[PATCH 5.3 136/140] selftests/powerpc: Add test case for tlbie vs mtpidr ordering issue
From: Greg Kroah-Hartman
Date: Fri Nov 08 2019 - 14:10:47 EST
From: Aneesh Kumar K.V <aneesh.kumar@xxxxxxxxxxxxx>
commit 93cad5f789951eaa27c3392b15294b4e51253944 upstream.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@xxxxxxxxxxxxx>
[mpe: Some minor fixes to make it build]
Signed-off-by: Michael Ellerman <mpe@xxxxxxxxxxxxxx>
Link: https://lore.kernel.org/r/20190924035254.24612-4-aneesh.kumar@xxxxxxxxxxxxx
Signed-off-by: Sandipan Das <sandipan@xxxxxxxxxxxxx>
Signed-off-by: Greg Kroah-Hartman <gregkh@xxxxxxxxxxxxxxxxxxx>
---
tools/testing/selftests/powerpc/mm/Makefile | 2
tools/testing/selftests/powerpc/mm/tlbie_test.c | 734 ++++++++++++++++++++++++
2 files changed, 736 insertions(+)
--- a/tools/testing/selftests/powerpc/mm/Makefile
+++ b/tools/testing/selftests/powerpc/mm/Makefile
@@ -4,6 +4,7 @@ noarg:
TEST_GEN_PROGS := hugetlb_vs_thp_test subpage_prot prot_sao segv_errors wild_bctr \
large_vm_fork_separation
+TEST_GEN_PROGS_EXTENDED := tlbie_test
TEST_GEN_FILES := tempfile
top_srcdir = ../../../../..
@@ -19,3 +20,4 @@ $(OUTPUT)/large_vm_fork_separation: CFLA
$(OUTPUT)/tempfile:
dd if=/dev/zero of=$@ bs=64k count=1
+$(OUTPUT)/tlbie_test: LDLIBS += -lpthread
--- /dev/null
+++ b/tools/testing/selftests/powerpc/mm/tlbie_test.c
@@ -0,0 +1,734 @@
+// SPDX-License-Identifier: GPL-2.0
+
+/*
+ * Copyright 2019, Nick Piggin, Gautham R. Shenoy, Aneesh Kumar K.V, IBM Corp.
+ */
+
+/*
+ *
+ * Test tlbie/mtpidr race. We have 4 threads doing flush/load/compare/store
+ * sequence in a loop. The same threads also rung a context switch task
+ * that does sched_yield() in loop.
+ *
+ * The snapshot thread mark the mmap area PROT_READ in between, make a copy
+ * and copy it back to the original area. This helps us to detect if any
+ * store continued to happen after we marked the memory PROT_READ.
+ */
+
+#define _GNU_SOURCE
+#include <stdio.h>
+#include <sys/mman.h>
+#include <sys/types.h>
+#include <sys/wait.h>
+#include <sys/ipc.h>
+#include <sys/shm.h>
+#include <sys/stat.h>
+#include <sys/time.h>
+#include <linux/futex.h>
+#include <unistd.h>
+#include <asm/unistd.h>
+#include <string.h>
+#include <stdlib.h>
+#include <fcntl.h>
+#include <sched.h>
+#include <time.h>
+#include <stdarg.h>
+#include <sched.h>
+#include <pthread.h>
+#include <signal.h>
+#include <sys/prctl.h>
+
+static inline void dcbf(volatile unsigned int *addr)
+{
+ __asm__ __volatile__ ("dcbf %y0; sync" : : "Z"(*(unsigned char *)addr) : "memory");
+}
+
+static void err_msg(char *msg)
+{
+
+ time_t now;
+ time(&now);
+ printf("=================================\n");
+ printf(" Error: %s\n", msg);
+ printf(" %s", ctime(&now));
+ printf("=================================\n");
+ exit(1);
+}
+
+static char *map1;
+static char *map2;
+static pid_t rim_process_pid;
+
+/*
+ * A "rim-sequence" is defined to be the sequence of the following
+ * operations performed on a memory word:
+ * 1) FLUSH the contents of that word.
