RE: [LINUX PATCH v15] mtd: rawnand: pl353: Add basic driver for arm pl353 smc nand interface
From: Naga Sureshkumar Relli
Date: Mon Jun 17 2019 - 04:43:39 EST
Hi,
Please ignore this patch.
Thanks,
Naga Sureshkumar Relli
> -----Original Message-----
> From: Naga Sureshkumar Relli <naga.sureshkumar.relli@xxxxxxxxxx>
> Sent: Monday, June 17, 2019 1:21 PM
> To: miquel.raynal@xxxxxxxxxxx; helmut.grohne@xxxxxxxxxx
> Cc: richard@xxxxxx; dwmw2@xxxxxxxxxxxxx; computersforpeace@xxxxxxxxx;
> marek.vasut@xxxxxxxxx; vigneshr@xxxxxx; linux-mtd@xxxxxxxxxxxxxxxxxxx; linux-
> kernel@xxxxxxxxxxxxxxx; Michal Simek <michals@xxxxxxxxxx>; Naga Sureshkumar Relli
> <nagasure@xxxxxxxxxx>
> Subject: [LINUX PATCH v15] mtd: rawnand: pl353: Add basic driver for arm pl353 smc
> nand interface
>
> Add driver for arm pl353 static memory controller nand interface with HW ECC support. This
> controller is used in Xilinx Zynq SoC for interfacing the NAND flash memory.
>
> Signed-off-by: Naga Sureshkumar Relli <naga.sureshkumar.relli@xxxxxxxxxx>
> ---
> xilinx zynq TRM link:
> https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
>
> ARM pl353 smc TRM link:
> http://infocenter.arm.com/help/topic/com.arm.doc.ddi0380g/DDI0380G_smc_pl350_series_
> r2p1_trm.pdf
>
> -> Tested Micron MT29F2G08ABAEAWP (On-die capable) and AMD/Spansion
> S34ML01G1.
> -> Tested both x8 and x16 bus-widths.
> -> Tested ubifs, mtd_debug tools and mtd-tests which exists in kernel as modules.
>
> SMC memory controller driver is at drivers/memory/pl353-smc.c
>
> Changes in v15:
> All the comments given by Helmut Grohne to v14 are addressed in this series
> as mentioned below.
> - Removed below unused macros
> PL353_NAND_CMD_PHASE, PL353_NAND_DATA_PHASE and
> PL353_NAND_ECC_CONFIG
> - Used cond_resched() instead of cpu_relax() to eleminate the CPU spin for
> a full second
> - changed the size of cmnds[4] to cmnds[2]
> - Removed the unused variable end_cmd in struct pl353_nfc_op
> - Added new variable u16 addrs_56, instead of u32 addr5 and u32 addr6
> - Removed the unused variable cle_ale_delay_ns in struct pl353_nfc_op
> - Completely changed the nand_offset calculation, taken new varibale
> called dataphase_addrflags and eleminated the casting with __force
> just used offset + flags
> - in pl353_ecc_ooblayout64_free(), removed checking of section with
> ecc.steps, as section is 0 here
> - simplified the pl353_wait_for_dev_ready() and pl353_wait_for_ecc_done()
> - Updated the nfc_op->addrs calculation in pl353_nfc_parse_instructions()
> - Removed cond_delay(), instead used ndelay(), as it is sufficient
> - in pl353_nand_exec_op(), instead of assigning end_cmd twice, just assign
> it once by nfc_op.cmnds[1]
> - changed if (reading) to else in pl353_nand_exec_op()
> - Removed int err variable in pl353_nand_ecc_init(), instead just used
> single variable ret
> - Changed reading clock value by name rather than index in pl353_nand_probe()
> - Instead of always calling clk_get_rate(), stored it in the probe to a
> varaible and use it later
> Changes in v14:
> - Removed legacy hooks as per Miquel comments Changes in v13:
> - Rebased the driver to mtd/next
> Changes in v12:
> - Rebased the driver on top of v4.19 nand tree
> - Removed nand_scan_ident() and nand_scan_tail(), and added nand_controller_ops
> with ->attach_chip() and used nand_scan() instead.
> - Renamed pl353_nand_info structure to pl353_nand_controller
> - Renamed nand_base and nandaddr in pl353_nand_controller to 'regs' and 'buf_addr'
> - Added new API pl353_wait_for_ecc_done() to wait for ecc done and call it from
> pl353_nand_write_page_hwecc() and pl353_nand_read_page_hwecc()
> - Defined new macro for max ECC blocks
> - Added return value check for ecc.calculate()
> - Renamed pl353_nand_cmd_function() to pl353_nand_exec_op_cmd()
> - Added x16 bus-width support
> - The dependent driver pl353-smc is already reviewed and hence dropped the
> smc driver
> Changes in v11:
> - Removed Documentation patch and added the required info in driver as
> per Boris comments.
> - Removed unwanted variables from pl353_nand_info as per Miquel comments
> - Removed IO_ADDR_R/W.
> - Replaced onhot() with hweight32()
> - Defined macros for static values in function pl353_nand_correct_data()
> - Removed all unnecessary delays
> - Used nand_wait_ready() where ever is required
> - Modifed the pl353_setup_data_interface() logic as per Miquel comments.
> - Taken array instead of 7 values in pl353_setup_data_interface() and pass
> it to smc driver.
> - Added check to collect the return value of mtd_device_register().
> Changes in 10:
> - Typos correction like nand to NAND and soc to SOC etc..
> - Defined macros for the values in pl353_nand_calculate_hwecc()
> - Modifed ecc_status from int to char in pl353_nand_calculate_hwecc()
> - Changed the return type form int to bool to the function
> onehot()
> - Removed udelay(1000) in pl353_cmd_function, as it is not required
> - Dropped ecc->hwctl = NULL in pl353_ecc_init()
> - Added an error message in pl353_ecc_init(), when there is no matching
> oobsize
> - Changed the variable from xnand to xnfc
> - Added logic to get mtd->name from DT, if it is specified in DT Changes in v9:
> - Addressed the below comments given by Miquel
> - instead of using pl353_nand_write32, use directly writel_relaxed
> - Fixed check patch warnings
> - Renamed write_buf/read_buf to write_data_op/read_data_op
> - use BIT macro instead of 1 << nr
> - Use NAND_ROW_ADDR_3 flag
> - Use nand_wait_ready()
> - Removed swecc functions
> - Use address cycles as per size, instead of reading it from Parameter page
> - Instead of writing too many patterns, use optional property Changes in v8:
> - Added exec_op() implementation
> - Fixed the below v7 review comments
> - removed mtd_info from pl353_nand_info struct
> - Corrected ecc layout offsets
> - Added on-die ecc support
> Changes in v7:
> - Currently not implemented the memclk rate adjustments. I will
> look into this later and once the basic driver is accepted.
