Re: [LINUX PATCH v16] mtd: rawnand: pl353: Add basic driver for arm pl353 smc nand interface
From: Helmut Grohne
Date: Fri Jun 21 2019 - 04:47:05 EST
Hi,
On Mon, Jun 17, 2019 at 02:50:02AM -0600, Naga Sureshkumar Relli wrote:
> Add driver for arm pl353 static memory controller nand interface with
> HW ECC support. This controller is used in Xilinx Zynq SoC for
> interfacing the NAND flash memory.
Thank you for the update.
> -> Tested Micron MT29F2G08ABAEAWP (On-die capable) and AMD/Spansion S34ML01G1.
I've tested this driver with the same Micron MT29F2G08ABAEAWP using
v5.2-rc5 and I am still seeing lots of ecc errors aka mtd_read returning
-EBADMSG. I traced the source of these errors to
micron_nand_on_die_ecc_status_4 where the NAND_STATUS_FAIL bit is often
found. I reproduced this symptom on multiple boards. An older version of
the driver (against v4.14) does not show this behaviour on the same
devices. I was able to reliably reproduce this behaviour using the
following sequence:
* flash_erase -j /dev/mtdN 0 0
* mount -t jffs2 /dev/mtdblockN /mnt
* touch /mnt/foo
* umount /mnt
* mount -t jffs2 /dev/mtdblockN /mnt
The relevant kernel message is:
jffs2: mtd->read(0xXXX bytes from 0xXXXXXXX) returned ECC error
I also occasionally saw errors from nandtest ("Byte 0xXXXXX is XX should
be XX"). They only reproduce when running nandtest multiple times (less
than 10). When such errors happen, they are not simple bit flips. Lots
of consecutive bytes differ entirely. Again, I am unable to reproduce
these errors with the older driver.
Possibly I'm wrongly configuring the flash. Can you share a correct
device tree for it? Given my reading of the driver, the nand-ecc-algo is
irrelevant, because nand_micron.c forces bch for on-die ecc-mode anyway.
The ecc-strength thus becomes 4. So I'm left wondering what needs to be
configured beyond nand-ecc-mode = "on-die" and nand-bus-width = <8>?
In addition to testing the driver, I looked at the source again.
> Changes in v15:
It seems that this version lost the Kconfig and Makefile integration.
> --- /dev/null
> +++ b/drivers/mtd/nand/raw/pl353_nand.c
> @@ -0,0 +1,1306 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * ARM PL353 NAND flash controller driver
> + *
> + * Copyright (C) 2017 Xilinx, Inc
> + * Author: Punnaiah chowdary kalluri <punnaiah@xxxxxxxxxx>
> + * Author: Naga Sureshkumar Relli <nagasure@xxxxxxxxxx>
> + *
> + */
> +
> +#include <linux/err.h>
> +#include <linux/delay.h>
> +#include <linux/interrupt.h>
> +#include <linux/io.h>
> +#include <linux/ioport.h>
> +#include <linux/irq.h>
> +#include <linux/module.h>
> +#include <linux/moduleparam.h>
> +#include <linux/mtd/mtd.h>
> +#include <linux/mtd/rawnand.h>
> +#include <linux/mtd/nand_ecc.h>
> +#include <linux/mtd/partitions.h>
> +#include <linux/of_address.h>
> +#include <linux/of_device.h>
> +#include <linux/of_platform.h>
> +#include <linux/platform_device.h>
> +#include <linux/slab.h>
> +#include <linux/pl353-smc.h>
> +#include <linux/clk.h>
> +
> +#define PL353_NAND_DRIVER_NAME "pl353-nand"
> +
> +/* NAND flash driver defines */
> +#define PL353_NAND_ECC_SIZE 512 /* Size of data for ECC operation */
> +
> +/* AXI Address definitions */
> +#define START_CMD_SHIFT 3
> +#define END_CMD_SHIFT 11
> +#define END_CMD_VALID_SHIFT 20
> +#define ADDR_CYCLES_SHIFT 21
> +#define CLEAR_CS_SHIFT 21
> +#define ECC_LAST_SHIFT 10
> +#define COMMAND_PHASE (0 << 19)
> +#define DATA_PHASE BIT(19)
> +
> +#define PL353_NAND_ECC_LAST BIT(ECC_LAST_SHIFT) /* Set ECC_Last */
> +#define PL353_NAND_CLEAR_CS BIT(CLEAR_CS_SHIFT) /* Clear chip select */
> +
> +#define PL353_NAND_ECC_BUSY_TIMEOUT (1 * HZ)
> +#define PL353_NAND_DEV_BUSY_TIMEOUT (1 * HZ)
> +#define PL353_NAND_LAST_TRANSFER_LENGTH 4
> +#define PL353_NAND_ECC_VALID_SHIFT 24
> +#define PL353_NAND_ECC_VALID_MASK 0x40
> +#define PL353_ECC_BITS_BYTEOFF_MASK 0x1FF
> +#define PL353_ECC_BITS_BITOFF_MASK 0x7
> +#define PL353_ECC_BIT_MASK 0xFFF
> +#define PL353_TREA_MAX_VALUE 1
> +#define PL353_MAX_ECC_CHUNKS 4
> +#define PL353_MAX_ECC_BYTES 3
> +
> +struct pl353_nfc_op {
> + u32 cmnds[2];
> + u32 addrs;
> + u32 naddrs;
> + u16 addrs_56; /* Address cycles 5 and 6 */
> + unsigned int data_instr_idx;
> + unsigned int rdy_timeout_ms;
> + unsigned int rdy_delay_ns;
> + const struct nand_op_instr *data_instr;
> +};
> +
> +/**
> + * struct pl353_nand_controller - Defines the NAND flash controller driver
> + * instance
> + * @controller: NAND controller structure
> + * @chip: NAND chip information structure
> + * @dev: Parent device (used to print error messages)
> + * @regs: Virtual address of the NAND flash device
> + * @dataphase_addrflags:Flags required for data phase transfers
> + * @addr_cycles: Address cycles
> + * @mclk: Memory controller clock
> + * @mclk_rate: Clock rate of the Memory controller
> + * @buswidth: Bus width 8 or 16
> + */
> +struct pl353_nand_controller {
> + struct nand_controller controller;
> + struct nand_chip chip;
> + struct device *dev;
> + void __iomem *regs;
> + u32 dataphase_addrflags;
> + u8 addr_cycles;
> + struct clk *mclk;
The mclk attribute is only referenced in pl353_nand_probe. There is no
need to store it in this struct.
