RE: [RFC] mm: Proactive compaction

From: Nitin Gupta
Date: Tue Aug 20 2019 - 17:40:38 EST


> -----Original Message-----
> From: Vlastimil Babka <vbabka@xxxxxxx>
> Sent: Tuesday, August 20, 2019 1:46 AM
> To: Nitin Gupta <nigupta@xxxxxxxxxx>; akpm@xxxxxxxxxxxxxxxxxxxx;
> mgorman@xxxxxxxxxxxxxxxxxxx; mhocko@xxxxxxxx;
> dan.j.williams@xxxxxxxxx
> Cc: Yu Zhao <yuzhao@xxxxxxxxxx>; Matthew Wilcox <willy@xxxxxxxxxxxxx>;
> Qian Cai <cai@xxxxxx>; Andrey Ryabinin <aryabinin@xxxxxxxxxxxxx>; Roman
> Gushchin <guro@xxxxxx>; Greg Kroah-Hartman
> <gregkh@xxxxxxxxxxxxxxxxxxx>; Kees Cook <keescook@xxxxxxxxxxxx>; Jann
> Horn <jannh@xxxxxxxxxx>; Johannes Weiner <hannes@xxxxxxxxxxx>; Arun
> KS <arunks@xxxxxxxxxxxxxx>; Janne Huttunen
> <janne.huttunen@xxxxxxxxx>; Konstantin Khlebnikov
> <khlebnikov@xxxxxxxxxxxxxx>; linux-kernel@xxxxxxxxxxxxxxx; linux-
> mm@xxxxxxxxx; Khalid Aziz <khalid.aziz@xxxxxxxxxx>
> Subject: Re: [RFC] mm: Proactive compaction
>
> +CC Khalid Aziz who proposed a different approach:
> https://lore.kernel.org/linux-mm/20190813014012.30232-1-
> khalid.aziz@xxxxxxxxxx/T/#u
>
> On 8/16/19 11:43 PM, Nitin Gupta wrote:
> > For some applications we need to allocate almost all memory as
> > hugepages. However, on a running system, higher order allocations can
> > fail if the memory is fragmented. Linux kernel currently does
> > on-demand compaction as we request more hugepages but this style of
> > compaction incurs very high latency. Experiments with one-time full
> > memory compaction (followed by hugepage allocations) shows that kernel
> > is able to restore a highly fragmented memory state to a fairly
> > compacted memory state within <1 sec for a 32G system. Such data
> > suggests that a more proactive compaction can help us allocate a large
> > fraction of memory as hugepages keeping allocation latencies low.
> >
> > For a more proactive compaction, the approach taken here is to define
> > per page-order external fragmentation thresholds and let kcompactd
> > threads act on these thresholds.
> >
> > The low and high thresholds are defined per page-order and exposed
> > through sysfs:
> >
> > /sys/kernel/mm/compaction/order-[1..MAX_ORDER]/extfrag_{low,high}
> >
> > Per-node kcompactd thread is woken up every few seconds to check if
> > any zone on its node has extfrag above the extfrag_high threshold for
> > any order, in which case the thread starts compaction in the backgrond
> > till all zones are below extfrag_low level for all orders. By default
> > both these thresolds are set to 100 for all orders which essentially
> > disables kcompactd.
>
> Could you define what exactly extfrag is, in the changelog?
>

extfrag for order-n = ((total free pages) - (free pages for order >= n)) / (total free pages) * 100;

I will add this to v2 changelog.


> > To avoid wasting CPU cycles when compaction cannot help, such as when
> > memory is full, we check both, extfrag > extfrag_high and
> > compaction_suitable(zone). This allows kcomapctd thread to stays
> > inactive even if extfrag thresholds are not met.
>
> How does it translate to e.g. the number of free pages of order?
>

Watermarks are checked as follows (see: __compaction_suitable)

watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
low_wmark_pages(zone) : min_wmark_pages(zone);

If a zone does not satisfy this watermark, we don't start compaction.