> - Fixed GPL licence ident
> Changes in v6:
> - Fixed the checkpatch.pl reported warnings
> - Using the address cycles information from the onfi param page
> earlier it is hardcoded to 5 in driver Changes in v5:
> - Configure the nand timing parameters as per the onfi spec Changes in v4:
> - Updated the driver to sync with pl353_smc driver APIs Changes in v3:
> - implemented the proper error codes
> - further breakdown this patch to multiple sets
> - added the controller and driver details to Documentation section
> - updated the licenece to GPLv2
> - reorganized the pl353_nand_ecc_init function Changes in v2:
> - use "depends on" rather than "select" option in kconfig
> - remove unused variable parts
> ---
> drivers/mtd/nand/raw/pl353_nand.c | 1309 +++++++++++++++++++++++++++++
> 1 file changed, 1309 insertions(+)
> create mode 100644 drivers/mtd/nand/raw/pl353_nand.c
>
> diff --git a/drivers/mtd/nand/raw/pl353_nand.c b/drivers/mtd/nand/raw/pl353_nand.c
> new file mode 100644
> index 000000000000..2dc799865c2e
> --- /dev/null
> +++ b/drivers/mtd/nand/raw/pl353_nand.c
> @@ -0,0 +1,1309 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * ARM PL353 NAND flash controller driver
> + *
> + * Copyright (C) 2017 Xilinx, Inc
> + * Author: Punnaiah chowdary kalluri <punnaiah@xxxxxxxxxx>
> + * Author: Naga Sureshkumar Relli <nagasure@xxxxxxxxxx>
> + *
> + */
> +
> +#include <linux/err.h>
> +#include <linux/delay.h>
> +#include <linux/interrupt.h>
> +#include <linux/io.h>
> +#include <linux/ioport.h>
> +#include <linux/irq.h>
> +#include <linux/module.h>
> +#include <linux/moduleparam.h>
> +#include <linux/mtd/mtd.h>
> +#include <linux/mtd/rawnand.h>
> +#include <linux/mtd/nand_ecc.h>
> +#include <linux/mtd/partitions.h>
> +#include <linux/of_address.h>
> +#include <linux/of_device.h>
> +#include <linux/of_platform.h>
> +#include <linux/platform_device.h>
> +#include <linux/slab.h>
> +#include <linux/pl353-smc.h>
> +#include <linux/clk.h>
> +
> +#define PL353_NAND_DRIVER_NAME "pl353-nand"
> +
> +/* NAND flash driver defines */
> +#define PL353_NAND_ECC_SIZE 512 /* Size of data for ECC operation */
> +
> +/* AXI Address definitions */
> +#define START_CMD_SHIFT 3
> +#define END_CMD_SHIFT 11
> +#define END_CMD_VALID_SHIFT 20
> +#define ADDR_CYCLES_SHIFT 21
> +#define CLEAR_CS_SHIFT 21
> +#define ECC_LAST_SHIFT 10
> +#define COMMAND_PHASE (0 << 19)
> +#define DATA_PHASE BIT(19)
> +
> +#define PL353_NAND_ECC_LAST BIT(ECC_LAST_SHIFT) /* Set ECC_Last */
> +#define PL353_NAND_CLEAR_CS BIT(CLEAR_CS_SHIFT) /* Clear chip select */
> +
> +#define PL353_NAND_ECC_BUSY_TIMEOUT (1 * HZ)
> +#define PL353_NAND_DEV_BUSY_TIMEOUT (1 * HZ)
> +#define PL353_NAND_LAST_TRANSFER_LENGTH 4
> +#define PL353_NAND_ECC_VALID_SHIFT 24
> +#define PL353_NAND_ECC_VALID_MASK 0x40
> +#define PL353_ECC_BITS_BYTEOFF_MASK 0x1FF
> +#define PL353_ECC_BITS_BITOFF_MASK 0x7
> +#define PL353_ECC_BIT_MASK 0xFFF
> +#define PL353_TREA_MAX_VALUE 1
> +#define PL353_MAX_ECC_CHUNKS 4
> +#define PL353_MAX_ECC_BYTES 3
> +
> +struct pl353_nfc_op {
> + u32 cmnds[2];
> + u32 addrs;
> + u32 naddrs;
> + u16 addrs_56; /* Address cycles 5 and 6 */
> + unsigned int data_instr_idx;
> + unsigned int rdy_timeout_ms;
> + unsigned int rdy_delay_ns;
> + const struct nand_op_instr *data_instr; };
> +
> +/**
> + * struct pl353_nand_controller - Defines the NAND flash controller driver
> + * instance
> + * @controller: NAND controller structure
> + * @chip: NAND chip information structure
> + * @dev: Parent device (used to print error messages)
> + * @regs: Virtual address of the NAND flash device
> + * @dataphase_addrflags:Flags required for data phase transfers
> + * @addr_cycles: Address cycles
> + * @mclk: Memory controller clock
> + * @mclk_rate: Clock rate of the Memory controller
> + * @buswidth: Bus width 8 or 16
> + */
> +struct pl353_nand_controller {
> + struct nand_controller controller;
> + struct nand_chip chip;
> + struct device *dev;
> + void __iomem *regs;
> + u32 dataphase_addrflags;
> + u8 addr_cycles;
> + struct clk *mclk;
> + ulong mclk_rate;
> + u32 buswidth;
> +};
> +
> +static inline struct pl353_nand_controller *
> + to_pl353_nand(struct nand_chip *chip) {
> + return container_of(chip, struct pl353_nand_controller, chip); }
> +
> +static int pl353_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section,
> + struct mtd_oob_region *oobregion) {
> + struct nand_chip *chip = mtd_to_nand(mtd);
> +
> + if (section >= chip->ecc.steps)
> + return -ERANGE;
> +
> + oobregion->offset = (section * chip->ecc.bytes);
> + oobregion->length = chip->ecc.bytes;
> +
> + return 0;
> +}
> +
> +static int pl353_ecc_ooblayout16_free(struct mtd_info *mtd, int section,
> + struct mtd_oob_region *oobregion) {
> + struct nand_chip *chip = mtd_to_nand(mtd);
> +
> + if (section >= chip->ecc.steps)
> + return -ERANGE;
> +
> + oobregion->offset = (section * chip->ecc.bytes) + 8;
> + oobregion->length = 8;
> +
> + return 0;
> +}
> +
> +static const struct mtd_ooblayout_ops pl353_ecc_ooblayout16_ops = {
> + .ecc = pl353_ecc_ooblayout16_ecc,
> + .free = pl353_ecc_ooblayout16_free,
> +};
> +
> +static int pl353_ecc_ooblayout64_ecc(struct mtd_info *mtd, int section,
> + struct mtd_oob_region *oobregion) {
> + struct nand_chip *chip = mtd_to_nand(mtd);
> +
> + if (section)
> + return -ERANGE;
> +
> +// if (section >= chip->ecc.steps)
> +// return -ERANGE;
> +
> + oobregion->offset = (section * chip->ecc.bytes) + 52;
> + oobregion->length = chip->ecc.bytes;
> +
> + return 0;
> +}
> +
> +static int pl353_ecc_ooblayout64_free(struct mtd_info *mtd, int section,
> + struct mtd_oob_region *oobregion) {
> + struct nand_chip *chip = mtd_to_nand(mtd);
> +
> + if (section)
> + return -ERANGE;
> +
> + oobregion->offset = (section * chip->ecc.bytes) + 2;
> + oobregion->length = 50;
> +
> + return 0;
> +}
> +
> +static const struct mtd_ooblayout_ops pl353_ecc_ooblayout64_ops = {
> + .ecc = pl353_ecc_ooblayout64_ecc,
> + .free = pl353_ecc_ooblayout64_free,
> +};
> +
> +/* Generic flash bbt decriptors */
> +static u8 bbt_pattern[] = { 'B', 'b', 't', '0' }; static u8