+ * 2) LOAD the contents of that word.
+ * 3) COMPARE the contents of that word with the content that was
+ * previously stored at that word
+ * 4) STORE new content into that word.
+ *
+ * The threads in this test that perform the rim-sequence are termed
+ * as rim_threads.
+ */
+
+/*
+ * A "corruption" is defined to be the failed COMPARE operation in a
+ * rim-sequence.
+ *
+ * A rim_thread that detects a corruption informs about it to all the
+ * other rim_threads, and the mem_snapshot thread.
+ */
+static volatile unsigned int corruption_found;
+
+/*
+ * This defines the maximum number of rim_threads in this test.
+ *
+ * The THREAD_ID_BITS denote the number of bits required
+ * to represent the thread_ids [0..MAX_THREADS - 1].
+ * We are being a bit paranoid here and set it to 8 bits,
+ * though 6 bits suffice.
+ *
+ */
+#define MAX_THREADS 64
+#define THREAD_ID_BITS 8
+#define THREAD_ID_MASK ((1 << THREAD_ID_BITS) - 1)
+static unsigned int rim_thread_ids[MAX_THREADS];
+static pthread_t rim_threads[MAX_THREADS];
+
+
+/*
+ * Each rim_thread works on an exclusive "chunk" of size
+ * RIM_CHUNK_SIZE.
+ *
+ * The ith rim_thread works on the ith chunk.
+ *
+ * The ith chunk begins at
+ * map1 + (i * RIM_CHUNK_SIZE)
+ */
+#define RIM_CHUNK_SIZE 1024
+#define BITS_PER_BYTE 8
+#define WORD_SIZE (sizeof(unsigned int))
+#define WORD_BITS (WORD_SIZE * BITS_PER_BYTE)
+#define WORDS_PER_CHUNK (RIM_CHUNK_SIZE/WORD_SIZE)
+
+static inline char *compute_chunk_start_addr(unsigned int thread_id)
+{
+ char *chunk_start;
+
+ chunk_start = (char *)((unsigned long)map1 +
+ (thread_id * RIM_CHUNK_SIZE));
+
+ return chunk_start;
+}
+
+/*
+ * The "word-offset" of a word-aligned address inside a chunk, is
+ * defined to be the number of words that precede the address in that
+ * chunk.
+ *
+ * WORD_OFFSET_BITS denote the number of bits required to represent
+ * the word-offsets of all the word-aligned addresses of a chunk.
+ */
+#define WORD_OFFSET_BITS (__builtin_ctz(WORDS_PER_CHUNK))
+#define WORD_OFFSET_MASK ((1 << WORD_OFFSET_BITS) - 1)
+
+static inline unsigned int compute_word_offset(char *start, unsigned int *addr)
+{
+ unsigned int delta_bytes, ret;
+ delta_bytes = (unsigned long)addr - (unsigned long)start;
+
+ ret = delta_bytes/WORD_SIZE;
+
+ return ret;
+}
+
+/*
+ * A "sweep" is defined to be the sequential execution of the
+ * rim-sequence by a rim_thread on its chunk one word at a time,
+ * starting from the first word of its chunk and ending with the last
+ * word of its chunk.
+ *
+ * Each sweep of a rim_thread is uniquely identified by a sweep_id.
+ * SWEEP_ID_BITS denote the number of bits required to represent
+ * the sweep_ids of rim_threads.
+ *
+ * As to why SWEEP_ID_BITS are computed as a function of THREAD_ID_BITS,
+ * WORD_OFFSET_BITS, and WORD_BITS, see the "store-pattern" below.