> > This patch is largely based on ideas from Michal Hocko posted here:
> > https://lore.kernel.org/linux-
> mm/20161230131412.GI13301@xxxxxxxxxxxxxx
> > /
> >
> > Testing done (on x86):
> > - Set /sys/kernel/mm/compaction/order-9/extfrag_{low,high} = {25, 30}
> > respectively.
> > - Use a test program to fragment memory: the program allocates all
> > memory and then for each 2M aligned section, frees 3/4 of base pages
> > using munmap.
> > - kcompactd0 detects fragmentation for order-9 > extfrag_high and
> > starts compaction till extfrag < extfrag_low for order-9.
> >
> > The patch has plenty of rough edges but posting it early to see if I'm
> > going in the right direction and to get some early feedback.
>
> That's a lot of control knobs - how is an admin supposed to tune them to
> their needs?


I expect that a workload would typically care for just a particular page order
(say, order-9 on x86 for the default hugepage size). An admin can set
extfrag_{low,high} for just that order (say, low=25, high=30) and leave these
thresholds to their default value (low=100, high=100) for all other orders.

Thanks,
Nitin


>
> (keeping the rest for reference)
>
> > Signed-off-by: Nitin Gupta <nigupta@xxxxxxxxxx>
> > ---
> > include/linux/compaction.h | 12 ++
> > mm/compaction.c | 250 ++++++++++++++++++++++++++++++-------
> > mm/vmstat.c | 12 ++
> > 3 files changed, 228 insertions(+), 46 deletions(-)
> >
> > diff --git a/include/linux/compaction.h b/include/linux/compaction.h
> > index 9569e7c786d3..26bfedbbc64b 100644
> > --- a/include/linux/compaction.h
> > +++ b/include/linux/compaction.h
> > @@ -60,6 +60,17 @@ enum compact_result {
> >
> > struct alloc_context; /* in mm/internal.h */
> >
> > +// "order-%d"
> > +#define COMPACTION_ORDER_STATE_NAME_LEN 16 // Per-order
> compaction
> > +state struct compaction_order_state {
> > + unsigned int order;
> > + unsigned int extfrag_low;
> > + unsigned int extfrag_high;
> > + unsigned int extfrag_curr;
> > + char name[COMPACTION_ORDER_STATE_NAME_LEN];
> > +};
> > +
> > /*
> > * Number of free order-0 pages that should be available above given
> watermark
> > * to make sure compaction has reasonable chance of not running out
> > of free @@ -90,6 +101,7 @@ extern int sysctl_compaction_handler(struct
> > ctl_table *table, int write, extern int sysctl_extfrag_threshold;
> > extern int sysctl_compact_unevictable_allowed;
> >
> > +extern int extfrag_for_order(struct zone *zone, unsigned int order);
> > extern int fragmentation_index(struct zone *zone, unsigned int
> > order); extern enum compact_result try_to_compact_pages(gfp_t
> gfp_mask,
> > unsigned int order, unsigned int alloc_flags, diff --git
> > a/mm/compaction.c b/mm/compaction.c index
> 952dc2fb24e5..21866b1ad249
> > 100644
> > --- a/mm/compaction.c
> > +++ b/mm/compaction.c
> > @@ -25,6 +25,10 @@
> > #include <linux/psi.h>
> > #include "internal.h"
> >
> > +#ifdef CONFIG_COMPACTION
> > +struct compaction_order_state
> compaction_order_states[MAX_ORDER+1];
> > +#endif
> > +
> > #ifdef CONFIG_COMPACTION
> > static inline void count_compact_event(enum vm_event_item item) {
> @@
> > -1846,6 +1850,49 @@ static inline bool is_via_compact_memory(int order)
> > return order == -1;
> > }
> >
> > +static int extfrag_wmark_high(struct zone *zone) {
> > + int order;
> > +
> > + for (order = 1; order <= MAX_ORDER; order++) {
> > + int extfrag = extfrag_for_order(zone, order);
> > + int threshold =
> compaction_order_states[order].extfrag_high;
> > +
> > + if (extfrag > threshold)
> > + return order;
> > + }