> +mirror_pattern[] = { '1', 't', 'b', 'B' };
> +
> +static struct nand_bbt_descr bbt_main_descr = {
> + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE |
> NAND_BBT_WRITE
> + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
> + .offs = 4,
> + .len = 4,
> + .veroffs = 20,
> + .maxblocks = 4,
> + .pattern = bbt_pattern
> +};
> +
> +static struct nand_bbt_descr bbt_mirror_descr = {
> + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE |
> NAND_BBT_WRITE
> + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
> + .offs = 4,
> + .len = 4,
> + .veroffs = 20,
> + .maxblocks = 4,
> + .pattern = mirror_pattern
> +};
> +
> +static void pl353_nfc_force_byte_access(struct nand_chip *chip,
> + bool force_8bit)
> +{
> + int ret;
> + struct pl353_nand_controller *xnfc =
> + container_of(chip, struct pl353_nand_controller, chip);
> +
> + if (xnfc->buswidth == 8)
> + return;
> +
> + if (force_8bit)
> + ret = pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_8);
> + else
> + ret = pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16);
> +
> + if (ret)
> + dev_err(xnfc->dev, "Error in Buswidth\n"); }
> +
> +static inline int pl353_wait_for_dev_ready(struct nand_chip *chip) {
> + unsigned long timeout = jiffies + PL353_NAND_DEV_BUSY_TIMEOUT;
> +
> + while (!pl353_smc_get_nand_int_status_raw()) {
> + if (time_after_eq(jiffies, timeout)) {
> + pr_err("%s timed out\n", __func__);
> + return -ETIMEDOUT;
> + }
> + cond_resched();
> + }
> +
> + pl353_smc_clr_nand_int();
> +
> + return 0;
> +}
> +
> +/**
> + * pl353_nand_read_data_op - read chip data into buffer
> + * @chip: Pointer to the NAND chip info structure
> + * @in: Pointer to the buffer to store read data
> + * @len: Number of bytes to read
> + * @force_8bit: Force 8-bit bus access
> + * Return: Always return zero
> + */
> +static void pl353_nand_read_data_op(struct nand_chip *chip, u8 *in,
> + unsigned int len, bool force_8bit) {
> + struct pl353_nand_controller *xnfc = to_pl353_nand(chip);
> + int i;
> +
> + if (force_8bit)
> + pl353_nfc_force_byte_access(chip, true);
> +
> + if ((IS_ALIGNED((uint32_t)in, sizeof(uint32_t)) &&
> + IS_ALIGNED(len, sizeof(uint32_t))) || !force_8bit) {
> + u32 *ptr = (u32 *)in;
> +
> + len /= 4;
> + for (i = 0; i < len; i++)
> + ptr[i] = readl(xnfc->regs + xnfc->dataphase_addrflags);
> + } else {
> + for (i = 0; i < len; i++)
> + in[i] = readb(xnfc->regs + xnfc->dataphase_addrflags);
> + }
> +
> + if (force_8bit)
> + pl353_nfc_force_byte_access(chip, false); }
> +
> +/**
> + * pl353_nand_write_buf - write buffer to chip
> + * @chip: Pointer to the nand_chip structure
> + * @buf: Pointer to the buffer to store write data
> + * @len: Number of bytes to write
> + * @force_8bit: Force 8-bit bus access
> + */
> +static void pl353_nand_write_data_op(struct nand_chip *chip, const u8 *buf,
> + int len, bool force_8bit)
> +{
> + struct pl353_nand_controller *xnfc = to_pl353_nand(chip);
> + int i;
> +
> + if (force_8bit)
> + pl353_nfc_force_byte_access(chip, true);
> +
> + if ((IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
> + IS_ALIGNED(len, sizeof(uint32_t))) || !force_8bit) {
> + u32 *ptr = (u32 *)buf;
> +
> + len /= 4;
> + for (i = 0; i < len; i++)
> + writel(ptr[i], xnfc->regs + xnfc->dataphase_addrflags);
> + } else {
> + for (i = 0; i < len; i++)
> + writeb(buf[i], xnfc->regs + xnfc->dataphase_addrflags);
> + }
> +
> + if (force_8bit)
> + pl353_nfc_force_byte_access(chip, false); }
> +
> +static inline int pl353_wait_for_ecc_done(void) {
> + unsigned long timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT;
> +
> + while (pl353_smc_ecc_is_busy()) {
> + if (time_after_eq(jiffies, timeout)) {
> + pr_err("%s timed out\n", __func__);
> + return -ETIMEDOUT;
> + }
> + cond_resched();
> + }
> +
> + return 0;
> +}
> +
> +/**
> + * pl353_nand_calculate_hwecc - Calculate Hardware ECC
> + * @chip: Pointer to the nand_chip structure
> + * @data: Pointer to the page data
> + * @ecc: Pointer to the ECC buffer where ECC data needs to be stored
> + *
> + * This function retrieves the Hardware ECC data from the controller
> +and returns
> + * ECC data back to the MTD subsystem.
> + * It operates on a number of 512 byte blocks of NAND memory and can be
> + * programmed to store the ECC codes after the data in memory. For
> +writes,
> + * the ECC is written to the spare area of the page. For reads, the
> +result of
> + * a block ECC check are made available to the device driver.
> + *
> + * ------------------------------------------------------------------------
> + * | n * 512 blocks | extra | ecc | |
> + * | | block | codes | |
> + *
> +-----------------------------------------------------------------------
> +-
> + *
> + * The ECC calculation uses a simple Hamming code, using 1-bit
> +correction 2-bit
> + * detection. It starts when a valid read or write command with a 512
> +byte
> + * aligned address is detected on the memory interface.
> + *
> + * Return: 0 on success or error value on failure
> + */
> +static int pl353_nand_calculate_hwecc(struct nand_chip *chip,
> + const u8 *data, u8 *ecc)
> +{
> + u32 ecc_value;
> + u8 chunk, ecc_byte, ecc_status;
> +
> + for (chunk = 0; chunk < PL353_MAX_ECC_CHUNKS; chunk++) {
> + /* Read ECC value for each block */
> + ecc_value = pl353_smc_get_ecc_val(chunk);
> + ecc_status = (ecc_value >> PL353_NAND_ECC_VALID_SHIFT);
> +
> + /* ECC value valid */
> + if (ecc_status & PL353_NAND_ECC_VALID_MASK) {
> + for (ecc_byte = 0; ecc_byte < PL353_MAX_ECC_BYTES;
> + ecc_byte++) {
> + /* Copy ECC bytes to MTD buffer */
> + *ecc = ~ecc_value & 0xFF;
> + ecc_value = ecc_value >> 8;
> + ecc++;
> + }
> + } else {
> + pr_warn("%s status failed\n", __func__);
> + return -1;
> + }
> + }
> +
> + return 0;
> +}
> +
> +/**
> + * pl353_nand_correct_data - ECC correction function
> + * @chip: Pointer to the nand_chip structure
> + * @buf: Pointer to the page data
> + * @read_ecc: Pointer to the ECC value read from spare data area
> + * @calc_ecc: Pointer to the calculated ECC value
> + *
> + * This function corrects the ECC single bit errors & detects 2-bit errors.
