 0;
> + int ret;
> +
> + ret = exynos5_dmc_get_volt_freq(dmc, freq, &target_rate, &target_volt,
> + flags);
> +
> + if (ret)
> + return ret;
> +
> + if (target_rate == dmc->curr_rate)
> + return 0;
> +
> + mutex_lock(&dmc->lock);
> +
> + ret = exynos5_dmc_change_freq_and_volt(dmc, target_rate, target_volt);
> +
> + if (ret) {
> + mutex_unlock(&dmc->lock);
> + return ret;
> + }
> +
> + dmc->curr_rate = target_rate;
> +
> + mutex_unlock(&dmc->lock);
> + return 0;
> +}
> +
> +/**
> + * exynos5_counters_get() - Gets the performance counters values.
> + * @dmc: device for which the counters are going to be checked
> + * @load_count: variable which is populated with counter value
> + * @total_count: variable which is used as 'wall clock' reference
> + *
> + * Function which provides performance counters values. It sums up counters for
> + * two DMC channels. The 'total_count' is used as a reference and max value.
> + * The ratio 'load_count/total_count' shows the busy percentage [0%, 100%].
> + */
> +static int exynos5_counters_get(struct exynos5_dmc *dmc,
> + unsigned long *load_count,
> + unsigned long *total_count)
> +{
> + unsigned long total = 0;
> + struct devfreq_event_data event;
> + int ret, i;
> +
> + *load_count = 0;
> +
> + /* Take into account only read+write counters, but stop all */
> + for (i = 0; i < dmc->num_counters; i++) {
> + if (!dmc->counter[i])
> + continue;
> +
> + ret = devfreq_event_get_event(dmc->counter[i], &event);
> + if (ret < 0)
> + return ret;
> +
> + *load_count += event.load_count;
> +
> + if (total < event.total_count)
> + total = event.total_count;
> + }
> +
> + *total_count = total;
> +
> + return 0;
> +}
> +
> +/**
> + * exynos5_dmc_get_status() - Read current DMC performance statistics.
> + * @dev: device for which the statistics are requested
> + * @stat: structure which has statistic fields
> + *
> + * Function reads the DMC performance counters and calculates 'busy_time'
> + * and 'total_time'. To protect from overflow, the values are shifted right
> + * by 10. After read out the counters are setup to count again.
> + */
> +static int exynos5_dmc_get_status(struct device *dev,
> + struct devfreq_dev_status *stat)
> +{
> + struct exynos5_dmc *dmc = dev_get_drvdata(dev);
> + unsigned long load, total;
> + int ret;
> +
> + ret = exynos5_counters_get(dmc, &load, &total);
> + if (ret < 0)
> + return -EINVAL;
> +
> + /* To protect from overflow in calculation ratios, divide by 1024 */
> + stat->busy_time = load >> 10;
> + stat->total_time = total >> 10;
> +
> + ret = exynos5_counters_set_event(dmc);
> + if (ret < 0) {
> + dev_err(dev, "could not set event counter\n");
> + return ret;
> + }
> +
> + return 0;
> +}
> +
> +/**
> + * exynos5_dmc_get_cur_freq() - Function returns current DMC frequency
> + * @dev: device for which the framework checks operating frequency
> + * @freq: returned frequency value
> + *
> + * It returns the currently used frequency of the DMC. The real operating
> + * frequency might be lower when the clock source value could not be divided
> + * to the requested value.
> + */
> +static int exynos5_dmc_get_cur_freq(struct device *dev, unsigned long *freq)
> +{
> + struct exynos5_dmc *dmc = dev_get_drvdata(dev);
> +
> + mutex_lock(&dmc->lock);
> + *freq = dmc->curr_rate;
> + mutex_unlock(&dmc->lock);
> +
> + return 0;
> +}
> +
> +/**
> + * exynos5_dmc_df_profile - Devfreq governor's profile structure
> + *
> + * It provides to the devfreq framework needed functions and polling period.