> + ulong mclk_rate;
> + u32 buswidth;
> +};
> +
> +static inline struct pl353_nand_controller *
> + to_pl353_nand(struct nand_chip *chip)
> +{
> + return container_of(chip, struct pl353_nand_controller, chip);
> +}
> +
> +static int pl353_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section,
> + struct mtd_oob_region *oobregion)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> +
> + if (section >= chip->ecc.steps)
> + return -ERANGE;
> +
> + oobregion->offset = (section * chip->ecc.bytes);
> + oobregion->length = chip->ecc.bytes;
> +
> + return 0;
> +}
> +
> +static int pl353_ecc_ooblayout16_free(struct mtd_info *mtd, int section,
> + struct mtd_oob_region *oobregion)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> +
> + if (section >= chip->ecc.steps)
> + return -ERANGE;
> +
> + oobregion->offset = (section * chip->ecc.bytes) + 8;
> + oobregion->length = 8;
> +
> + return 0;
> +}
> +
> +static const struct mtd_ooblayout_ops pl353_ecc_ooblayout16_ops = {
> + .ecc = pl353_ecc_ooblayout16_ecc,
> + .free = pl353_ecc_ooblayout16_free,
> +};
> +
> +static int pl353_ecc_ooblayout64_ecc(struct mtd_info *mtd, int section,
> + struct mtd_oob_region *oobregion)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> +
> + if (section)
> + return -ERANGE;
> +
> + oobregion->offset = (section * chip->ecc.bytes) + 52;
You already know that `section == 0` here. Is there an advantage of
including the `(0 * something) +` here?
> + oobregion->length = chip->ecc.bytes;
> +
> + return 0;
> +}
> +
> +static int pl353_ecc_ooblayout64_free(struct mtd_info *mtd, int section,
> + struct mtd_oob_region *oobregion)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> +
> + if (section)
> + return -ERANGE;
> +
> + oobregion->offset = (section * chip->ecc.bytes) + 2;
Dito.
> + oobregion->length = 50;
> +
> + return 0;
> +}
> +
> +static const struct mtd_ooblayout_ops pl353_ecc_ooblayout64_ops = {
> + .ecc = pl353_ecc_ooblayout64_ecc,
> + .free = pl353_ecc_ooblayout64_free,
> +};
> +
> +/* Generic flash bbt decriptors */
> +static u8 bbt_pattern[] = { 'B', 'b', 't', '0' };
> +static u8 mirror_pattern[] = { '1', 't', 'b', 'B' };
> +
> +static struct nand_bbt_descr bbt_main_descr = {
> + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
> + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
> + .offs = 4,
> + .len = 4,
> + .veroffs = 20,
> + .maxblocks = 4,
> + .pattern = bbt_pattern
> +};
> +
> +static struct nand_bbt_descr bbt_mirror_descr = {
> + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
> + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
> + .offs = 4,
> + .len = 4,
> + .veroffs = 20,
> + .maxblocks = 4,
> + .pattern = mirror_pattern
> +};
> +
> +static void pl353_nfc_force_byte_access(struct nand_chip *chip,
> + bool force_8bit)
> +{
> + int ret;
> + struct pl353_nand_controller *xnfc =
> + container_of(chip, struct pl353_nand_controller, chip);
> +
> + if (xnfc->buswidth == 8)
> + return;
> +
> + if (force_8bit)
> + ret = pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_8);
> + else
> + ret = pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16);
> +
> + if (ret)
> + dev_err(xnfc->dev, "Error in Buswidth\n");
> +}
> +
> +static inline int pl353_wait_for_dev_ready(struct nand_chip *chip)
> +{
> + unsigned long timeout = jiffies + PL353_NAND_DEV_BUSY_TIMEOUT;
> +
> + while (!pl353_smc_get_nand_int_status_raw()) {
> + if (time_after_eq(jiffies, timeout)) {
> + pr_err("%s timed out\n", __func__);
> + return -ETIMEDOUT;
> + }
> + cond_resched();
> + }
> +
> + pl353_smc_clr_nand_int();
> +
> + return 0;
> +}
> +
> +/**
> + * pl353_nand_read_data_op - read chip data into buffer
> + * @chip: Pointer to the NAND chip info structure
> + * @in: Pointer to the buffer to store read data
> + * @len: Number of bytes to read
> + * @force_8bit: Force 8-bit bus access
> + * Return: Always return zero
> + */
> +static void pl353_nand_read_data_op(struct nand_chip *chip, u8 *in,
> + unsigned int len, bool force_8bit)
> +{
> + struct pl353_nand_controller *xnfc = to_pl353_nand(chip);
> + int i;
> +
> + if (force_8bit)
> + pl353_nfc_force_byte_access(chip, true);
> +
> + if ((IS_ALIGNED((uint32_t)in, sizeof(uint32_t)) &&
> + IS_ALIGNED(len, sizeof(uint32_t))) || !force_8bit) {
Do you really mean `||` here? It seems that when `in` and `len` are
properly aligned, there is no way to force 8bit access with this
implementation.
> + u32 *ptr = (u32 *)in;
> +
> + len /= 4;
> + for (i = 0; i < len; i++)
> + ptr[i] = readl(xnfc->regs + xnfc->dataphase_addrflags);
> + } else {
> + for (i = 0; i < len; i++)
> + in[i] = readb(xnfc->regs + xnfc->dataphase_addrflags);
> + }
> +
> + if (force_8bit)
> + pl353_nfc_force_byte_access(chip, false);
> +}
> +
> +/**
> + * pl353_nand_write_buf - write buffer to chip
> + * @chip: Pointer to the nand_chip structure
> + * @buf: Pointer to the buffer to store write data
> + * @len: Number of bytes to write
> + * @force_8bit: Force 8-bit bus access
> + */
> +static void pl353_nand_write_data_op(struct nand_chip *chip, const u8 *buf,
> + int len, bool force_8bit)
> +{
> + struct pl353_nand_controller *xnfc = to_pl353_nand(chip);
> + int i;
> +
> + if (force_8bit)
> + pl353_nfc_force_byte_access(chip, true);
> +
> + if ((IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
> + IS_ALIGNED(len, sizeof(uint32_t))) || !force_8bit) {
Dito.
> + u32 *ptr = (u32 *)buf;
> +
> + len /= 4;
> + for (i = 0; i < len; i++)
> + writel(ptr[i], xnfc->regs + xnfc->dataphase_addrflags);
> + } else {
> + for (i = 0; i < len; i++)
> + writeb(buf[i], xnfc->regs + xnfc->dataphase_addrflags);
> + }
> +
> + if (force_8bit)
> + pl353_nfc_force_byte_access(chip, false);
> +}
> +
> +static inline int pl353_wait_for_ecc_done(void)
> +{
> + unsigned long timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT;
> +
> + while (pl353_smc_ecc_is_busy()) {
> + if (time_after_eq(jiffies, timeout)) {
> + pr_err("%s timed out\n", __func__);
> + return -ETIMEDOUT;
> + }
> + cond_resched();
> + }
> +
> + return 0;
> +}
> +
> +/**
> + * pl353_nand_calculate_hwecc - Calculate Hardware ECC
> + * @chip: Pointer to the nand_chip structure
> + * @data: Pointer to the page data
> + * @ecc: Pointer to the ECC buffer where ECC data needs to be stored
> + *
> + * This function retrieves the Hardware ECC data from the controller and returns
> + * ECC data back to the MTD subsystem.