> + *
> + * Return: 0 if no ECC errors found
> + * 1 if single bit error found and corrected.
> + * -1 if multiple uncorrectable ECC errors found.
> + */
> +static int pl353_nand_correct_data(struct nand_chip *chip, unsigned char *buf,
> + unsigned char *read_ecc,
> + unsigned char *calc_ecc)
> +{
> + unsigned char bit_addr;
> + unsigned int byte_addr;
> + unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper;
> + unsigned short calc_ecc_lower, calc_ecc_upper;
> +
> + read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) &
> + PL353_ECC_BIT_MASK;
> + read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) &
> + PL353_ECC_BIT_MASK;
> +
> + calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) &
> + PL353_ECC_BIT_MASK;
> + calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) &
> + PL353_ECC_BIT_MASK;
> +
> + ecc_odd = read_ecc_lower ^ calc_ecc_lower;
> + ecc_even = read_ecc_upper ^ calc_ecc_upper;
> +
> + /* no error */
> + if (!ecc_odd && !ecc_even)
> + return 0;
> +
> + if (ecc_odd == (~ecc_even & PL353_ECC_BIT_MASK)) {
> + /* bits [11:3] of error code is byte offset */
> + byte_addr = (ecc_odd >> 3) & PL353_ECC_BITS_BYTEOFF_MASK;
> + /* bits [2:0] of error code is bit offset */
> + bit_addr = ecc_odd & PL353_ECC_BITS_BITOFF_MASK;
> + /* Toggling error bit */
> + buf[byte_addr] ^= (BIT(bit_addr));
> + return 1;
> + }
> +
> + /* one error in parity */
> + if (hweight32(ecc_odd | ecc_even) == 1)
> + return 1;
> +
> + /* Uncorrectable error */
> + return -1;
> +}
> +
> +static void pl353_prepare_cmd(struct nand_chip *chip,
> + int page, int column, int start_cmd, int end_cmd,
> + bool read)
> +{
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + struct pl353_nand_controller *xnfc = to_pl353_nand(chip);
> + unsigned long cmd_phase_data = 0;
> + u32 end_cmd_valid = 0, cmdphase_addrflags;
> +
> + end_cmd_valid = read ? 1 : 0;
> + cmdphase_addrflags = ((xnfc->addr_cycles
> + << ADDR_CYCLES_SHIFT) |
> + (end_cmd_valid << END_CMD_VALID_SHIFT) |
> + (COMMAND_PHASE) |
> + (end_cmd << END_CMD_SHIFT) |
> + (start_cmd << START_CMD_SHIFT));
> +
> + /* Get the data phase address */
> + xnfc->dataphase_addrflags = ((0x0 << CLEAR_CS_SHIFT) |
> + (0 << END_CMD_VALID_SHIFT) |
> + (DATA_PHASE) |
> + (end_cmd << END_CMD_SHIFT) |
> + (0x0 << ECC_LAST_SHIFT));
> +
> + if (chip->options & NAND_BUSWIDTH_16)
> + column /= 2;
> +
> + cmd_phase_data = column;
> + if (mtd->writesize > PL353_NAND_ECC_SIZE) {
> + cmd_phase_data |= page << 16;
> +
> + /* Another address cycle for devices > 128MiB */
> + if (chip->options & NAND_ROW_ADDR_3) {
> + writel_relaxed(cmd_phase_data,
> + xnfc->regs + cmdphase_addrflags);
> + cmd_phase_data = (page >> 16);
> + }
> + } else {
> + cmd_phase_data |= page << 8;
> + }
> +
> + writel_relaxed(cmd_phase_data, xnfc->regs + cmdphase_addrflags); }
> +
> +/**
> + * pl353_nand_read_oob - [REPLACEABLE] the most common OOB data read function
> + * @chip: Pointer to the nand_chip structure
> + * @chip: Pointer to the nand_chip structure
> + * @page: Page number to read
> + *
> + * Return: Always return zero
> + */
> +static int pl353_nand_read_oob(struct nand_chip *chip,
> + int page)
> +{
> + struct pl353_nand_controller *xnfc = to_pl353_nand(chip);
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + u8 *p;
> +
> + if (mtd->writesize < PL353_NAND_ECC_SIZE)
> + return 0;
> +
> + pl353_prepare_cmd(chip, page, mtd->writesize, NAND_CMD_READ0,
> + NAND_CMD_READSTART, 1);
> + if (pl353_wait_for_dev_ready(chip))
> + return -ETIMEDOUT;
> +
> + p = chip->oob_poi;
> + pl353_nand_read_data_op(chip, p,
> + (mtd->oobsize -
> + PL353_NAND_LAST_TRANSFER_LENGTH), false);
> + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> +
> + xnfc->dataphase_addrflags |= PL353_NAND_CLEAR_CS;
> + pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
> + false);
> +
> + return 0;
> +}
> +
> +/**
> + * pl353_nand_write_oob - [REPLACEABLE] the most common OOB data write function
> + * @chip: Pointer to the nand_chip structure
> + * @chip: Pointer to the NAND chip info structure
> + * @page: Page number to write
> + *
> + * Return: Zero on success and EIO on failure
> + */
> +static int pl353_nand_write_oob(struct nand_chip *chip,
> + int page)
> +{
> + struct pl353_nand_controller *xnfc = to_pl353_nand(chip);
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + const u8 *buf = chip->oob_poi;
> +
> + pl353_prepare_cmd(chip, page, mtd->writesize, NAND_CMD_SEQIN,
> + NAND_CMD_PAGEPROG, 0);
> +
> + pl353_nand_write_data_op(chip, buf,
> + (mtd->oobsize -
> + PL353_NAND_LAST_TRANSFER_LENGTH), false);
> + buf += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> +
> + xnfc->dataphase_addrflags |= PL353_NAND_CLEAR_CS;
> + xnfc->dataphase_addrflags |= (1 << END_CMD_VALID_SHIFT);
> + pl353_nand_write_data_op(chip, buf, PL353_NAND_LAST_TRANSFER_LENGTH,
> + false);
> + if (pl353_wait_for_dev_ready(chip))
> + return -ETIMEDOUT;
> +
> + return 0;
> +}
> +
> +/**
> + * pl353_nand_read_page_raw - [Intern] read raw page data without ecc
> + * @chip: Pointer to the nand_chip structure
> + * @buf: Pointer to the data buffer
> + * @oob_required: Caller requires OOB data read to chip->oob_poi
> + * @page: Page number to read
> + *
> + * Return: Always return zero
> + */
> +static int pl353_nand_read_page_raw(struct nand_chip *chip,
> + u8 *buf, int oob_required, int page) {
> + struct pl353_nand_controller *xnfc = to_pl353_nand(chip);
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + u8 *p;
> +
> + pl353_prepare_cmd(chip, page, 0, NAND_CMD_READ0,
> + NAND_CMD_READSTART, 1);
> + if (pl353_wait_for_dev_ready(chip))
> + return -ETIMEDOUT;
> +
> + pl353_nand_read_data_op(chip, buf, mtd->writesize, false);
> + p = chip->oob_poi;
> + pl353_nand_read_data_op(chip, p,
> + (mtd->oobsize -
> + PL353_NAND_LAST_TRANSFER_LENGTH), false);
> + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> + xnfc->dataphase_addrflags |= PL353_NAND_CLEAR_CS;
> + pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
> + false);
> +
> + return 0;
> +}
> +
> +/**
> + * pl353_nand_write_page_raw - [Intern] raw page write function
> + * @chip: Pointer to the nand_chip structure
> + * @buf: Pointer to the data buffer
> + * @oob_required: Caller requires OOB data read to chip->oob_poi
> + * @page: Page number to write
> + *
> + * Return: Always return zero
> + */
> +static int pl353_nand_write_page_raw(struct nand_chip *chip,
> + const u8 *buf, int oob_required,
> + int page)
> +{
> + struct pl353_nand_controller *xnfc = to_pl353_nand(chip);
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + u8 *p;
> +
> + pl353_prepare_cmd(chip, page, 0, NAND_CMD_SEQIN,
> + NAND_CMD_PAGEPROG, 0);
> + pl353_nand_write_data_op(chip, buf, mtd->writesize, false);
> + p = chip->oob_poi;
> + pl353_nand_write_data_op(chip, p,
> + (mtd->oobsize -
> + PL353_NAND_LAST_TRANSFER_LENGTH), false);
> + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> + xnfc->dataphase_addrflags |= PL353_NAND_CLEAR_CS;
> + xnfc->dataphase_addrflags |= (1 << END_CMD_VALID_SHIFT);
> + pl353_nand_write_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
> + false);
> +
> + return 0;
> +}
> +
> +/**
> + * nand_write_page_hwecc - Hardware ECC based page write function
> + * @chip: Pointer to the nand_chip structure
> + * @buf: Pointer to the data buffer
> + * @oob_required: Caller requires OOB data read to chip->oob_poi
> + * @page: Page number to write
> + *
> + * This functions writes data and hardware generated ECC values in to the page.