> > + return 0;
> > +}
> > +
> > +static bool node_should_compact(pg_data_t *pgdat) {
> > + struct zone *zone;
> > +
> > + for_each_populated_zone(zone) {
> > + int order = extfrag_wmark_high(zone);
> > +
> > + if (order && compaction_suitable(zone, order,
> > + 0, zone_idx(zone)) == COMPACT_CONTINUE)
> {
> > + return true;
> > + }
> > + }
> > + return false;
> > +}
> > +
> > +static int extfrag_wmark_low(struct zone *zone) {
> > + int order;
> > +
> > + for (order = 1; order <= MAX_ORDER; order++) {
> > + int extfrag = extfrag_for_order(zone, order);
> > + int threshold = compaction_order_states[order].extfrag_low;
> > +
> > + if (extfrag > threshold)
> > + return order;
> > + }
> > + return 0;
> > +}
> > +
> > static enum compact_result __compact_finished(struct compact_control
> > *cc) {
> > unsigned int order;
> > @@ -1872,7 +1919,7 @@ static enum compact_result
> __compact_finished(struct compact_control *cc)
> > return COMPACT_PARTIAL_SKIPPED;
> > }
> >
> > - if (is_via_compact_memory(cc->order))
> > + if (extfrag_wmark_low(cc->zone))
> > return COMPACT_CONTINUE;
> >
> > /*
> > @@ -1962,18 +2009,6 @@ static enum compact_result
> > __compaction_suitable(struct zone *zone, int order, {
> > unsigned long watermark;
> >
> > - if (is_via_compact_memory(order))
> > - return COMPACT_CONTINUE;
> > -
> > - watermark = wmark_pages(zone, alloc_flags &
> ALLOC_WMARK_MASK);
> > - /*
> > - * If watermarks for high-order allocation are already met, there
> > - * should be no need for compaction at all.
> > - */
> > - if (zone_watermark_ok(zone, order, watermark, classzone_idx,
> > - alloc_flags))
> > - return COMPACT_SUCCESS;
> > -
> > /*
> > * Watermarks for order-0 must be met for compaction to be able to
> > * isolate free pages for migration targets. This means that the @@
> > -2003,31 +2038,9 @@ enum compact_result compaction_suitable(struct
> zone *zone, int order,
> > int classzone_idx)
> > {
> > enum compact_result ret;
> > - int fragindex;
> >
> > ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
> > zone_page_state(zone, NR_FREE_PAGES));
> > - /*
> > - * fragmentation index determines if allocation failures are due to
> > - * low memory or external fragmentation
> > - *
> > - * index of -1000 would imply allocations might succeed depending
> on
> > - * watermarks, but we already failed the high-order watermark check
> > - * index towards 0 implies failure is due to lack of memory
> > - * index towards 1000 implies failure is due to fragmentation
> > - *
> > - * Only compact if a failure would be due to fragmentation. Also
> > - * ignore fragindex for non-costly orders where the alternative to
> > - * a successful reclaim/compaction is OOM. Fragindex and the
> > - * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
> > - * excessive compaction for costly orders, but it should not be at the
> > - * expense of system stability.
> > - */
> > - if (ret == COMPACT_CONTINUE && (order >
> PAGE_ALLOC_COSTLY_ORDER)) {
> > - fragindex = fragmentation_index(zone, order);
> > - if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
> > - ret = COMPACT_NOT_SUITABLE_ZONE;
> > - }
> >
> > trace_mm_compaction_suitable(zone, order, ret);
> > if (ret == COMPACT_NOT_SUITABLE_ZONE) @@ -2416,7 +2429,6
> @@ static
> > void compact_node(int nid)
> > .gfp_mask = GFP_KERNEL,
> > };
> >
> > -
> > for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
> >
> > zone = &pgdat->node_zones[zoneid];
> > @@ -2493,9 +2505,149 @@ void compaction_unregister_node(struct
> node
> > *node) } #endif /* CONFIG_SYSFS && CONFIG_NUMA */