> + * It operates on a number of 512 byte blocks of NAND memory and can be
> + * programmed to store the ECC codes after the data in memory. For writes,
> + * the ECC is written to the spare area of the page. For reads, the result of
> + * a block ECC check are made available to the device driver.
> + *
> + * ------------------------------------------------------------------------
> + * | n * 512 blocks | extra | ecc | |
> + * | | block | codes | |
> + * ------------------------------------------------------------------------
> + *
> + * The ECC calculation uses a simple Hamming code, using 1-bit correction 2-bit
> + * detection. It starts when a valid read or write command with a 512 byte
> + * aligned address is detected on the memory interface.
> + *
> + * Return: 0 on success or error value on failure
> + */
> +static int pl353_nand_calculate_hwecc(struct nand_chip *chip,
> + const u8 *data, u8 *ecc)
> +{
> + u32 ecc_value;
> + u8 chunk, ecc_byte, ecc_status;
> +
> + for (chunk = 0; chunk < PL353_MAX_ECC_CHUNKS; chunk++) {
> + /* Read ECC value for each block */
> + ecc_value = pl353_smc_get_ecc_val(chunk);
> + ecc_status = (ecc_value >> PL353_NAND_ECC_VALID_SHIFT);
> +
> + /* ECC value valid */
> + if (ecc_status & PL353_NAND_ECC_VALID_MASK) {
> + for (ecc_byte = 0; ecc_byte < PL353_MAX_ECC_BYTES;
> + ecc_byte++) {
> + /* Copy ECC bytes to MTD buffer */
> + *ecc = ~ecc_value & 0xFF;
> + ecc_value = ecc_value >> 8;
> + ecc++;
> + }
> + } else {
> + pr_warn("%s status failed\n", __func__);
> + return -1;
> + }
> + }
> +
> + return 0;
> +}
> +
> +/**
> + * pl353_nand_correct_data - ECC correction function
> + * @chip: Pointer to the nand_chip structure
> + * @buf: Pointer to the page data
> + * @read_ecc: Pointer to the ECC value read from spare data area
> + * @calc_ecc: Pointer to the calculated ECC value
> + *
> + * This function corrects the ECC single bit errors & detects 2-bit errors.
> + *
> + * Return: 0 if no ECC errors found
> + * 1 if single bit error found and corrected.
> + * -1 if multiple uncorrectable ECC errors found.
> + */
> +static int pl353_nand_correct_data(struct nand_chip *chip, unsigned char *buf,
> + unsigned char *read_ecc,
> + unsigned char *calc_ecc)
> +{
> + unsigned char bit_addr;
> + unsigned int byte_addr;
> + unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper;
> + unsigned short calc_ecc_lower, calc_ecc_upper;
> +
> + read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) &
> + PL353_ECC_BIT_MASK;
> + read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) &
> + PL353_ECC_BIT_MASK;
> +
> + calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) &
> + PL353_ECC_BIT_MASK;
> + calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) &
> + PL353_ECC_BIT_MASK;
> +
> + ecc_odd = read_ecc_lower ^ calc_ecc_lower;
> + ecc_even = read_ecc_upper ^ calc_ecc_upper;
> +
> + /* no error */
> + if (!ecc_odd && !ecc_even)
> + return 0;
> +
> + if (ecc_odd == (~ecc_even & PL353_ECC_BIT_MASK)) {
> + /* bits [11:3] of error code is byte offset */
> + byte_addr = (ecc_odd >> 3) & PL353_ECC_BITS_BYTEOFF_MASK;
> + /* bits [2:0] of error code is bit offset */
> + bit_addr = ecc_odd & PL353_ECC_BITS_BITOFF_MASK;
> + /* Toggling error bit */
> + buf[byte_addr] ^= (BIT(bit_addr));
> + return 1;
> + }
> +
> + /* one error in parity */
> + if (hweight32(ecc_odd | ecc_even) == 1)
> + return 1;
> +
> + /* Uncorrectable error */
> + return -1;
> +}
> +
> +static void pl353_prepare_cmd(struct nand_chip *chip,
> + int page, int column, int start_cmd, int end_cmd,
> + bool read)
> +{
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + struct pl353_nand_controller *xnfc = to_pl353_nand(chip);
> + unsigned long cmd_phase_data = 0;
> + u32 end_cmd_valid = 0, cmdphase_addrflags;
> +
> + end_cmd_valid = read ? 1 : 0;
> + cmdphase_addrflags = ((xnfc->addr_cycles
> + << ADDR_CYCLES_SHIFT) |
> + (end_cmd_valid << END_CMD_VALID_SHIFT) |
> + (COMMAND_PHASE) |
> + (end_cmd << END_CMD_SHIFT) |
> + (start_cmd << START_CMD_SHIFT));
> +
> + /* Get the data phase address */
> + xnfc->dataphase_addrflags = ((0x0 << CLEAR_CS_SHIFT) |
> + (0 << END_CMD_VALID_SHIFT) |
> + (DATA_PHASE) |
> + (end_cmd << END_CMD_SHIFT) |
> + (0x0 << ECC_LAST_SHIFT));
> +
> + if (chip->options & NAND_BUSWIDTH_16)
> + column /= 2;
> +
> + cmd_phase_data = column;
> + if (mtd->writesize > PL353_NAND_ECC_SIZE) {
> + cmd_phase_data |= page << 16;
> +
> + /* Another address cycle for devices > 128MiB */
> + if (chip->options & NAND_ROW_ADDR_3) {
> + writel_relaxed(cmd_phase_data,
> + xnfc->regs + cmdphase_addrflags);
> + cmd_phase_data = (page >> 16);
> + }
> + } else {
> + cmd_phase_data |= page << 8;
> + }
> +
> + writel_relaxed(cmd_phase_data, xnfc->regs + cmdphase_addrflags);
> +}
> +
> +/**
> + * pl353_nand_read_oob - [REPLACEABLE] the most common OOB data read function
> + * @chip: Pointer to the nand_chip structure
> + * @chip: Pointer to the nand_chip structure
> + * @page: Page number to read
> + *
> + * Return: Always return zero
> + */
> +static int pl353_nand_read_oob(struct nand_chip *chip,
> + int page)
> +{
> + struct pl353_nand_controller *xnfc = to_pl353_nand(chip);
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + u8 *p;
> +
> + if (mtd->writesize < PL353_NAND_ECC_SIZE)
> + return 0;
> +
> + pl353_prepare_cmd(chip, page, mtd->writesize, NAND_CMD_READ0,
> + NAND_CMD_READSTART, 1);
> + if (pl353_wait_for_dev_ready(chip))
> + return -ETIMEDOUT;
> +
> + p = chip->oob_poi;
> + pl353_nand_read_data_op(chip, p,
> + (mtd->oobsize -
> + PL353_NAND_LAST_TRANSFER_LENGTH), false);
> + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> +
> + xnfc->dataphase_addrflags |= PL353_NAND_CLEAR_CS;
> + pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
> + false);
> +
> + return 0;
> +}
> +
> +/**
> + * pl353_nand_write_oob - [REPLACEABLE] the most common OOB data write function
> + * @chip: Pointer to the nand_chip structure
> + * @chip: Pointer to the NAND chip info structure