> + */
> +static struct devfreq_dev_profile exynos5_dmc_df_profile = {
> + .polling_ms = 500,
> + .target = exynos5_dmc_target,
> + .get_dev_status = exynos5_dmc_get_status,
> + .get_cur_freq = exynos5_dmc_get_cur_freq,
> +};
> +
> +/**
> + * exynos5_dmc_align_initial_frequency() - Align initial frequency value
> + * @dmc: device for which the frequency is going to be set
> + * @bootloader_init_freq: initial frequency set by the bootloader in KHz
> + *
> + * The initial bootloader frequency, which is present during boot, might be
> + * different that supported frequency values in the driver. It is possible
> + * due to different PLL settings or used PLL as a source.
> + * This function provides the 'initial_freq' for the devfreq framework
> + * statistics engine which supports only registered values. Thus, some alignment
> + * must be made.
> + */
> +unsigned long
> +exynos5_dmc_align_init_freq(struct exynos5_dmc *dmc,
> + unsigned long bootloader_init_freq)
> +{
> + unsigned long aligned_freq;
> + int idx;
> +
> + idx = find_target_freq_idx(dmc, bootloader_init_freq);
> + if (idx >= 0)
> + aligned_freq = dmc->opp[idx].freq_hz;
> + else
> + aligned_freq = dmc->opp[dmc->opp_count - 1].freq_hz;
> +
> + return aligned_freq;
> +}
> +
> +/**
> + * create_timings_aligned() - Create register values and align with standard
> + * @dmc: device for which the frequency is going to be set
> + * @idx: speed bin in the OPP table
> + * @clk_period_ps: the period of the clock, known as tCK
> + *
> + * The function calculates timings and creates a register value ready for
> + * a frequency transition. The register contains a few timings. They are
> + * shifted by a known offset. The timing value is calculated based on memory
> + * specyfication: minimal time required and minimal cycles required.
> + */
> +static int create_timings_aligned(struct exynos5_dmc *dmc, u32 *reg_timing_row,
> + u32 *reg_timing_data, u32 *reg_timing_power,
> + u32 clk_period_ps)
> +{
> + u32 val;
> + const struct timing_reg *reg;
> +
> + if (clk_period_ps == 0)
> + return -EINVAL;
> +
> + *reg_timing_row = 0;
> + *reg_timing_data = 0;
> + *reg_timing_power = 0;
> +
> + val = dmc->timings->tRFC / clk_period_ps;
> + val += dmc->timings->tRFC % clk_period_ps ? 1 : 0;
> + val = max(val, dmc->min_tck->tRFC);
> + reg = &timing_row[0];
> + *reg_timing_row |= TIMING_VAL2REG(reg, val);
> +
> + val = dmc->timings->tRRD / clk_period_ps;
> + val += dmc->timings->tRRD % clk_period_ps ? 1 : 0;
> + val = max(val, dmc->min_tck->tRRD);
> + reg = &timing_row[1];
> + *reg_timing_row |= TIMING_VAL2REG(reg, val);
> +
> + val = dmc->timings->tRPab / clk_period_ps;
> + val += dmc->timings->tRPab % clk_period_ps ? 1 : 0;
> + val = max(val, dmc->min_tck->tRPab);
> + reg = &timing_row[2];
> + *reg_timing_row |= TIMING_VAL2REG(reg, val);
> +
> + val = dmc->timings->tRCD / clk_period_ps;
> + val += dmc->timings->tRCD % clk_period_ps ? 1 : 0;
> + val = max(val, dmc->min_tck->tRCD);
> + reg = &timing_row[3];
> + *reg_timing_row |= TIMING_VAL2REG(reg, val);
> +
> + val = dmc->timings->tRC / clk_period_ps;
> + val += dmc->timings->tRC % clk_period_ps ? 1 : 0;
> + val = max(val, dmc->min_tck->tRC);
> + reg = &timing_row[4];
> + *reg_timing_row |= TIMING_VAL2REG(reg, val);
> +
> + val = dmc->timings->tRAS / clk_period_ps;
> + val += dmc->timings->tRAS % clk_period_ps ? 1 : 0;