+ */
+#define SWEEP_ID_BITS (WORD_BITS - (THREAD_ID_BITS + WORD_OFFSET_BITS))
+#define SWEEP_ID_MASK ((1 << SWEEP_ID_BITS) - 1)
+
+/*
+ * A "store-pattern" is the word-pattern that is stored into a word
+ * location in the 4)STORE step of the rim-sequence.
+ *
+ * In the store-pattern, we shall encode:
+ *
+ * - The thread-id of the rim_thread performing the store
+ * (The most significant THREAD_ID_BITS)
+ *
+ * - The word-offset of the address into which the store is being
+ * performed (The next WORD_OFFSET_BITS)
+ *
+ * - The sweep_id of the current sweep in which the store is
+ * being performed. (The lower SWEEP_ID_BITS)
+ *
+ * Store Pattern: 32 bits
+ * |------------------|--------------------|---------------------------------|
+ * | Thread id | Word offset | sweep_id |
+ * |------------------|--------------------|---------------------------------|
+ * THREAD_ID_BITS WORD_OFFSET_BITS SWEEP_ID_BITS
+ *
+ * In the store pattern, the (Thread-id + Word-offset) uniquely identify the
+ * address to which the store is being performed i.e,
+ * address == map1 +
+ * (Thread-id * RIM_CHUNK_SIZE) + (Word-offset * WORD_SIZE)
+ *
+ * And the sweep_id in the store pattern identifies the time when the
+ * store was performed by the rim_thread.
+ *
+ * We shall use this property in the 3)COMPARE step of the
+ * rim-sequence.
+ */
+#define SWEEP_ID_SHIFT 0
+#define WORD_OFFSET_SHIFT (SWEEP_ID_BITS)
+#define THREAD_ID_SHIFT (WORD_OFFSET_BITS + SWEEP_ID_BITS)
+
+/*
+ * Compute the store pattern for a given thread with id @tid, at
+ * location @addr in the sweep identified by @sweep_id
+ */
+static inline unsigned int compute_store_pattern(unsigned int tid,
+ unsigned int *addr,
+ unsigned int sweep_id)
+{
+ unsigned int ret = 0;
+ char *start = compute_chunk_start_addr(tid);
+ unsigned int word_offset = compute_word_offset(start, addr);
+
+ ret += (tid & THREAD_ID_MASK) << THREAD_ID_SHIFT;
+ ret += (word_offset & WORD_OFFSET_MASK) << WORD_OFFSET_SHIFT;
+ ret += (sweep_id & SWEEP_ID_MASK) << SWEEP_ID_SHIFT;
+ return ret;
+}
+
+/* Extract the thread-id from the given store-pattern */
+static inline unsigned int extract_tid(unsigned int pattern)
+{
+ unsigned int ret;
+
+ ret = (pattern >> THREAD_ID_SHIFT) & THREAD_ID_MASK;
+ return ret;
+}
+
+/* Extract the word-offset from the given store-pattern */
+static inline unsigned int extract_word_offset(unsigned int pattern)
+{
+ unsigned int ret;
+
+ ret = (pattern >> WORD_OFFSET_SHIFT) & WORD_OFFSET_MASK;
+
+ return ret;
+}
+
+/* Extract the sweep-id from the given store-pattern */
+static inline unsigned int extract_sweep_id(unsigned int pattern)
+
+{
+ unsigned int ret;
+
+ ret = (pattern >> SWEEP_ID_SHIFT) & SWEEP_ID_MASK;
+
+ return ret;
+}
+
+/************************************************************
+ * *
+ * Logging the output of the verification *
+ * *
+ ************************************************************/
+#define LOGDIR_NAME_SIZE 100
+static char logdir[LOGDIR_NAME_SIZE];
+
+static FILE *fp[MAX_THREADS];
+static const char logfilename[] ="Thread-%02d-Chunk";
+
+static inline void start_verification_log(unsigned int tid,
+ unsigned int *addr,
+ unsigned int cur_sweep_id,
+ unsigned int prev_sweep_id)
+{
+ FILE *f;
+ char logfile[30];
+ char path[LOGDIR_NAME_SIZE + 30];
+ char separator[2] = "/";
+ char *chunk_start = compute_chunk_start_addr(tid);
+ unsigned int size = RIM_CHUNK_SIZE;