> + * @page: Page number to write
> + *
> + * Return: Zero on success and EIO on failure
> + */
> +static int pl353_nand_write_oob(struct nand_chip *chip,
> + int page)
> +{
> + struct pl353_nand_controller *xnfc = to_pl353_nand(chip);
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + const u8 *buf = chip->oob_poi;
> +
> + pl353_prepare_cmd(chip, page, mtd->writesize, NAND_CMD_SEQIN,
> + NAND_CMD_PAGEPROG, 0);
> +
> + pl353_nand_write_data_op(chip, buf,
> + (mtd->oobsize -
> + PL353_NAND_LAST_TRANSFER_LENGTH), false);
> + buf += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> +
> + xnfc->dataphase_addrflags |= PL353_NAND_CLEAR_CS;
> + xnfc->dataphase_addrflags |= (1 << END_CMD_VALID_SHIFT);
> + pl353_nand_write_data_op(chip, buf, PL353_NAND_LAST_TRANSFER_LENGTH,
> + false);
> + if (pl353_wait_for_dev_ready(chip))
> + return -ETIMEDOUT;
> +
> + return 0;
> +}
> +
> +/**
> + * pl353_nand_read_page_raw - [Intern] read raw page data without ecc
> + * @chip: Pointer to the nand_chip structure
> + * @buf: Pointer to the data buffer
> + * @oob_required: Caller requires OOB data read to chip->oob_poi
> + * @page: Page number to read
> + *
> + * Return: Always return zero
> + */
> +static int pl353_nand_read_page_raw(struct nand_chip *chip,
> + u8 *buf, int oob_required, int page)
> +{
> + struct pl353_nand_controller *xnfc = to_pl353_nand(chip);
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + u8 *p;
> +
> + pl353_prepare_cmd(chip, page, 0, NAND_CMD_READ0,
> + NAND_CMD_READSTART, 1);
> + if (pl353_wait_for_dev_ready(chip))
> + return -ETIMEDOUT;
> +
> + pl353_nand_read_data_op(chip, buf, mtd->writesize, false);
> + p = chip->oob_poi;
> + pl353_nand_read_data_op(chip, p,
> + (mtd->oobsize -
> + PL353_NAND_LAST_TRANSFER_LENGTH), false);
> + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> + xnfc->dataphase_addrflags |= PL353_NAND_CLEAR_CS;
> + pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
> + false);
> +
> + return 0;
> +}
> +
> +/**
> + * pl353_nand_write_page_raw - [Intern] raw page write function
> + * @chip: Pointer to the nand_chip structure
> + * @buf: Pointer to the data buffer
> + * @oob_required: Caller requires OOB data read to chip->oob_poi
> + * @page: Page number to write
> + *
> + * Return: Always return zero
> + */
> +static int pl353_nand_write_page_raw(struct nand_chip *chip,
> + const u8 *buf, int oob_required,
> + int page)
> +{
> + struct pl353_nand_controller *xnfc = to_pl353_nand(chip);
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + u8 *p;
> +
> + pl353_prepare_cmd(chip, page, 0, NAND_CMD_SEQIN,
> + NAND_CMD_PAGEPROG, 0);
> + pl353_nand_write_data_op(chip, buf, mtd->writesize, false);
> + p = chip->oob_poi;
> + pl353_nand_write_data_op(chip, p,
> + (mtd->oobsize -
> + PL353_NAND_LAST_TRANSFER_LENGTH), false);
> + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> + xnfc->dataphase_addrflags |= PL353_NAND_CLEAR_CS;
> + xnfc->dataphase_addrflags |= (1 << END_CMD_VALID_SHIFT);
> + pl353_nand_write_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
> + false);
> +
> + return 0;
> +}
> +
> +/**
> + * nand_write_page_hwecc - Hardware ECC based page write function
> + * @chip: Pointer to the nand_chip structure
> + * @buf: Pointer to the data buffer
> + * @oob_required: Caller requires OOB data read to chip->oob_poi
> + * @page: Page number to write
> + *
> + * This functions writes data and hardware generated ECC values in to the page.
> + *
> + * Return: Always return zero
> + */
> +static int pl353_nand_write_page_hwecc(struct nand_chip *chip,
> + const u8 *buf, int oob_required,
> + int page)
> +{
> + int eccsize = chip->ecc.size;
> + int eccsteps = chip->ecc.steps;
> + u8 *ecc_calc = chip->ecc.calc_buf;
> + u8 *oob_ptr;
> + const u8 *p = buf;
> + u32 ret;
> + struct pl353_nand_controller *xnfc = to_pl353_nand(chip);
> + struct mtd_info *mtd = nand_to_mtd(chip);
> +
> + pl353_prepare_cmd(chip, page, 0, NAND_CMD_SEQIN,
> + NAND_CMD_PAGEPROG, 0);
> +
> + for ( ; (eccsteps - 1); eccsteps--) {
> + pl353_nand_write_data_op(chip, p, eccsize, false);
> + p += eccsize;
> + }
> +
> + pl353_nand_write_data_op(chip, p,
> + (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH),
> + false);
> + p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> +
> + /* Set ECC Last bit to 1 */
> + xnfc->dataphase_addrflags |= PL353_NAND_ECC_LAST;
> + pl353_nand_write_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
> + false);
> +
> + /* Wait till the ECC operation is complete or timeout */
> + ret = pl353_wait_for_ecc_done();
> + if (ret)
> + dev_err(xnfc->dev, "ECC Timeout\n");
> +
> + p = buf;
> + ret = chip->ecc.calculate(chip, p, &ecc_calc[0]);
> + if (ret)
> + return ret;
> +
> + /* Wait for ECC to be calculated and read the error values */
> + ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi,
> + 0, chip->ecc.total);
> + if (ret)
> + return ret;
> +
> + /* Clear ECC last bit */
> + xnfc->dataphase_addrflags &= ~PL353_NAND_ECC_LAST;
> +
> + /* Write the spare area with ECC bytes */
> + oob_ptr = chip->oob_poi;
> + pl353_nand_write_data_op(chip, oob_ptr,
> + (mtd->oobsize -
> + PL353_NAND_LAST_TRANSFER_LENGTH), false);
> +
> + xnfc->dataphase_addrflags |= PL353_NAND_CLEAR_CS;
> + xnfc->dataphase_addrflags |= (1 << END_CMD_VALID_SHIFT);
> + oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> + pl353_nand_write_data_op(chip, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH,
> + false);
> + if (pl353_wait_for_dev_ready(chip))
> + return -ETIMEDOUT;
> +
> + return 0;
> +}
> +
> +/**
> + * pl353_nand_read_page_hwecc - Hardware ECC based page read function
> + * @chip: Pointer to the nand_chip structure
> + * @buf: Pointer to the buffer to store read data
> + * @oob_required: Caller requires OOB data read to chip->oob_poi
> + * @page: Page number to read
> + *
> + * This functions reads data and checks the data integrity by comparing
> + * hardware generated ECC values and read ECC values from spare area.