> >
> > +#ifdef CONFIG_SYSFS
> > +
> > +#define COMPACTION_ATTR_RO(_name) \
> > + static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
> > +
> > +#define COMPACTION_ATTR(_name) \
> > + static struct kobj_attribute _name##_attr = \
> > + __ATTR(_name, 0644, _name##_show, _name##_store)
> > +
> > +static struct kobject *compaction_kobj; static struct kobject
> > +*compaction_order_kobjs[MAX_ORDER];
> > +
> > +static struct compaction_order_state *kobj_to_compaction_order_state(
> > + struct kobject *kobj)
> > +{
> > + int i;
> > +
> > + for (i = 1; i <= MAX_ORDER; i++) {
> > + if (compaction_order_kobjs[i] == kobj)
> > + return &compaction_order_states[i];
> > + }
> > +
> > + return NULL;
> > +}
> > +
> > +static ssize_t extfrag_store_common(bool is_low, struct kobject *kobj,
> > + struct kobj_attribute *attr, const char *buf, size_t count) {
> > + int err;
> > + unsigned long input;
> > + struct compaction_order_state *c =
> > +kobj_to_compaction_order_state(kobj);
> > +
> > + err = kstrtoul(buf, 10, &input);
> > + if (err)
> > + return err;
> > + if (input > 100)
> > + return -EINVAL;
> > +
> > + if (is_low)
> > + c->extfrag_low = input;
> > + else
> > + c->extfrag_high = input;
> > +
> > + return count;
> > +}
> > +
> > +static ssize_t extfrag_low_show(struct kobject *kobj,
> > + struct kobj_attribute *attr, char *buf) {
> > + struct compaction_order_state *c =
> > +kobj_to_compaction_order_state(kobj);
> > +
> > + return sprintf(buf, "%u\n", c->extfrag_low); }
> > +
> > +static ssize_t extfrag_low_store(struct kobject *kobj,
> > + struct kobj_attribute *attr, const char *buf, size_t count) {
> > + return extfrag_store_common(true, kobj, attr, buf, count); }
> > +COMPACTION_ATTR(extfrag_low);
> > +
> > +static ssize_t extfrag_high_show(struct kobject *kobj,
> > + struct kobj_attribute *attr, char *buf)
> {
> > + struct compaction_order_state *c =
> > +kobj_to_compaction_order_state(kobj);
> > +
> > + return sprintf(buf, "%u\n", c->extfrag_high); }
> > +
> > +static ssize_t extfrag_high_store(struct kobject *kobj,
> > + struct kobj_attribute *attr, const char *buf, size_t count) {
> > + return extfrag_store_common(false, kobj, attr, buf, count); }
> > +COMPACTION_ATTR(extfrag_high);
> > +
> > +static struct attribute *compaction_order_attrs[] = {
> > + &extfrag_low_attr.attr,
> > + &extfrag_high_attr.attr,
> > + NULL,
> > +};
> > +
> > +static const struct attribute_group compaction_order_attr_group = {
> > + .attrs = compaction_order_attrs,
> > +};
> > +
> > +static int compaction_sysfs_add_order(struct compaction_order_state *c,
> > + struct kobject *parent, struct kobject **compaction_order_kobjs,
> > + const struct attribute_group *compaction_order_attr_group) {
> > + int retval;
> > +
> > + compaction_order_kobjs[c->order] =
> > + kobject_create_and_add(c->name, parent);
> > + if (!compaction_order_kobjs[c->order])
> > + return -ENOMEM;
> > +
> > + retval = sysfs_create_group(compaction_order_kobjs[c->order],
> > + compaction_order_attr_group);
> > + if (retval)
> > + kobject_put(compaction_order_kobjs[c->order]);
> > +
> > + return retval;
> > +}
> > +
> > +static void __init compaction_sysfs_init(void) {
> > + struct compaction_order_state *c;
> > + int i, err;
> > +
> > + compaction_kobj = kobject_create_and_add("compaction",
> mm_kobj);
> > + if (!compaction_kobj)
> > + return;
> > +
> > + for (i = 1; i <= MAX_ORDER; i++) {
> > + c = &compaction_order_states[i];
> > + err = compaction_sysfs_add_order(c, compaction_kobj,
> > + compaction_order_kobjs,