> + val = max(val, dmc->min_tck->tRAS);
> + reg = &timing_row[5];
> + *reg_timing_row |= TIMING_VAL2REG(reg, val);
> +
> + /* data related timings */
> + val = dmc->timings->tWTR / clk_period_ps;
> + val += dmc->timings->tWTR % clk_period_ps ? 1 : 0;
> + val = max(val, dmc->min_tck->tWTR);
> + reg = &timing_data[0];
> + *reg_timing_data |= TIMING_VAL2REG(reg, val);
> +
> + val = dmc->timings->tWR / clk_period_ps;
> + val += dmc->timings->tWR % clk_period_ps ? 1 : 0;
> + val = max(val, dmc->min_tck->tWR);
> + reg = &timing_data[1];
> + *reg_timing_data |= TIMING_VAL2REG(reg, val);
> +
> + val = dmc->timings->tRTP / clk_period_ps;
> + val += dmc->timings->tRTP % clk_period_ps ? 1 : 0;
> + val = max(val, dmc->min_tck->tRTP);
> + reg = &timing_data[2];
> + *reg_timing_data |= TIMING_VAL2REG(reg, val);
> +
> + val = dmc->timings->tW2W_C2C / clk_period_ps;
> + val += dmc->timings->tW2W_C2C % clk_period_ps ? 1 : 0;
> + val = max(val, dmc->min_tck->tW2W_C2C);
> + reg = &timing_data[3];
> + *reg_timing_data |= TIMING_VAL2REG(reg, val);
> +
> + val = dmc->timings->tR2R_C2C / clk_period_ps;
> + val += dmc->timings->tR2R_C2C % clk_period_ps ? 1 : 0;
> + val = max(val, dmc->min_tck->tR2R_C2C);
> + reg = &timing_data[4];
> + *reg_timing_data |= TIMING_VAL2REG(reg, val);
> +
> + val = dmc->timings->tWL / clk_period_ps;
> + val += dmc->timings->tWL % clk_period_ps ? 1 : 0;
> + val = max(val, dmc->min_tck->tWL);
> + reg = &timing_data[5];
> + *reg_timing_data |= TIMING_VAL2REG(reg, val);
> +
> + val = dmc->timings->tDQSCK / clk_period_ps;
> + val += dmc->timings->tDQSCK % clk_period_ps ? 1 : 0;
> + val = max(val, dmc->min_tck->tDQSCK);
> + reg = &timing_data[6];
> + *reg_timing_data |= TIMING_VAL2REG(reg, val);
> +
> + val = dmc->timings->tRL / clk_period_ps;
> + val += dmc->timings->tRL % clk_period_ps ? 1 : 0;
> + val = max(val, dmc->min_tck->tRL);
> + reg = &timing_data[7];
> + *reg_timing_data |= TIMING_VAL2REG(reg, val);
> +
> + /* power related timings */
> + val = dmc->timings->tFAW / clk_period_ps;
> + val += dmc->timings->tFAW % clk_period_ps ? 1 : 0;
> + val = max(val, dmc->min_tck->tXP);
> + reg = &timing_power[0];
> + *reg_timing_power |= TIMING_VAL2REG(reg, val);
> +
> + val = dmc->timings->tXSR / clk_period_ps;
> + val += dmc->timings->tXSR % clk_period_ps ? 1 : 0;
> + val = max(val, dmc->min_tck->tXSR);
> + reg = &timing_power[1];
> + *reg_timing_power |= TIMING_VAL2REG(reg, val);
> +
> + val = dmc->timings->tXP / clk_period_ps;
> + val += dmc->timings->tXP % clk_period_ps ? 1 : 0;
> + val = max(val, dmc->min_tck->tXP);
> + reg = &timing_power[2];
> + *reg_timing_power |= TIMING_VAL2REG(reg, val);
> +
> + val = dmc->timings->tCKE / clk_period_ps;
> + val += dmc->timings->tCKE % clk_period_ps ? 1 : 0;
> + val = max(val, dmc->min_tck->tCKE);
> + reg = &timing_power[3];
> + *reg_timing_power |= TIMING_VAL2REG(reg, val);
> +
> + val = dmc->timings->tMRD / clk_period_ps;
> + val += dmc->timings->tMRD % clk_period_ps ? 1 : 0;
> + val = max(val, dmc->min_tck->tMRD);
> + reg = &timing_power[4];
> + *reg_timing_power |= TIMING_VAL2REG(reg, val);
> +
> + return 0;
> +}
> +
> +/**
> + * of_get_dram_timings() - helper function for parsing DT settings for DRAM
> + * @dmc: device for which the frequency is going to be set
> + *
> + * The function parses DT entries with DRAM information.