> + *
> + * Return: Always return zero
> + */
> +static int pl353_nand_write_page_hwecc(struct nand_chip *chip,
> + const u8 *buf, int oob_required,
> + int page)
> +{
> + int eccsize = chip->ecc.size;
> + int eccsteps = chip->ecc.steps;
> + u8 *ecc_calc = chip->ecc.calc_buf;
> + u8 *oob_ptr;
> + const u8 *p = buf;
> + u32 ret;
> + struct pl353_nand_controller *xnfc = to_pl353_nand(chip);
> + struct mtd_info *mtd = nand_to_mtd(chip);
> +
> + pl353_prepare_cmd(chip, page, 0, NAND_CMD_SEQIN,
> + NAND_CMD_PAGEPROG, 0);
> +
> + for ( ; (eccsteps - 1); eccsteps--) {
> + pl353_nand_write_data_op(chip, p, eccsize, false);
> + p += eccsize;
> + }
> +
> + pl353_nand_write_data_op(chip, p,
> + (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH),
> + false);
> + p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> +
> + /* Set ECC Last bit to 1 */
> + xnfc->dataphase_addrflags |= PL353_NAND_ECC_LAST;
> + pl353_nand_write_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
> + false);
> +
> + /* Wait till the ECC operation is complete or timeout */
> + ret = pl353_wait_for_ecc_done();
> + if (ret)
> + dev_err(xnfc->dev, "ECC Timeout\n");
> +
> + p = buf;
> + ret = chip->ecc.calculate(chip, p, &ecc_calc[0]);
> + if (ret)
> + return ret;
> +
> + /* Wait for ECC to be calculated and read the error values */
> + ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi,
> + 0, chip->ecc.total);
> + if (ret)
> + return ret;
> +
> + /* Clear ECC last bit */
> + xnfc->dataphase_addrflags &= ~PL353_NAND_ECC_LAST;
> +
> + /* Write the spare area with ECC bytes */
> + oob_ptr = chip->oob_poi;
> + pl353_nand_write_data_op(chip, oob_ptr,
> + (mtd->oobsize -
> + PL353_NAND_LAST_TRANSFER_LENGTH), false);
> +
> + xnfc->dataphase_addrflags |= PL353_NAND_CLEAR_CS;
> + xnfc->dataphase_addrflags |= (1 << END_CMD_VALID_SHIFT);
> + oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> + pl353_nand_write_data_op(chip, oob_ptr,
> PL353_NAND_LAST_TRANSFER_LENGTH,
> + false);
> + if (pl353_wait_for_dev_ready(chip))
> + return -ETIMEDOUT;
> +
> + return 0;
> +}
> +
> +/**
> + * pl353_nand_read_page_hwecc - Hardware ECC based page read function
> + * @chip: Pointer to the nand_chip structure
> + * @buf: Pointer to the buffer to store read data
> + * @oob_required: Caller requires OOB data read to chip->oob_poi
> + * @page: Page number to read
> + *
> + * This functions reads data and checks the data integrity by comparing
> + * hardware generated ECC values and read ECC values from spare area.
> + * There is a limitation in SMC controller, that we must set ECC LAST
> +on
> + * last data phase access, to tell ECC block not to expect any data further.
> + * Ex: When number of ECC STEPS are 4, then till 3 we will write to
> +flash
> + * using SMC with HW ECC enabled. And for the last ECC STEP, we will
> +subtract
> + * 4bytes from page size, and will initiate a transfer. And the
> +remaining 4 as
> + * one more transfer with ECC_LAST bit set in NAND data phase register
> +to
> + * notify ECC block not to expect any more data. The last block should
> +be align
> + * with end of 512 byte block. Because of this limitation, we are not
> +using
> + * core routines.