> + * There is a limitation in SMC controller, that we must set ECC LAST on
> + * last data phase access, to tell ECC block not to expect any data further.
> + * Ex: When number of ECC STEPS are 4, then till 3 we will write to flash
> + * using SMC with HW ECC enabled. And for the last ECC STEP, we will subtract
> + * 4bytes from page size, and will initiate a transfer. And the remaining 4 as
> + * one more transfer with ECC_LAST bit set in NAND data phase register to
> + * notify ECC block not to expect any more data. The last block should be align
> + * with end of 512 byte block. Because of this limitation, we are not using
> + * core routines.
> + *
> + * Return: 0 always and updates ECC operation status in to MTD structure
> + */
> +static int pl353_nand_read_page_hwecc(struct nand_chip *chip,
> + u8 *buf, int oob_required, int page)
> +{
> + struct pl353_nand_controller *xnfc = to_pl353_nand(chip);
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + int i, stat, eccsize = chip->ecc.size;
> + int eccbytes = chip->ecc.bytes;
> + int eccsteps = chip->ecc.steps;
> + unsigned int max_bitflips = 0;
> + u8 *p = buf;
> + u8 *ecc_calc = chip->ecc.calc_buf;
> + u8 *ecc = chip->ecc.code_buf;
> + u8 *oob_ptr;
> + u32 ret;
> +
> + pl353_prepare_cmd(chip, page, 0, NAND_CMD_READ0,
> + NAND_CMD_READSTART, 1);
> + if (pl353_wait_for_dev_ready(chip))
> + return -ETIMEDOUT;
> +
> + for ( ; (eccsteps - 1); eccsteps--) {
> + pl353_nand_read_data_op(chip, p, eccsize, false);
> + p += eccsize;
> + }
> +
> + pl353_nand_read_data_op(chip, p,
> + (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH),
> + false);
> + p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> +
> + /* Set ECC Last bit to 1 */
> + xnfc->dataphase_addrflags |= PL353_NAND_ECC_LAST;
> + pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
> + false);
> +
> + /* Wait till the ECC operation is complete or timeout */
> + ret = pl353_wait_for_ecc_done();
> + if (ret)
> + dev_err(xnfc->dev, "ECC Timeout\n");
> +
> + /* Read the calculated ECC value */
> + p = buf;
> + ret = chip->ecc.calculate(chip, p, &ecc_calc[0]);
> + if (ret)
> + return ret;
> +
> + /* Clear ECC last bit */
> + xnfc->dataphase_addrflags &= ~PL353_NAND_ECC_LAST;
> +
> + /* Read the stored ECC value */
> + oob_ptr = chip->oob_poi;
> + pl353_nand_read_data_op(chip, oob_ptr,
> + (mtd->oobsize -
> + PL353_NAND_LAST_TRANSFER_LENGTH), false);
> +
> + /* de-assert chip select */
> + xnfc->dataphase_addrflags |= PL353_NAND_CLEAR_CS;
> + oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> + pl353_nand_read_data_op(chip, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH,
> + false);
> +
> + ret = mtd_ooblayout_get_eccbytes(mtd, ecc, chip->oob_poi, 0,
> + chip->ecc.total);
> + if (ret)
> + return ret;
> +
> + eccsteps = chip->ecc.steps;
> + p = buf;
> +
> + /* Check ECC error for all blocks and correct if it is correctable */
> + for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
> + stat = chip->ecc.correct(chip, p, &ecc[i], &ecc_calc[i]);
> + if (stat < 0) {
> + mtd->ecc_stats.failed++;
> + } else {
> + mtd->ecc_stats.corrected += stat;
> + max_bitflips = max_t(unsigned int, max_bitflips, stat);
> + }
> + }
> +
> + return max_bitflips;
> +}
> +
> +/* NAND framework ->exec_op() hooks and related helpers */
> +static void pl353_nfc_parse_instructions(struct nand_chip *chip,
> + const struct nand_subop *subop,
> + struct pl353_nfc_op *nfc_op)
> +{
> + const struct nand_op_instr *instr = NULL;
> + unsigned int op_id, offset;
> + int i;
> + const u8 *addrs;
> +
> + memset(nfc_op, 0, sizeof(struct pl353_nfc_op));
> + for (op_id = 0; op_id < subop->ninstrs; op_id++) {
> + instr = &subop->instrs[op_id];
> +
> + switch (instr->type) {
> + case NAND_OP_CMD_INSTR:
> + if (op_id)
> + nfc_op->cmnds[1] = instr->ctx.cmd.opcode;
> + else
> + nfc_op->cmnds[0] = instr->ctx.cmd.opcode;
> + break;
> +
> + case NAND_OP_ADDR_INSTR:
> + offset = nand_subop_get_addr_start_off(subop, op_id);
> + nfc_op->naddrs = nand_subop_get_num_addr_cyc(subop,
> + op_id);
> + addrs = &instr->ctx.addr.addrs[offset];
> + for (i = 0; i < min_t(unsigned int, 4, nfc_op->naddrs);
> + i++)
> + nfc_op->addrs |= instr->ctx.addr.addrs[i] <<
> + (8 * i);
This code is unchanged compared to v14. That may or may not be correct.