> > + &compaction_order_attr_group);
> > + if (err)
> > + pr_err("compaction: Unable to add state %s", c-
> >name);
> > + }
> > +}
> > +
> > +static void __init compaction_init_order_states(void)
> > +{
> > + int i;
> > +
> > + for (i = 0; i <= MAX_ORDER; i++) {
> > + struct compaction_order_state *c =
> &compaction_order_states[i];
> > +
> > + c->order = i;
> > + c->extfrag_low = 100;
> > + c->extfrag_high = 100;
> > + snprintf(c->name, COMPACTION_ORDER_STATE_NAME_LEN,
> > + "order-%d", i);
> > + }
> > +}
> > +#endif
> > +
> > static inline bool kcompactd_work_requested(pg_data_t *pgdat) {
> > - return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
> > + return kthread_should_stop() || node_should_compact(pgdat);
> > }
> >
> > static bool kcompactd_node_suitable(pg_data_t *pgdat) @@ -2527,15
> > +2679,16 @@ static void kcompactd_do_work(pg_data_t *pgdat)
> > int zoneid;
> > struct zone *zone;
> > struct compact_control cc = {
> > - .order = pgdat->kcompactd_max_order,
> > - .search_order = pgdat->kcompactd_max_order,
> > + .order = -1,
> > .total_migrate_scanned = 0,
> > .total_free_scanned = 0,
> > - .classzone_idx = pgdat->kcompactd_classzone_idx,
> > - .mode = MIGRATE_SYNC_LIGHT,
> > - .ignore_skip_hint = false,
> > + .mode = MIGRATE_SYNC,
> > + .ignore_skip_hint = true,
> > + .whole_zone = false,
> > .gfp_mask = GFP_KERNEL,
> > + .classzone_idx = MAX_NR_ZONES - 1,
> > };
> > +
> > trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
> > cc.classzone_idx);
> > count_compact_event(KCOMPACTD_WAKE);
> > @@ -2565,7 +2718,6 @@ static void kcompactd_do_work(pg_data_t
> *pgdat)
> > if (kthread_should_stop())
> > return;
> > status = compact_zone(&cc, NULL);
> > -
> > if (status == COMPACT_SUCCESS) {
> > compaction_defer_reset(zone, cc.order, false);
> > } else if (status == COMPACT_PARTIAL_SKIPPED || status ==
> > COMPACT_COMPLETE) { @@ -2650,11 +2802,14 @@ static int
> kcompactd(void *p)
> > pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
> >
> > while (!kthread_should_stop()) {
> > - unsigned long pflags;
> > + unsigned long ret, pflags;
> >
> > trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
> > - wait_event_freezable(pgdat->kcompactd_wait,
> > - kcompactd_work_requested(pgdat));
> > + ret = wait_event_freezable_timeout(pgdat-
> >kcompactd_wait,
> > + kcompactd_work_requested(pgdat),
> > + msecs_to_jiffies(5000));
> > + if (!ret)
> > + continue;
> >
> > psi_memstall_enter(&pflags);
> > kcompactd_do_work(pgdat);
> > @@ -2735,6 +2890,9 @@ static int __init kcompactd_init(void)
> > return ret;
> > }
> >
> > + compaction_init_order_states();
> > + compaction_sysfs_init();
> > +
> > for_each_node_state(nid, N_MEMORY)
> > kcompactd_run(nid);
> > return 0;
> > diff --git a/mm/vmstat.c b/mm/vmstat.c index
> > fd7e16ca6996..e9090a5595d1 100644
> > --- a/mm/vmstat.c
> > +++ b/mm/vmstat.c
> > @@ -1074,6 +1074,18 @@ static int __fragmentation_index(unsigned int
> order, struct contig_page_info *in
> > return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL,
> > requested))), info->free_blocks_total); }
> >
> > +int extfrag_for_order(struct zone *zone, unsigned int order) {
> > + struct contig_page_info info;
> > +
> > + fill_contig_page_info(zone, order, &info);
> > + if (info.free_pages == 0)
> > + return 0;
> > +
> > + return (info.free_pages - (info.free_blocks_suitable << order)) * 100
> > + / info.free_pages;
> > +}
> > +
> > /* Same as __fragmentation index but allocs contig_page_info on stack
> > */ int fragmentation_index(struct zone *zone, unsigned int order) {
> >