> + *
> + * Return: 0 always and updates ECC operation status in to MTD structure
> + */
> +static int pl353_nand_read_page_hwecc(struct nand_chip *chip,
> + u8 *buf, int oob_required, int page) {
> + struct pl353_nand_controller *xnfc = to_pl353_nand(chip);
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + int i, stat, eccsize = chip->ecc.size;
> + int eccbytes = chip->ecc.bytes;
> + int eccsteps = chip->ecc.steps;
> + unsigned int max_bitflips = 0;
> + u8 *p = buf;
> + u8 *ecc_calc = chip->ecc.calc_buf;
> + u8 *ecc = chip->ecc.code_buf;
> + u8 *oob_ptr;
> + u32 ret;
> +
> + pl353_prepare_cmd(chip, page, 0, NAND_CMD_READ0,
> + NAND_CMD_READSTART, 1);
> + if (pl353_wait_for_dev_ready(chip))
> + return -ETIMEDOUT;
> +
> + for ( ; (eccsteps - 1); eccsteps--) {
> + pl353_nand_read_data_op(chip, p, eccsize, false);
> + p += eccsize;
> + }
> +
> + pl353_nand_read_data_op(chip, p,
> + (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH),
> + false);
> + p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> +
> + /* Set ECC Last bit to 1 */
> + xnfc->dataphase_addrflags |= PL353_NAND_ECC_LAST;
> + pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
> + false);
> +
> + /* Wait till the ECC operation is complete or timeout */
> + ret = pl353_wait_for_ecc_done();
> + if (ret)
> + dev_err(xnfc->dev, "ECC Timeout\n");
> +
> + /* Read the calculated ECC value */
> + p = buf;
> + ret = chip->ecc.calculate(chip, p, &ecc_calc[0]);
> + if (ret)
> + return ret;
> +
> + /* Clear ECC last bit */
> + xnfc->dataphase_addrflags &= ~PL353_NAND_ECC_LAST;
> +
> + /* Read the stored ECC value */
> + oob_ptr = chip->oob_poi;
> + pl353_nand_read_data_op(chip, oob_ptr,
> + (mtd->oobsize -
> + PL353_NAND_LAST_TRANSFER_LENGTH), false);
> +
> + /* de-assert chip select */
> + xnfc->dataphase_addrflags |= PL353_NAND_CLEAR_CS;
> + oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> + pl353_nand_read_data_op(chip, oob_ptr,
> PL353_NAND_LAST_TRANSFER_LENGTH,
> + false);
> +
> + ret = mtd_ooblayout_get_eccbytes(mtd, ecc, chip->oob_poi, 0,
> + chip->ecc.total);
> + if (ret)
> + return ret;
> +
> + eccsteps = chip->ecc.steps;
> + p = buf;
> +
> + /* Check ECC error for all blocks and correct if it is correctable */
> + for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
> + stat = chip->ecc.correct(chip, p, &ecc[i], &ecc_calc[i]);
> + if (stat < 0) {
> + mtd->ecc_stats.failed++;
> + } else {
> + mtd->ecc_stats.corrected += stat;
> + max_bitflips = max_t(unsigned int, max_bitflips, stat);
> + }
> + }
> +
> + return max_bitflips;
> +}
> +
> +/* NAND framework ->exec_op() hooks and related helpers */ static void
> +pl353_nfc_parse_instructions(struct nand_chip *chip,
> + const struct nand_subop *subop,
> + struct pl353_nfc_op *nfc_op)
> +{
> + const struct nand_op_instr *instr = NULL;
> + unsigned int op_id, offset;
> + int i;
> + const u8 *addrs;
> +
> + memset(nfc_op, 0, sizeof(struct pl353_nfc_op));
> + for (op_id = 0; op_id < subop->ninstrs; op_id++) {
> + instr = &subop->instrs[op_id];
> +
> + switch (instr->type) {
> + case NAND_OP_CMD_INSTR:
> + if (op_id)
> + nfc_op->cmnds[1] = instr->ctx.cmd.opcode;
> + else
> + nfc_op->cmnds[0] = instr->ctx.cmd.opcode;
> + break;
> +
> + case NAND_OP_ADDR_INSTR:
> + offset = nand_subop_get_addr_start_off(subop, op_id);
> + nfc_op->naddrs = nand_subop_get_num_addr_cyc(subop,
> + op_id);
> + addrs = &instr->ctx.addr.addrs[offset];
> + for (i = 0; i < min_t(unsigned int, 4, nfc_op->naddrs);
> + i++)
> + nfc_op->addrs |= instr->ctx.addr.addrs[i] <<
> + (8 * i);
> +
> + if (nfc_op->naddrs >= 5)
> + nfc_op->addrs_56 = addrs[4];
> +
> + if (nfc_op->naddrs >= 6)
> + nfc_op->addrs_56 |= (addrs[5] << 8);
> +
> + break;
> +
> + case NAND_OP_DATA_IN_INSTR:
> + nfc_op->data_instr = instr;
> + nfc_op->data_instr_idx = op_id;
> + break;
> +
> + case NAND_OP_DATA_OUT_INSTR:
> + nfc_op->data_instr = instr;
> + nfc_op->data_instr_idx = op_id;
> + break;
> +
> + case NAND_OP_WAITRDY_INSTR:
> + nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
> + nfc_op->rdy_delay_ns = instr->delay_ns;
> + break;
> + }
> + }
> +}
> +
> +/**
> + * pl353_nand_exec_op_cmd - Send command to NAND device
> + * @chip: Pointer to the NAND chip info structure
> + * @subop: Pointer to array of instructions
> + * Return: Always return zero
> + */
> +static int pl353_nand_exec_op_cmd(struct nand_chip *chip,
> + const struct nand_subop *subop)
> +{
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + const struct nand_op_instr *instr;
> + struct pl353_nfc_op nfc_op = {};
> + struct pl353_nand_controller *xnfc = to_pl353_nand(chip);
> + unsigned long cmd_phase_data = 0, end_cmd_valid = 0;
> + unsigned long end_cmd;
> + unsigned int op_id, len;
> + bool reading;
> + u32 cmdphase_addrflags;
> +
> + pl353_nfc_parse_instructions(chip, subop, &nfc_op);
> + instr = nfc_op.data_instr;
> + op_id = nfc_op.data_instr_idx;
> + pl353_smc_clr_nand_int();
> +
> + /* Get the command phase address */
> + if (nfc_op.cmnds[1] != 0) {
> + if (nfc_op.cmnds[0] == NAND_CMD_SEQIN)
> + end_cmd_valid = 0;
> + else
> + end_cmd_valid = 1;
> + }
> +
> + end_cmd = nfc_op.cmnds[1];
> +
> + /*
> + * The SMC defines two phases of commands when transferring data to or
> + * from NAND flash.
> + * Command phase: Commands and optional address information are written
> + * to the NAND flash.The command and address can be associated with
> + * either a data phase operation to write to or read from the array,
> + * or a status/ID register transfer.
> + * Data phase: Data is either written to or read from the NAND flash.
> + * This data can be either data transferred to or from the array,
> + * or status/ID register information.