> + */
> +static int of_get_dram_timings(struct exynos5_dmc *dmc)
> +{
> + int ret = 0;
> + int idx;
> + struct device_node *np_ddr;
> + u32 freq_mhz, clk_period_ps;
> +
> + np_ddr = of_parse_phandle(dmc->dev->of_node, "device-handle", 0);
> + if (!np_ddr) {
> + dev_warn(dmc->dev, "could not find 'device-handle' in DT\n");
> + return -EINVAL;
> + }
> +
> + dmc->timing_row = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
> + sizeof(u32), GFP_KERNEL);
> + if (!dmc->timing_row)
> + return -ENOMEM;
> +
> + dmc->timing_data = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
> + sizeof(u32), GFP_KERNEL);
> + if (!dmc->timing_data)
> + return -ENOMEM;
> +
> + dmc->timing_power = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
> + sizeof(u32), GFP_KERNEL);
> + if (!dmc->timing_power)
> + return -ENOMEM;
> +
> + dmc->timings = of_lpddr3_get_ddr_timings(np_ddr, dmc->dev,
> + DDR_TYPE_LPDDR3,
> + &dmc->timings_arr_size);
> + if (!dmc->timings) {
> + of_node_put(np_ddr);
> + dev_warn(dmc->dev, "could not get timings from DT\n");
> + return -EINVAL;
> + }
> +
> + dmc->min_tck = of_lpddr3_get_min_tck(np_ddr, dmc->dev);
> + if (!dmc->min_tck) {
> + of_node_put(np_ddr);
> + dev_warn(dmc->dev, "could not get tck from DT\n");
> + return -EINVAL;
> + }
> +
> + /* Sorted array of OPPs with frequency ascending */
> + for (idx = 0; idx < dmc->opp_count; idx++) {
> + freq_mhz = dmc->opp[idx].freq_hz / 1000000;
> + clk_period_ps = 1000000 / freq_mhz;
> +
> + ret = create_timings_aligned(dmc, &dmc->timing_row[idx],
> + &dmc->timing_data[idx],
> + &dmc->timing_power[idx],
> + clk_period_ps);
> + }
> +
> + of_node_put(np_ddr);
> +
> + /* Take the highest frequency's timings as 'bypass' */
> + dmc->bypass_timing_row = dmc->timing_row[idx - 1];
> + dmc->bypass_timing_data = dmc->timing_data[idx - 1];
> + dmc->bypass_timing_power = dmc->timing_power[idx - 1];
> +
> + return ret;
> +}
> +
> +/**
> + * exynos5_dmc_init_clks() - Initialize clocks needed for DMC operation.
> + * @dmc: DMC structure containing needed fields
> + *
> + * Get the needed clocks defined in DT device, enable and set the right parents.
> + * Read current frequency and initialize the initial rate for governor.
> + */
> +static int exynos5_dmc_init_clks(struct exynos5_dmc *dmc)
> +{
> + int ret;
> + unsigned long target_volt = 0;
> + unsigned long target_rate = 0;
> +
> + dmc->fout_spll = devm_clk_get(dmc->dev, "fout_spll");
> + if (IS_ERR(dmc->fout_spll))
> + return PTR_ERR(dmc->fout_spll);
> +
> + dmc->fout_bpll = devm_clk_get(dmc->dev, "fout_bpll");
> + if (IS_ERR(dmc->fout_bpll))
> + return PTR_ERR(dmc->fout_bpll);
> +
> + dmc->mout_mclk_cdrex = devm_clk_get(dmc->dev, "mout_mclk_cdrex");
> + if (IS_ERR(dmc->mout_mclk_cdrex))
> + return PTR_ERR(dmc->mout_mclk_cdrex);

You are not enabling this clock. It is divider so it is fine for him
but what about its parents? How can you guarantee that parents are
enabled?

> +
> + dmc->mout_bpll = devm_clk_get(dmc->dev, "mout_bpll");
> + if (IS_ERR(dmc->mout_bpll))
> + return PTR_ERR(dmc->mout_bpll);
> +
> + dmc->mout_mx_mspll_ccore = devm_clk_get(dmc->dev,
> + "mout_mx_mspll_ccore");
> + if (IS_ERR(dmc->mout_mx_mspll_ccore))
> + return PTR_ERR(dmc->mout_mx_mspll_ccore);
> +
> + dmc->dout_clk2x_phy0 = devm_clk_get(dmc->dev, "dout_clk2x_phy0");
> + if (IS_ERR(dmc->dout_clk2x_phy0))
> + return PTR_ERR(dmc->dout_clk2x_phy0);

This looks like not used.