I've encountered further details regarding this matter:
1. The documentation of nand_subop_get_addr_start_off says:
* During driver development, one could be tempted to directly use the
* ->addr.addrs field of address instructions. This is wrong as address
* instructions might be split.
*
* Given an address instruction, returns the offset of the first cycle to issue.
Now the previous line of code does use addr.addrs without considering the
relevant offset. I argue that either the documentation or the code is wrong.
2. During my testing, I added a WARN_ON(offset) to the driver. Whenever offset
is exactly 0, this potential bug cannot have any practical effects. In my
tests, this warning never triggered. So even if this is buggy, it does not have
any practical effects for me.
3. I also looked into how other drivers use nand_subop_get_addr_start_off. Most
drivers use it in a way that matches my reading of the documentation and
consider indices from addr_start_off to addr_start_off + num_addr_cyc
exclusively. vf610_nfc.c is an exception to this rule and considers indices
from addr_start_off to num_addr_cyc. If this is a bug in pl353_nand.c, it
likely also is a bug in vf610_nfc.c. Again, it can only have practical effects
when the offset is > 0, which I never encountered.
> + if (nfc_op->naddrs >= 5)
> + nfc_op->addrs_56 = addrs[4];
> +
> + if (nfc_op->naddrs >= 6)
> + nfc_op->addrs_56 |= (addrs[5] << 8);
> +
> + break;
> +
> + case NAND_OP_DATA_IN_INSTR:
> + nfc_op->data_instr = instr;
> + nfc_op->data_instr_idx = op_id;
> + break;
> +
> + case NAND_OP_DATA_OUT_INSTR:
> + nfc_op->data_instr = instr;
> + nfc_op->data_instr_idx = op_id;
> + break;
Would it make sense to merge the NAND_OP_DATA_IN_INSTR and
NAND_OP_DATA_OUT_INSTR cases?
> + case NAND_OP_WAITRDY_INSTR:
> + nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
> + nfc_op->rdy_delay_ns = instr->delay_ns;
> + break;
> + }
> + }
> +}
> +
> +/**
> + * pl353_nand_exec_op_cmd - Send command to NAND device
> + * @chip: Pointer to the NAND chip info structure
> + * @subop: Pointer to array of instructions
> + * Return: Always return zero
> + */
> +static int pl353_nand_exec_op_cmd(struct nand_chip *chip,
> + const struct nand_subop *subop)
> +{
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + const struct nand_op_instr *instr;
> + struct pl353_nfc_op nfc_op = {};
> + struct pl353_nand_controller *xnfc = to_pl353_nand(chip);
> + unsigned long cmd_phase_data = 0, end_cmd_valid = 0;
> + unsigned long end_cmd;
> + unsigned int op_id, len;
> + bool reading;
> + u32 cmdphase_addrflags;
> +
> + pl353_nfc_parse_instructions(chip, subop, &nfc_op);
> + instr = nfc_op.data_instr;
> + op_id = nfc_op.data_instr_idx;
> + pl353_smc_clr_nand_int();
> +
> + /* Get the command phase address */
> + if (nfc_op.cmnds[1] != 0) {
> + if (nfc_op.cmnds[0] == NAND_CMD_SEQIN)
> + end_cmd_valid = 0;
> + else
> + end_cmd_valid = 1;
> + }
> +
> + end_cmd = nfc_op.cmnds[1];
> +
> + /*
> + * The SMC defines two phases of commands when transferring data to or
> + * from NAND flash.
> + * Command phase: Commands and optional address information are written
> + * to the NAND flash.The command and address can be associated with
> + * either a data phase operation to write to or read from the array,
> + * or a status/ID register transfer.
> + * Data phase: Data is either written to or read from the NAND flash.
> + * This data can be either data transferred to or from the array,
> + * or status/ID register information.
> + */
> + cmdphase_addrflags = ((nfc_op.naddrs << ADDR_CYCLES_SHIFT) |
> + (end_cmd_valid << END_CMD_VALID_SHIFT) |
> + (COMMAND_PHASE) |
> + (end_cmd << END_CMD_SHIFT) |
> + (nfc_op.cmnds[0] << START_CMD_SHIFT));
> +
> + /* Get the data phase address */
> + end_cmd_valid = 0;
> +
> + xnfc->dataphase_addrflags = ((0x0 << CLEAR_CS_SHIFT) |
> + (end_cmd_valid << END_CMD_VALID_SHIFT) |
> + (DATA_PHASE) |
> + (end_cmd << END_CMD_SHIFT) |
> + (0x0 << ECC_LAST_SHIFT));
> +
> + /* Command phase AXI Read & Write */
> + if (nfc_op.naddrs >= 5) {
> + if (mtd->writesize > PL353_NAND_ECC_SIZE) {
> + cmd_phase_data = nfc_op.addrs;
> +
> + /* Another address cycle for devices > 128MiB */
> + if (chip->options & NAND_ROW_ADDR_3) {
> + writel_relaxed(cmd_phase_data,
> + xnfc->regs + cmdphase_addrflags);
> + cmd_phase_data = nfc_op.addrs_56;
> + }
> + }
> + } else {
> + if (nfc_op.addrs != -1) {
> + int column = nfc_op.addrs;
> +
> + /*
> + * Change read/write column, read id etc
> + * Adjust columns for 16 bit bus width
> + */
> + if ((chip->options & NAND_BUSWIDTH_16) &&
> + (nfc_op.cmnds[0] == NAND_CMD_READ0 ||
> + nfc_op.cmnds[0] == NAND_CMD_SEQIN ||
> + nfc_op.cmnds[0] == NAND_CMD_RNDOUT ||
> + nfc_op.cmnds[0] == NAND_CMD_RNDIN)) {
> + column >>= 1;
> + }
> + cmd_phase_data = column;
> + }
> + }
> +
> + writel_relaxed(cmd_phase_data, xnfc->regs + cmdphase_addrflags);
> + if (!nfc_op.data_instr) {
> + if (nfc_op.rdy_timeout_ms) {
> + if (pl353_wait_for_dev_ready(chip))
> + return -ETIMEDOUT;
> + }
> +
> + return 0;
> + }
> +
> + reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
> + if (!reading) {
> + len = nand_subop_get_data_len(subop, op_id);