> + */
> + cmdphase_addrflags = ((nfc_op.naddrs << ADDR_CYCLES_SHIFT) |
> + (end_cmd_valid << END_CMD_VALID_SHIFT) |
> + (COMMAND_PHASE) |
> + (end_cmd << END_CMD_SHIFT) |
> + (nfc_op.cmnds[0] << START_CMD_SHIFT));
> +
> + /* Get the data phase address */
> + end_cmd_valid = 0;
> +
> + xnfc->dataphase_addrflags = ((0x0 << CLEAR_CS_SHIFT) |
> + (end_cmd_valid << END_CMD_VALID_SHIFT) |
> + (DATA_PHASE) |
> + (end_cmd << END_CMD_SHIFT) |
> + (0x0 << ECC_LAST_SHIFT));
> +
> + /* Command phase AXI Read & Write */
> + if (nfc_op.naddrs >= 5) {
> + if (mtd->writesize > PL353_NAND_ECC_SIZE) {
> + cmd_phase_data = nfc_op.addrs;
> +
> + /* Another address cycle for devices > 128MiB */
> + if (chip->options & NAND_ROW_ADDR_3) {
> + writel_relaxed(cmd_phase_data,
> + xnfc->regs + cmdphase_addrflags);
> + cmd_phase_data = nfc_op.addrs_56;
> + }
> + }
> + } else {
> + if (nfc_op.addrs != -1) {
> + int column = nfc_op.addrs;
> +
> + /*
> + * Change read/write column, read id etc
> + * Adjust columns for 16 bit bus width
> + */
> + if ((chip->options & NAND_BUSWIDTH_16) &&
> + (nfc_op.cmnds[0] == NAND_CMD_READ0 ||
> + nfc_op.cmnds[0] == NAND_CMD_SEQIN ||
> + nfc_op.cmnds[0] == NAND_CMD_RNDOUT ||
> + nfc_op.cmnds[0] == NAND_CMD_RNDIN)) {
> + column >>= 1;
> + }
> + cmd_phase_data = column;
> + }
> + }
> +
> + writel_relaxed(cmd_phase_data, xnfc->regs + cmdphase_addrflags);
> + if (!nfc_op.data_instr) {
> + if (nfc_op.rdy_timeout_ms) {
> + if (pl353_wait_for_dev_ready(chip))
> + return -ETIMEDOUT;
> + }
> +
> + return 0;
> + }
> +
> + reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
> + if (!reading) {
> + len = nand_subop_get_data_len(subop, op_id);
> + pl353_nand_write_data_op(chip, instr->ctx.data.buf.out,
> + len, instr->ctx.data.force_8bit);
> + if (nfc_op.rdy_timeout_ms) {
> + if (pl353_wait_for_dev_ready(chip))
> + return -ETIMEDOUT;
> + }
> +
> + ndelay(nfc_op.rdy_delay_ns);
> + } else {
> + len = nand_subop_get_data_len(subop, op_id);
> + ndelay(nfc_op.rdy_delay_ns);
> + if (nfc_op.rdy_timeout_ms) {
> + if (pl353_wait_for_dev_ready(chip))
> + return -ETIMEDOUT;
> + }
> +
> + pl353_nand_read_data_op(chip, instr->ctx.data.buf.in, len,
> + instr->ctx.data.force_8bit);
> + }
> +
> + return 0;
> +}
> +
> +static const struct nand_op_parser pl353_nfc_op_parser = NAND_OP_PARSER
> + (NAND_OP_PARSER_PATTERN
> + (pl353_nand_exec_op_cmd,
> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
> + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)),
> + NAND_OP_PARSER_PATTERN
> + (pl353_nand_exec_op_cmd,
> + NAND_OP_PARSER_PAT_CMD_ELEM(false),
> + NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
> + NAND_OP_PARSER_PAT_CMD_ELEM(false),
> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false),
> + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)),
> + NAND_OP_PARSER_PATTERN
> + (pl353_nand_exec_op_cmd,
> + NAND_OP_PARSER_PAT_CMD_ELEM(false),
> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
> + NAND_OP_PARSER_PATTERN
> + (pl353_nand_exec_op_cmd,
> + NAND_OP_PARSER_PAT_CMD_ELEM(false),
> + NAND_OP_PARSER_PAT_ADDR_ELEM(false, 8),
> + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2048),
> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
> + NAND_OP_PARSER_PATTERN
> + (pl353_nand_exec_op_cmd,
> + NAND_OP_PARSER_PAT_CMD_ELEM(false)),
> + );
> +
> +static int pl353_nfc_exec_op(struct nand_chip *chip,
> + const struct nand_operation *op,
> + bool check_only)
> +{
> + return nand_op_parser_exec_op(chip, &pl353_nfc_op_parser,
> + op, check_only);
> +}
> +
> +/**
> + * pl353_nand_ecc_init - Initialize the ecc information as per the ecc mode
> + * @mtd: Pointer to the mtd_info structure
> + * @ecc: Pointer to ECC control structure
> + * @ecc_mode: ondie ecc status
> + *
> + * This function initializes the ecc block and functional pointers as
> +per the
> + * ecc mode
> + *
> + * Return: 0 on success or negative errno.
> + */
> +static int pl353_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
> + int ecc_mode)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + struct pl353_nand_controller *xnfc = to_pl353_nand(chip);
> + int ret = 0;
> +
> + ecc->read_oob = pl353_nand_read_oob;
> + ecc->write_oob = pl353_nand_write_oob;
> + if (ecc_mode == NAND_ECC_ON_DIE) {
> + ecc->write_page_raw = pl353_nand_write_page_raw;
> + ecc->read_page_raw = pl353_nand_read_page_raw;
> +
> + /*
> + * On-Die ECC spare bytes offset 8 is used for ECC codes
> + * Use the BBT pattern descriptors
> + */
> + chip->bbt_td = &bbt_main_descr;
> + chip->bbt_md = &bbt_mirror_descr;
> + ret = pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_BYPASS);
> + if (ret)
> + return ret;
> +
> + } else {
> + ecc->mode = NAND_ECC_HW;
> +
> + /* Hardware ECC generates 3 bytes ECC code for each 512 bytes */
> + ecc->bytes = 3;
> + ecc->strength = 1;
> + ecc->calculate = pl353_nand_calculate_hwecc;
> + ecc->correct = pl353_nand_correct_data;
> + ecc->read_page = pl353_nand_read_page_hwecc;
> + ecc->size = PL353_NAND_ECC_SIZE;
> + ecc->read_page = pl353_nand_read_page_hwecc;
> + ecc->write_page = pl353_nand_write_page_hwecc;
> + pl353_smc_set_ecc_pg_size(mtd->writesize);
> + switch (mtd->writesize) {
> + case SZ_512:
> + case SZ_1K:
> + case SZ_2K:
> + pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_APB);
> + break;
> + default:
> + ecc->calculate = nand_calculate_ecc;
> + ecc->correct = nand_correct_data;
> + ecc->size = 256;
> + break;
> + }
> +
> + if (mtd->oobsize == 16) {
> + mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout16_ops);
> + } else if (mtd->oobsize == 64) {
> + mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout64_ops);
> + } else {
> + ret = -ENXIO;
> + dev_err(xnfc->dev, "Unsupported oob Layout\n");
> + }
> + }
> +
> + return ret;
> +}
> +
> +static int pl353_nfc_setup_data_interface(struct nand_chip *chip, int csline,
> + const struct nand_data_interface
> + *conf)
> +{
> + struct pl353_nand_controller *xnfc = to_pl353_nand(chip);
> + const struct nand_sdr_timings *sdr;
> + u32 timings[7], mckperiodps;
> +
> + if (csline == NAND_DATA_IFACE_CHECK_ONLY)
> + return 0;
> +
> + sdr = nand_get_sdr_timings(conf);
> + if (IS_ERR(sdr))
> + return PTR_ERR(sdr);
> +
> + /*
> + * SDR timings are given in pico-seconds while NFC timings must be
> + * expressed in NAND controller clock cycles.
> + */
> + mckperiodps = NSEC_PER_SEC / xnfc->mclk_rate;
> + mckperiodps *= 1000;
> + if (sdr->tRC_min <= 20000)
> + /*
> + * PL353 SMC needs one extra read cycle in SDR Mode 5
> + * This is not written anywhere in the datasheet but
> + * the results observed during testing.
> + */
> + timings[0] = DIV_ROUND_UP(sdr->tRC_min, mckperiodps) + 1;
> + else
> + timings[0] = DIV_ROUND_UP(sdr->tRC_min, mckperiodps);
> +
> + timings[1] = DIV_ROUND_UP(sdr->tWC_min, mckperiodps);
> +
> + /*
> + * For all SDR modes, PL353 SMC needs tREA max value as 1,
> + * Results observed during testing.