+
+ sprintf(logfile, logfilename, tid);
+ strcpy(path, logdir);
+ strcat(path, separator);
+ strcat(path, logfile);
+ f = fopen(path, "w");
+
+ if (!f) {
+ err_msg("Unable to create logfile\n");
+ }
+
+ fp[tid] = f;
+
+ fprintf(f, "----------------------------------------------------------\n");
+ fprintf(f, "PID = %d\n", rim_process_pid);
+ fprintf(f, "Thread id = %02d\n", tid);
+ fprintf(f, "Chunk Start Addr = 0x%016lx\n", (unsigned long)chunk_start);
+ fprintf(f, "Chunk Size = %d\n", size);
+ fprintf(f, "Next Store Addr = 0x%016lx\n", (unsigned long)addr);
+ fprintf(f, "Current sweep-id = 0x%08x\n", cur_sweep_id);
+ fprintf(f, "Previous sweep-id = 0x%08x\n", prev_sweep_id);
+ fprintf(f, "----------------------------------------------------------\n");
+}
+
+static inline void log_anamoly(unsigned int tid, unsigned int *addr,
+ unsigned int expected, unsigned int observed)
+{
+ FILE *f = fp[tid];
+
+ fprintf(f, "Thread %02d: Addr 0x%lx: Expected 0x%x, Observed 0x%x\n",
+ tid, (unsigned long)addr, expected, observed);
+ fprintf(f, "Thread %02d: Expected Thread id = %02d\n", tid, extract_tid(expected));
+ fprintf(f, "Thread %02d: Observed Thread id = %02d\n", tid, extract_tid(observed));
+ fprintf(f, "Thread %02d: Expected Word offset = %03d\n", tid, extract_word_offset(expected));
+ fprintf(f, "Thread %02d: Observed Word offset = %03d\n", tid, extract_word_offset(observed));
+ fprintf(f, "Thread %02d: Expected sweep-id = 0x%x\n", tid, extract_sweep_id(expected));
+ fprintf(f, "Thread %02d: Observed sweep-id = 0x%x\n", tid, extract_sweep_id(observed));
+ fprintf(f, "----------------------------------------------------------\n");
+}
+
+static inline void end_verification_log(unsigned int tid, unsigned nr_anamolies)
+{
+ FILE *f = fp[tid];
+ char logfile[30];
+ char path[LOGDIR_NAME_SIZE + 30];
+ char separator[] = "/";
+
+ fclose(f);
+
+ if (nr_anamolies == 0) {
+ remove(path);
+ return;
+ }
+
+ sprintf(logfile, logfilename, tid);
+ strcpy(path, logdir);
+ strcat(path, separator);
+ strcat(path, logfile);
+
+ printf("Thread %02d chunk has %d corrupted words. For details check %s\n",
+ tid, nr_anamolies, path);
+}
+
+/*
+ * When a COMPARE step of a rim-sequence fails, the rim_thread informs
+ * everyone else via the shared_memory pointed to by
+ * corruption_found variable. On seeing this, every thread verifies the
+ * content of its chunk as follows.
+ *
+ * Suppose a thread identified with @tid was about to store (but not
+ * yet stored) to @next_store_addr in its current sweep identified
+ * @cur_sweep_id. Let @prev_sweep_id indicate the previous sweep_id.
+ *
+ * This implies that for all the addresses @addr < @next_store_addr,
+ * Thread @tid has already performed a store as part of its current
+ * sweep. Hence we expect the content of such @addr to be:
+ * |-------------------------------------------------|
+ * | tid | word_offset(addr) | cur_sweep_id |
+ * |-------------------------------------------------|
+ *
+ * Since Thread @tid is yet to perform stores on address
+ * @next_store_addr and above, we expect the content of such an
+ * address @addr to be:
+ * |-------------------------------------------------|
+ * | tid | word_offset(addr) | prev_sweep_id |
+ * |-------------------------------------------------|
+ *
+ * The verifier function @verify_chunk does this verification and logs
+ * any anamolies that it finds.