> + pl353_nand_write_data_op(chip, instr->ctx.data.buf.out,
> + len, instr->ctx.data.force_8bit);
> + if (nfc_op.rdy_timeout_ms) {
> + if (pl353_wait_for_dev_ready(chip))
> + return -ETIMEDOUT;
> + }
> +
> + ndelay(nfc_op.rdy_delay_ns);
> + } else {
> + len = nand_subop_get_data_len(subop, op_id);
> + ndelay(nfc_op.rdy_delay_ns);
> + if (nfc_op.rdy_timeout_ms) {
> + if (pl353_wait_for_dev_ready(chip))
> + return -ETIMEDOUT;
> + }
> +
> + pl353_nand_read_data_op(chip, instr->ctx.data.buf.in, len,
> + instr->ctx.data.force_8bit);
> + }
> +
> + return 0;
> +}
> +
> +static const struct nand_op_parser pl353_nfc_op_parser = NAND_OP_PARSER
> + (NAND_OP_PARSER_PATTERN
> + (pl353_nand_exec_op_cmd,
> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
> + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)),
> + NAND_OP_PARSER_PATTERN
> + (pl353_nand_exec_op_cmd,
> + NAND_OP_PARSER_PAT_CMD_ELEM(false),
> + NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
> + NAND_OP_PARSER_PAT_CMD_ELEM(false),
> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false),
> + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)),
> + NAND_OP_PARSER_PATTERN
> + (pl353_nand_exec_op_cmd,
> + NAND_OP_PARSER_PAT_CMD_ELEM(false),
> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
> + NAND_OP_PARSER_PATTERN
> + (pl353_nand_exec_op_cmd,
> + NAND_OP_PARSER_PAT_CMD_ELEM(false),
> + NAND_OP_PARSER_PAT_ADDR_ELEM(false, 8),
> + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2048),
> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
> + NAND_OP_PARSER_PATTERN
> + (pl353_nand_exec_op_cmd,
> + NAND_OP_PARSER_PAT_CMD_ELEM(false)),
> + );
> +
> +static int pl353_nfc_exec_op(struct nand_chip *chip,
> + const struct nand_operation *op,
> + bool check_only)
> +{
> + return nand_op_parser_exec_op(chip, &pl353_nfc_op_parser,
> + op, check_only);
> +}
> +
> +/**
> + * pl353_nand_ecc_init - Initialize the ecc information as per the ecc mode
> + * @mtd: Pointer to the mtd_info structure
> + * @ecc: Pointer to ECC control structure
> + * @ecc_mode: ondie ecc status
> + *
> + * This function initializes the ecc block and functional pointers as per the
> + * ecc mode
> + *
> + * Return: 0 on success or negative errno.
> + */
> +static int pl353_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
> + int ecc_mode)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + struct pl353_nand_controller *xnfc = to_pl353_nand(chip);
> + int ret = 0;
> +
> + ecc->read_oob = pl353_nand_read_oob;
> + ecc->write_oob = pl353_nand_write_oob;
> + if (ecc_mode == NAND_ECC_ON_DIE) {
> + ecc->write_page_raw = pl353_nand_write_page_raw;
> + ecc->read_page_raw = pl353_nand_read_page_raw;
> +
> + /*
> + * On-Die ECC spare bytes offset 8 is used for ECC codes
> + * Use the BBT pattern descriptors
> + */
> + chip->bbt_td = &bbt_main_descr;
> + chip->bbt_md = &bbt_mirror_descr;
> + ret = pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_BYPASS);
> + if (ret)
> + return ret;
> +
> + } else {
> + ecc->mode = NAND_ECC_HW;
> +
> + /* Hardware ECC generates 3 bytes ECC code for each 512 bytes */
> + ecc->bytes = 3;
> + ecc->strength = 1;
> + ecc->calculate = pl353_nand_calculate_hwecc;
> + ecc->correct = pl353_nand_correct_data;
> + ecc->read_page = pl353_nand_read_page_hwecc;
> + ecc->size = PL353_NAND_ECC_SIZE;
> + ecc->read_page = pl353_nand_read_page_hwecc;
> + ecc->write_page = pl353_nand_write_page_hwecc;
> + pl353_smc_set_ecc_pg_size(mtd->writesize);
> + switch (mtd->writesize) {
> + case SZ_512:
> + case SZ_1K:
> + case SZ_2K:
> + pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_APB);
> + break;
> + default:
> + ecc->calculate = nand_calculate_ecc;
> + ecc->correct = nand_correct_data;
> + ecc->size = 256;
> + break;
> + }
> +
> + if (mtd->oobsize == 16) {
> + mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout16_ops);
> + } else if (mtd->oobsize == 64) {
> + mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout64_ops);
> + } else {
> + ret = -ENXIO;
> + dev_err(xnfc->dev, "Unsupported oob Layout\n");
> + }
> + }
> +
> + return ret;
> +}
> +
> +static int pl353_nfc_setup_data_interface(struct nand_chip *chip, int csline,
> + const struct nand_data_interface
> + *conf)
> +{
> + struct pl353_nand_controller *xnfc = to_pl353_nand(chip);
> + const struct nand_sdr_timings *sdr;
> + u32 timings[7], mckperiodps;
> +
> + if (csline == NAND_DATA_IFACE_CHECK_ONLY)
> + return 0;
> +
> + sdr = nand_get_sdr_timings(conf);
> + if (IS_ERR(sdr))
> + return PTR_ERR(sdr);
> +
> + /*
> + * SDR timings are given in pico-seconds while NFC timings must be
> + * expressed in NAND controller clock cycles.
> + */
> + mckperiodps = NSEC_PER_SEC / xnfc->mclk_rate;
> + mckperiodps *= 1000;
> + if (sdr->tRC_min <= 20000)
> + /*
> + * PL353 SMC needs one extra read cycle in SDR Mode 5
> + * This is not written anywhere in the datasheet but
> + * the results observed during testing.
> + */
> + timings[0] = DIV_ROUND_UP(sdr->tRC_min, mckperiodps) + 1;
> + else
> + timings[0] = DIV_ROUND_UP(sdr->tRC_min, mckperiodps);
> +
> + timings[1] = DIV_ROUND_UP(sdr->tWC_min, mckperiodps);
> +
> + /*
> + * For all SDR modes, PL353 SMC needs tREA max value as 1,
> + * Results observed during testing.