> + */
> + timings[2] = PL353_TREA_MAX_VALUE;
> + timings[3] = DIV_ROUND_UP(sdr->tWP_min, mckperiodps);
> + timings[4] = DIV_ROUND_UP(sdr->tCLR_min, mckperiodps);
> + timings[5] = DIV_ROUND_UP(sdr->tAR_min, mckperiodps);
> + timings[6] = DIV_ROUND_UP(sdr->tRR_min, mckperiodps);
> + pl353_smc_set_cycles(timings);
> +
> + return 0;
> +}
> +
> +static int pl353_nand_attach_chip(struct nand_chip *chip) {
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + struct pl353_nand_controller *xnfc = to_pl353_nand(chip);
> + int ret;
> +
> + if (chip->options & NAND_BUSWIDTH_16) {
> + ret = pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16);
> + if (ret) {
> + dev_err(xnfc->dev, "Set BusWidth failed\n");
> + return ret;
> + }
> + }
> +
> + if (mtd->writesize <= SZ_512)
> + xnfc->addr_cycles = 1;
> + else
> + xnfc->addr_cycles = 2;
> +
> + if (chip->options & NAND_ROW_ADDR_3)
> + xnfc->addr_cycles += 3;
> + else
> + xnfc->addr_cycles += 2;
> +
> + ret = pl353_nand_ecc_init(mtd, &chip->ecc, chip->ecc.mode);
> + if (ret) {
> + dev_err(xnfc->dev, "ECC init failed\n");
> + return ret;
> + }
> +
> + if (!mtd->name) {
> + /*
> + * If the new bindings are used and the bootloader has not been
> + * updated to pass a new mtdparts parameter on the cmdline, you
> + * should define the following property in your NAND node, ie:
> + *
> + * label = "pl353-nand";
> + *
> + * This way, mtd->name will be set by the core when
> + * nand_set_flash_node() is called.
> + */
> + mtd->name = devm_kasprintf(xnfc->dev, GFP_KERNEL,
> + "%s", PL353_NAND_DRIVER_NAME);
> + if (!mtd->name) {
> + dev_err(xnfc->dev, "Failed to allocate mtd->name\n");
> + return -ENOMEM;
> + }
> + }
> +
> + return 0;
> +}
> +
> +static const struct nand_controller_ops pl353_nand_controller_ops = {
> + .attach_chip = pl353_nand_attach_chip,
> + .exec_op = pl353_nfc_exec_op,
> + .setup_data_interface = pl353_nfc_setup_data_interface, };
> +
> +/**
> + * pl353_nand_probe - Probe method for the NAND driver
> + * @pdev: Pointer to the platform_device structure
> + *
> + * This function initializes the driver data structures and the hardware.
> + * The NAND driver has dependency with the pl353_smc memory controller
> + * driver for initializing the NAND timing parameters, bus width, ECC
> +modes,
> + * control and status information.
> + *
> + * Return: 0 on success or error value on failure
> + */
> +static int pl353_nand_probe(struct platform_device *pdev) {
> + struct pl353_nand_controller *xnfc;
> + struct mtd_info *mtd;
> + struct nand_chip *chip;
> + struct resource *res;
> + struct device_node *np, *dn;
> + u32 ret, val;
> +
> + xnfc = devm_kzalloc(&pdev->dev, sizeof(*xnfc), GFP_KERNEL);
> + if (!xnfc)
> + return -ENOMEM;
> +
> + xnfc->dev = &pdev->dev;
> + nand_controller_init(&xnfc->controller);
> + xnfc->controller.ops = &pl353_nand_controller_ops;
> +
> + /* Map physical address of NAND flash */
> + res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
> + xnfc->regs = devm_ioremap_resource(xnfc->dev, res);
> + if (IS_ERR(xnfc->regs))
> + return PTR_ERR(xnfc->regs);
> +
> + chip = &xnfc->chip;
> + chip->controller = &xnfc->controller;
> + mtd = nand_to_mtd(chip);
> + nand_set_controller_data(chip, xnfc);
> + mtd->priv = chip;
> + mtd->owner = THIS_MODULE;
> + nand_set_flash_node(chip, xnfc->dev->of_node);
> +
> + np = of_get_next_parent(xnfc->dev->of_node);
> + xnfc->mclk = of_clk_get_by_name(np, "memclk");
> + if (IS_ERR(xnfc->mclk)) {
> + dev_err(xnfc->dev, "Failed to retrieve MCK clk\n");
> + return PTR_ERR(xnfc->mclk);
> + }
> +
> + xnfc->mclk_rate = clk_get_rate(xnfc->mclk);
> + dn = nand_get_flash_node(chip);
> + ret = of_property_read_u32(dn, "nand-bus-width", &val);
> + if (ret)
> + val = 8;
> +
> + xnfc->buswidth = val;
> +
> + /* Set the device option and flash width */
> + chip->options = NAND_BUSWIDTH_AUTO;
> + chip->bbt_options = NAND_BBT_USE_FLASH;
> + platform_set_drvdata(pdev, xnfc);
> + ret = nand_scan(chip, 1);
> + if (ret) {
> + dev_err(xnfc->dev, "could not scan the nand chip\n");
> + return ret;
> + }
> +
> + ret = mtd_device_register(mtd, NULL, 0);
> + if (ret) {
> + dev_err(xnfc->dev, "Failed to register mtd device: %d\n", ret);
> + nand_cleanup(chip);
> + return ret;
> + }
> +
> + return 0;
> +}
> +
> +/**
> + * pl353_nand_remove - Remove method for the NAND driver
> + * @pdev: Pointer to the platform_device structure
> + *
> + * This function is called if the driver module is being unloaded. It
> +frees all
> + * resources allocated to the device.
> + *
> + * Return: 0 on success or error value on failure
> + */
> +static int pl353_nand_remove(struct platform_device *pdev) {
> + struct pl353_nand_controller *xnfc = platform_get_drvdata(pdev);
> + struct mtd_info *mtd = nand_to_mtd(&xnfc->chip);
> + struct nand_chip *chip = mtd_to_nand(mtd);
> +
> + /* Release resources, unregister device */
> + nand_release(chip);
> +
> + return 0;
> +}
> +
> +/* Match table for device tree binding */ static const struct
> +of_device_id pl353_nand_of_match[] = {
> + { .compatible = "arm,pl353-nand-r2p1" },
> + {},
> +};
> +MODULE_DEVICE_TABLE(of, pl353_nand_of_match);
> +
> +/*
> + * pl353_nand_driver - This structure defines the NAND subsystem
> +platform driver */ static struct platform_driver pl353_nand_driver = {
> + .probe = pl353_nand_probe,
> + .remove = pl353_nand_remove,
> + .driver = {
> + .name = PL353_NAND_DRIVER_NAME,
> + .of_match_table = pl353_nand_of_match,
> + },
> +};
> +
> +module_platform_driver(pl353_nand_driver);
> +
> +MODULE_AUTHOR("Xilinx, Inc.");
> +MODULE_ALIAS("platform:" PL353_NAND_DRIVER_NAME);
> +MODULE_DESCRIPTION("ARM PL353 NAND Flash Driver");
> +MODULE_LICENSE("GPL");
> --
> 2.17.1