+ */
+static void verify_chunk(unsigned int tid, unsigned int *next_store_addr,
+ unsigned int cur_sweep_id,
+ unsigned int prev_sweep_id)
+{
+ unsigned int *iter_ptr;
+ unsigned int size = RIM_CHUNK_SIZE;
+ unsigned int expected;
+ unsigned int observed;
+ char *chunk_start = compute_chunk_start_addr(tid);
+
+ int nr_anamolies = 0;
+
+ start_verification_log(tid, next_store_addr,
+ cur_sweep_id, prev_sweep_id);
+
+ for (iter_ptr = (unsigned int *)chunk_start;
+ (unsigned long)iter_ptr < (unsigned long)chunk_start + size;
+ iter_ptr++) {
+ unsigned int expected_sweep_id;
+
+ if (iter_ptr < next_store_addr) {
+ expected_sweep_id = cur_sweep_id;
+ } else {
+ expected_sweep_id = prev_sweep_id;
+ }
+
+ expected = compute_store_pattern(tid, iter_ptr, expected_sweep_id);
+
+ dcbf((volatile unsigned int*)iter_ptr); //Flush before reading
+ observed = *iter_ptr;
+
+ if (observed != expected) {
+ nr_anamolies++;
+ log_anamoly(tid, iter_ptr, expected, observed);
+ }
+ }
+
+ end_verification_log(tid, nr_anamolies);
+}
+
+static void set_pthread_cpu(pthread_t th, int cpu)
+{
+ cpu_set_t run_cpu_mask;
+ struct sched_param param;
+
+ CPU_ZERO(&run_cpu_mask);
+ CPU_SET(cpu, &run_cpu_mask);
+ pthread_setaffinity_np(th, sizeof(cpu_set_t), &run_cpu_mask);
+
+ param.sched_priority = 1;
+ if (0 && sched_setscheduler(0, SCHED_FIFO, ¶m) == -1) {
+ /* haven't reproduced with this setting, it kills random preemption which may be a factor */
+ fprintf(stderr, "could not set SCHED_FIFO, run as root?\n");
+ }
+}
+
+static void set_mycpu(int cpu)
+{
+ cpu_set_t run_cpu_mask;
+ struct sched_param param;
+
+ CPU_ZERO(&run_cpu_mask);
+ CPU_SET(cpu, &run_cpu_mask);
+ sched_setaffinity(0, sizeof(cpu_set_t), &run_cpu_mask);
+
+ param.sched_priority = 1;
+ if (0 && sched_setscheduler(0, SCHED_FIFO, ¶m) == -1) {
+ fprintf(stderr, "could not set SCHED_FIFO, run as root?\n");
+ }
+}
+
+static volatile int segv_wait;
+
+static void segv_handler(int signo, siginfo_t *info, void *extra)
+{
+ while (segv_wait) {
+ sched_yield();
+ }
+
+}
+
+static void set_segv_handler(void)
+{
+ struct sigaction sa;
+
+ sa.sa_flags = SA_SIGINFO;
+ sa.sa_sigaction = segv_handler;
+
+ if (sigaction(SIGSEGV, &sa, NULL) == -1) {
+ perror("sigaction");
+ exit(EXIT_FAILURE);
+ }
+}
+
+int timeout = 0;
+/*
+ * This function is executed by every rim_thread.
+ *
+ * This function performs sweeps over the exclusive chunks of the
+ * rim_threads executing the rim-sequence one word at a time.