> + */
> + timings[2] = PL353_TREA_MAX_VALUE;
> + timings[3] = DIV_ROUND_UP(sdr->tWP_min, mckperiodps);
> + timings[4] = DIV_ROUND_UP(sdr->tCLR_min, mckperiodps);
> + timings[5] = DIV_ROUND_UP(sdr->tAR_min, mckperiodps);
> + timings[6] = DIV_ROUND_UP(sdr->tRR_min, mckperiodps);
> + pl353_smc_set_cycles(timings);
> +
> + return 0;
> +}
> +
> +static int pl353_nand_attach_chip(struct nand_chip *chip)
> +{
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + struct pl353_nand_controller *xnfc = to_pl353_nand(chip);
> + int ret;
> +
> + if (chip->options & NAND_BUSWIDTH_16) {
> + ret = pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16);
> + if (ret) {
> + dev_err(xnfc->dev, "Set BusWidth failed\n");
> + return ret;
> + }
> + }
> +
> + if (mtd->writesize <= SZ_512)
> + xnfc->addr_cycles = 1;
> + else
> + xnfc->addr_cycles = 2;
> +
> + if (chip->options & NAND_ROW_ADDR_3)
> + xnfc->addr_cycles += 3;
> + else
> + xnfc->addr_cycles += 2;
> +
> + ret = pl353_nand_ecc_init(mtd, &chip->ecc, chip->ecc.mode);
> + if (ret) {
> + dev_err(xnfc->dev, "ECC init failed\n");
> + return ret;
> + }
> +
> + if (!mtd->name) {
> + /*
> + * If the new bindings are used and the bootloader has not been
> + * updated to pass a new mtdparts parameter on the cmdline, you
> + * should define the following property in your NAND node, ie:
> + *
> + * label = "pl353-nand";
> + *
> + * This way, mtd->name will be set by the core when
> + * nand_set_flash_node() is called.
> + */
> + mtd->name = devm_kasprintf(xnfc->dev, GFP_KERNEL,
> + "%s", PL353_NAND_DRIVER_NAME);
> + if (!mtd->name) {
> + dev_err(xnfc->dev, "Failed to allocate mtd->name\n");
> + return -ENOMEM;
> + }
> + }
> +
> + return 0;
> +}
> +
> +static const struct nand_controller_ops pl353_nand_controller_ops = {
> + .attach_chip = pl353_nand_attach_chip,
> + .exec_op = pl353_nfc_exec_op,
> + .setup_data_interface = pl353_nfc_setup_data_interface,
> +};
> +
> +/**
> + * pl353_nand_probe - Probe method for the NAND driver
> + * @pdev: Pointer to the platform_device structure
> + *
> + * This function initializes the driver data structures and the hardware.
> + * The NAND driver has dependency with the pl353_smc memory controller
> + * driver for initializing the NAND timing parameters, bus width, ECC modes,
> + * control and status information.
> + *
> + * Return: 0 on success or error value on failure
> + */
> +static int pl353_nand_probe(struct platform_device *pdev)
> +{
> + struct pl353_nand_controller *xnfc;
> + struct mtd_info *mtd;
> + struct nand_chip *chip;
> + struct resource *res;
> + struct device_node *np, *dn;
> + u32 ret, val;
> +
> + xnfc = devm_kzalloc(&pdev->dev, sizeof(*xnfc), GFP_KERNEL);
> + if (!xnfc)
> + return -ENOMEM;
> +
> + xnfc->dev = &pdev->dev;
> + nand_controller_init(&xnfc->controller);
> + xnfc->controller.ops = &pl353_nand_controller_ops;
> +
> + /* Map physical address of NAND flash */
> + res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
> + xnfc->regs = devm_ioremap_resource(xnfc->dev, res);
> + if (IS_ERR(xnfc->regs))
> + return PTR_ERR(xnfc->regs);
> +
> + chip = &xnfc->chip;
> + chip->controller = &xnfc->controller;
> + mtd = nand_to_mtd(chip);
> + nand_set_controller_data(chip, xnfc);
> + mtd->priv = chip;
> + mtd->owner = THIS_MODULE;
> + nand_set_flash_node(chip, xnfc->dev->of_node);
> +
> + np = of_get_next_parent(xnfc->dev->of_node);
> + xnfc->mclk = of_clk_get_by_name(np, "memclk");
> + if (IS_ERR(xnfc->mclk)) {
> + dev_err(xnfc->dev, "Failed to retrieve MCK clk\n");
> + return PTR_ERR(xnfc->mclk);
> + }
> +
> + xnfc->mclk_rate = clk_get_rate(xnfc->mclk);
> + dn = nand_get_flash_node(chip);
> + ret = of_property_read_u32(dn, "nand-bus-width", &val);
> + if (ret)
> + val = 8;
> +
> + xnfc->buswidth = val;
> +
> + /* Set the device option and flash width */
> + chip->options = NAND_BUSWIDTH_AUTO;
> + chip->bbt_options = NAND_BBT_USE_FLASH;
> + platform_set_drvdata(pdev, xnfc);
> + ret = nand_scan(chip, 1);
> + if (ret) {
> + dev_err(xnfc->dev, "could not scan the nand chip\n");
> + return ret;
> + }
> +
> + ret = mtd_device_register(mtd, NULL, 0);
> + if (ret) {
> + dev_err(xnfc->dev, "Failed to register mtd device: %d\n", ret);
> + nand_cleanup(chip);
> + return ret;
> + }
> +
> + return 0;
> +}
> +
> +/**
> + * pl353_nand_remove - Remove method for the NAND driver
> + * @pdev: Pointer to the platform_device structure
> + *
> + * This function is called if the driver module is being unloaded. It frees all
> + * resources allocated to the device.
> + *
> + * Return: 0 on success or error value on failure
> + */
> +static int pl353_nand_remove(struct platform_device *pdev)
> +{
> + struct pl353_nand_controller *xnfc = platform_get_drvdata(pdev);
> + struct mtd_info *mtd = nand_to_mtd(&xnfc->chip);
> + struct nand_chip *chip = mtd_to_nand(mtd);
> +
> + /* Release resources, unregister device */
> + nand_release(chip);
> +
> + return 0;
> +}
> +
> +/* Match table for device tree binding */
> +static const struct of_device_id pl353_nand_of_match[] = {
> + { .compatible = "arm,pl353-nand-r2p1" },
> + {},
> +};
> +MODULE_DEVICE_TABLE(of, pl353_nand_of_match);
> +
> +/*
> + * pl353_nand_driver - This structure defines the NAND subsystem platform driver
> + */
> +static struct platform_driver pl353_nand_driver = {
> + .probe = pl353_nand_probe,
> + .remove = pl353_nand_remove,
> + .driver = {
> + .name = PL353_NAND_DRIVER_NAME,
> + .of_match_table = pl353_nand_of_match,
> + },
> +};
> +
> +module_platform_driver(pl353_nand_driver);
> +
> +MODULE_AUTHOR("Xilinx, Inc.");
> +MODULE_ALIAS("platform:" PL353_NAND_DRIVER_NAME);
> +MODULE_DESCRIPTION("ARM PL353 NAND Flash Driver");
> +MODULE_LICENSE("GPL");
> --
> 2.17.1
You've addressed a significant number of review comments. Most of the
remaining ones seem minor to me. If you add back the Kconfig and
Makefile parts from v14, you may add:
Reviewed-by: Helmut Grohne <helmut.grohne@xxxxxxxxxx>
Despite the review I cannot confirm that it actually works.
Helmut