On Mon, Jun 03, 2019 at 09:16:11AM +0800, Lu Baolu wrote:
The Thunderbolt vulnerabilities are public and have a nice
name as Thunderclap [1] [3] nowadays. This patch series aims
to mitigate those concerns.
An external PCI device is a PCI peripheral device connected
to the system through an external bus, such as Thunderbolt.
What makes it different is that it can't be trusted to the
same degree as the devices build into the system. Generally,
a trusted PCIe device will DMA into the designated buffers
and not overrun or otherwise write outside the specified
bounds. But it's different for an external device.
The minimum IOMMU mapping granularity is one page (4k), so
for DMA transfers smaller than that a malicious PCIe device
can access the whole page of memory even if it does not
belong to the driver in question. This opens a possibility
for DMA attack. For more information about DMA attacks
imposed by an untrusted PCI/PCIe device, please refer to [2].
This implements bounce buffer for the untrusted external
devices. The transfers should be limited in isolated pages
so the IOMMU window does not cover memory outside of what
the driver expects. Previously (v3 and before), we proposed
an optimisation to only copy the head and tail of the buffer
if it spans multiple pages, and directly map the ones in the
middle. Figure 1 gives a big picture about this solution.
swiotlb System
IOVA bounce page Memory
.---------. .---------. .---------.
| | | | | |
| | | | | |
buffer_start .---------. .---------. .---------.
| |----->| |*******>| |
| | | | swiotlb| |
| | | | mapping| |
IOMMU Page '---------' '---------' '---------'
Boundary | | | |
| | | |
| | | |
| |------------------------>| |
| | IOMMU mapping | |
| | | |
IOMMU Page .---------. .---------.
Boundary | | | |
| | | |
| |------------------------>| |
| | IOMMU mapping | |
| | | |
| | | |
IOMMU Page .---------. .---------. .---------.
Boundary | | | | | |
| | | | | |
| |----->| |*******>| |
buffer_end '---------' '---------' swiotlb'---------'
| | | | mapping| |
| | | | | |
'---------' '---------' '---------'
Figure 1: A big view of iommu bounce page
As Robin Murphy pointed out, this ties us to using strict mode for
TLB maintenance, which may not be an overall win depending on the
balance between invalidation bandwidth vs. memcpy bandwidth. If we
use standard SWIOTLB logic to always copy the whole thing, we should
be able to release the bounce pages via the flush queue to allow
'safe' lazy unmaps. So since v4 we start to use the standard swiotlb
logic.
swiotlb System
IOVA bounce page Memory
buffer_start .---------. .---------. .---------.
| | | | | |
| | | | | |
| | | | .---------.physical
| |----->| | ------>| |_start
| |iommu | | swiotlb| |
| | map | | map | |
IOMMU Page .---------. .---------. '---------'
The prior picture had 'buffer_start' at an offset in the page. I am
assuming you meant that here in as well?
Meaning it starts at the same offset as 'physical_start' in the right
side box?
Boundary | | | | | |
| | | | | |
| |----->| | | |
| |iommu | | | |
| | map | | | |
| | | | | |
IOMMU Page .---------. .---------. .---------.
Boundary | | | | | |
| |----->| | | |
| |iommu | | | |
| | map | | | |
| | | | | |
IOMMU Page | | | | | |
Boundary .---------. .---------. .---------.
| | | |------->| |
buffer_end '---------' '---------' swiotlb| |
| |----->| | map | |
| |iommu | | | |
| | map | | '---------' physical
| | | | | | _end
'---------' '---------' '---------'
Figure 2: A big view of simplified iommu bounce page
The implementation of bounce buffers for untrusted devices
will cause a little performance overhead, but we didn't see
any user experience problems. The users could use the kernel
What kind of devices did you test it with?
Thank you for making this awesome cover letter btw!