+ */
+static void *rim_fn(void *arg)
+{
+ unsigned int tid = *((unsigned int *)arg);
+
+ int size = RIM_CHUNK_SIZE;
+ char *chunk_start = compute_chunk_start_addr(tid);
+
+ unsigned int prev_sweep_id;
+ unsigned int cur_sweep_id = 0;
+
+ /* word access */
+ unsigned int pattern = cur_sweep_id;
+ unsigned int *pattern_ptr = &pattern;
+ unsigned int *w_ptr, read_data;
+
+ set_segv_handler();
+
+ /*
+ * Let us initialize the chunk:
+ *
+ * Each word-aligned address addr in the chunk,
+ * is initialized to :
+ * |-------------------------------------------------|
+ * | tid | word_offset(addr) | 0 |
+ * |-------------------------------------------------|
+ */
+ for (w_ptr = (unsigned int *)chunk_start;
+ (unsigned long)w_ptr < (unsigned long)(chunk_start) + size;
+ w_ptr++) {
+
+ *pattern_ptr = compute_store_pattern(tid, w_ptr, cur_sweep_id);
+ *w_ptr = *pattern_ptr;
+ }
+
+ while (!corruption_found && !timeout) {
+ prev_sweep_id = cur_sweep_id;
+ cur_sweep_id = cur_sweep_id + 1;
+
+ for (w_ptr = (unsigned int *)chunk_start;
+ (unsigned long)w_ptr < (unsigned long)(chunk_start) + size;
+ w_ptr++) {
+ unsigned int old_pattern;
+
+ /*
+ * Compute the pattern that we would have
+ * stored at this location in the previous
+ * sweep.
+ */
+ old_pattern = compute_store_pattern(tid, w_ptr, prev_sweep_id);
+
+ /*
+ * FLUSH:Ensure that we flush the contents of
+ * the cache before loading
+ */
+ dcbf((volatile unsigned int*)w_ptr); //Flush
+
+ /* LOAD: Read the value */
+ read_data = *w_ptr; //Load
+
+ /*
+ * COMPARE: Is it the same as what we had stored
+ * in the previous sweep ? It better be!
+ */
+ if (read_data != old_pattern) {
+ /* No it isn't! Tell everyone */
+ corruption_found = 1;
+ }
+
+ /*
+ * Before performing a store, let us check if
+ * any rim_thread has found a corruption.
+ */
+ if (corruption_found || timeout) {
+ /*
+ * Yes. Someone (including us!) has found
+ * a corruption :(
+ *
+ * Let us verify that our chunk is
+ * correct.
+ */
+ /* But first, let us allow the dust to settle down! */
+ verify_chunk(tid, w_ptr, cur_sweep_id, prev_sweep_id);
+
+ return 0;
+ }
+
+ /*
+ * Compute the new pattern that we are going
+ * to write to this location
+ */
+ *pattern_ptr = compute_store_pattern(tid, w_ptr, cur_sweep_id);
+
+ /*
+ * STORE: Now let us write this pattern into
+ * the location
+ */
+ *w_ptr = *pattern_ptr;
+ }
+ }
+
+ return NULL;
+}
+
+
+static unsigned long start_cpu = 0;
+static unsigned long nrthreads = 4;
+
+static pthread_t mem_snapshot_thread;
+
+static void *mem_snapshot_fn(void *arg)
+{
+ int page_size = getpagesize();
+ size_t size = page_size;
+ void *tmp = malloc(size);
+
+ while (!corruption_found && !timeout) {
+ /* Stop memory migration once corruption is found */
+ segv_wait = 1;
+
+ mprotect(map1, size, PROT_READ);
+
+ /*
+ * Load from the working alias (map1). Loading from map2
+ * also fails.
+ */
+ memcpy(tmp, map1, size);
+
+ /*
+ * Stores must go via map2 which has write permissions, but
+ * the corrupted data tends to be seen in the snapshot buffer,
+ * so corruption does not appear to be introduced at the
+ * copy-back via map2 alias here.