> +
> + dmc->mout_spll = devm_clk_get(dmc->dev, "ff_dout_spll2");
> + if (IS_ERR(dmc->mout_spll)) {
> + dmc->mout_spll = devm_clk_get(dmc->dev, "mout_sclk_spll");
> + if (IS_ERR(dmc->mout_spll))
> + return PTR_ERR(dmc->mout_spll);
> + }
> +
> + /*
> + * Convert frequency to KHz values and set it for the governor.
> + */
> + dmc->curr_rate = clk_get_rate(dmc->mout_mclk_cdrex);
> + dmc->curr_rate = exynos5_dmc_align_init_freq(dmc, dmc->curr_rate);
> + exynos5_dmc_df_profile.initial_freq = dmc->curr_rate;
> +
> + ret = exynos5_dmc_get_volt_freq(dmc, &dmc->curr_rate, &target_rate,
> + &target_volt, 0);
> + if (ret)
> + return ret;
> +
> + dmc->curr_volt = target_volt;
> +
> + clk_set_parent(dmc->mout_mx_mspll_ccore, dmc->mout_spll);
> +
> + dmc->bypass_rate = clk_get_rate(dmc->mout_mx_mspll_ccore);
> +
> + clk_prepare_enable(dmc->fout_bpll);
> + clk_prepare_enable(dmc->mout_bpll);
> +
> + return 0;
> +}
> +
> +/**
> + * exynos5_performance_counters_init() - Initializes performance DMC's counters
> + * @dmc: DMC for which it does the setup
> + *
> + * Initialization of performance counters in DMC for estimating usage.
> + * The counter's values are used for calculation of a memory bandwidth and based
> + * on that the governor changes the frequency.
> + * The counters are not used when the governor is GOVERNOR_USERSPACE.
> + */
> +static int exynos5_performance_counters_init(struct exynos5_dmc *dmc)
> +{
> + int counters_size;
> + int ret, i;
> +
> + dmc->num_counters = devfreq_event_get_edev_count(dmc->dev);
> + if (dmc->num_counters < 0) {
> + dev_err(dmc->dev, "could not get devfreq-event counters\n");
> + return dmc->num_counters;
> + }
> +
> + counters_size = sizeof(struct devfreq_event_dev) * dmc->num_counters;
> + dmc->counter = devm_kzalloc(dmc->dev, counters_size, GFP_KERNEL);
> + if (!dmc->counter)
> + return -ENOMEM;
> +
> + for (i = 0; i < dmc->num_counters; i++) {
> + dmc->counter[i] =
> + devfreq_event_get_edev_by_phandle(dmc->dev, i);
> + if (IS_ERR_OR_NULL(dmc->counter[i]))
> + return -EPROBE_DEFER;
> + }
> +
> + ret = exynos5_counters_enable_edev(dmc);
> + if (ret < 0) {
> + dev_err(dmc->dev, "could not enable event counter\n");
> + return ret;
> + }
> +
> + ret = exynos5_counters_set_event(dmc);
> + if (ret < 0) {
> + dev_err(dmc->dev, "counld not set event counter\n");
> + return ret;
> + }
> +
> + return 0;
> +}
> +
> +/**
> + * exynos5_dmc_set_pause_on_switching() - Controls a pause feature in DMC
> + * @dmc: device which is used for changing this feature
> + * @set: a boolean state passing enable/disable request
> + *
> + * There is a need of pausing DREX DMC when divider or MUX in clock tree
> + * changes its configuration. In such situation access to the memory is blocked
> + * in DMC automatically. This feature is used when clock frequency change
> + * request appears and touches clock tree.
> + */
> +static inline int exynos5_dmc_set_pause_on_switching(struct exynos5_dmc *dmc)
> +{
> + unsigned int val;
> + int ret;
> +
> + ret = regmap_read(dmc->clk_regmap, CDREX_PAUSE, &val);
> + if (ret)
> + return ret;
> +
> + val |= 1UL;
> + regmap_write(dmc->clk_regmap, CDREX_PAUSE, val);
> +
> + return 0;
> +}
> +
> +/**
> + * exynos5_dmc_probe() - Probe function for the DMC driver
> + * @pdev: platform device for which the driver is going to be initialized
> + *
> + * Initialize basic components: clocks, regulators, performance counters, etc.
> + * Read out product version and based on the information setup
> + * internal structures for the controller (frequency and voltage) and for DRAM
> + * memory parameters: timings for each operating frequency.
> + * Register new devfreq device for controlling DVFS of the DMC.
> + */
> +static int exynos5_dmc_probe(struct platform_device *pdev)
> +{
> + int ret = 0;
> + struct exynos5_dmc *dmc;

A nit: put un-initialized variables close to each other, it brings some order.

> + struct device *dev = &pdev->dev;
> + struct device_node *np = dev->of_node;
> + struct resource *res;
> +
> + dmc = devm_kzalloc(dev, sizeof(*dmc), GFP_KERNEL);
> + if (!dmc)
> + return -ENOMEM;
> +
> + mutex_init(&dmc->lock);
> +
> + dmc->dev = dev;
> + platform_set_drvdata(pdev, dmc);
> +
> + res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
> + dmc->base_drexi0 = devm_ioremap_resource(dev, res);
> + if (IS_ERR(dmc->base_drexi0))
> + return PTR_ERR(dmc->base_drexi0);
> +
> + res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
> + dmc->base_drexi1 = devm_ioremap_resource(dev, res);
> + if (IS_ERR(dmc->base_drexi1))
> + return PTR_ERR(dmc->base_drexi1);
> +
> + dmc->clk_regmap = syscon_regmap_lookup_by_phandle(np,
> + "samsung,syscon-clk");
> + if (IS_ERR(dmc->clk_regmap))
> + return PTR_ERR(dmc->clk_regmap);
> +
> + ret = exynos5_init_freq_table(dmc, &exynos5_dmc_df_profile);
> + if (ret) {
> + dev_warn(dev, "couldn't initialize frequency settings\n");
> + return ret;
> + }
> +
> + dmc->vdd_mif = devm_regulator_get(dev, "vdd");
> + if (IS_ERR(dmc->vdd_mif)) {
> + ret = PTR_ERR(dmc->vdd_mif);
> + return ret;
> + }
> +
> + ret = exynos5_dmc_init_clks(dmc);
> + if (ret)
> + return ret;
> +
> + ret = of_get_dram_timings(dmc);
> + if (ret) {
> + dev_warn(dev, "couldn't initialize timings settings\n");
> + return ret;
> + }
> +
> + ret = exynos5_performance_counters_init(dmc);
> + if (ret) {
> + dev_warn(dev, "couldn't probe performance counters\n");
> + goto remove_clocks;
> + }
> +
> + ret = exynos5_dmc_set_pause_on_switching(dmc);
> + if (ret) {
> + dev_warn(dev, "couldn't get access to PAUSE register\n");
> + goto remove_clocks;
> + }
> +
> + /*
> + * Setup default thresholds for the devfreq governor.
> + * The values are chosen based on experiments.
> + */
> + dmc->gov_data.upthreshold = 30;
> + dmc->gov_data.downdifferential = 5;
> +
> + dmc->df = devm_devfreq_add_device(dev, &exynos5_dmc_df_profile,
> + DEVFREQ_GOV_USERSPACE,
> + &dmc->gov_data);
> +
> + if (IS_ERR(dmc->df)) {
> + ret = PTR_ERR(dmc->df);
> + goto err_devfreq_add;
> + }
> +
> + dev_info(dev, "DMC initialized\n");
> +
> + return 0;
> +
> +err_devfreq_add:
> + exynos5_counters_disable_edev(dmc);
> +remove_clocks:
> + clk_disable_unprepare(dmc->mout_spll);
> + clk_disable_unprepare(dmc->fout_spll);

This looks unbalanced. Where was the enable of fout_spll? This is
weird - some clocks are disabled in this error path but not in
remove(). Some the opposite - not disabled on error path.

Best regards,
Krzysztof