+ */
+ memcpy(map2, tmp, size);
+ /*
+ * Before releasing other threads, must ensure the copy
+ * back to
+ */
+ asm volatile("sync" ::: "memory");
+ mprotect(map1, size, PROT_READ|PROT_WRITE);
+ asm volatile("sync" ::: "memory");
+ segv_wait = 0;
+
+ usleep(1); /* This value makes a big difference */
+ }
+
+ return 0;
+}
+
+void alrm_sighandler(int sig)
+{
+ timeout = 1;
+}
+
+int main(int argc, char *argv[])
+{
+ int c;
+ int page_size = getpagesize();
+ time_t now;
+ int i, dir_error;
+ pthread_attr_t attr;
+ key_t shm_key = (key_t) getpid();
+ int shmid, run_time = 20 * 60;
+ struct sigaction sa_alrm;
+
+ snprintf(logdir, LOGDIR_NAME_SIZE,
+ "/tmp/logdir-%u", (unsigned int)getpid());
+ while ((c = getopt(argc, argv, "r:hn:l:t:")) != -1) {
+ switch(c) {
+ case 'r':
+ start_cpu = strtoul(optarg, NULL, 10);
+ break;
+ case 'h':
+ printf("%s [-r <start_cpu>] [-n <nrthreads>] [-l <logdir>] [-t <timeout>]\n", argv[0]);
+ exit(0);
+ break;
+ case 'n':
+ nrthreads = strtoul(optarg, NULL, 10);
+ break;
+ case 'l':
+ strncpy(logdir, optarg, LOGDIR_NAME_SIZE);
+ break;
+ case 't':
+ run_time = strtoul(optarg, NULL, 10);
+ break;
+ default:
+ printf("invalid option\n");
+ exit(0);
+ break;
+ }
+ }
+
+ if (nrthreads > MAX_THREADS)
+ nrthreads = MAX_THREADS;
+
+ shmid = shmget(shm_key, page_size, IPC_CREAT|0666);
+ if (shmid < 0) {
+ err_msg("Failed shmget\n");
+ }
+
+ map1 = shmat(shmid, NULL, 0);
+ if (map1 == (void *) -1) {
+ err_msg("Failed shmat");
+ }
+
+ map2 = shmat(shmid, NULL, 0);
+ if (map2 == (void *) -1) {
+ err_msg("Failed shmat");
+ }
+
+ dir_error = mkdir(logdir, 0755);
+
+ if (dir_error) {
+ err_msg("Failed mkdir");
+ }
+
+ printf("start_cpu list:%lu\n", start_cpu);
+ printf("number of worker threads:%lu + 1 snapshot thread\n", nrthreads);
+ printf("Allocated address:0x%016lx + secondary map:0x%016lx\n", (unsigned long)map1, (unsigned long)map2);
+ printf("logdir at : %s\n", logdir);
+ printf("Timeout: %d seconds\n", run_time);
+
+ time(&now);
+ printf("=================================\n");
+ printf(" Starting Test\n");
+ printf(" %s", ctime(&now));
+ printf("=================================\n");
+
+ for (i = 0; i < nrthreads; i++) {
+ if (1 && !fork()) {
+ prctl(PR_SET_PDEATHSIG, SIGKILL);
+ set_mycpu(start_cpu + i);
+ for (;;)
+ sched_yield();
+ exit(0);
+ }
+ }
+
+
+ sa_alrm.sa_handler = &alrm_sighandler;
+ sigemptyset(&sa_alrm.sa_mask);
+ sa_alrm.sa_flags = 0;
+
+ if (sigaction(SIGALRM, &sa_alrm, 0) == -1) {
+ err_msg("Failed signal handler registration\n");
+ }
+
+ alarm(run_time);
+
+ pthread_attr_init(&attr);
+ for (i = 0; i < nrthreads; i++) {
+ rim_thread_ids[i] = i;
+ pthread_create(&rim_threads[i], &attr, rim_fn, &rim_thread_ids[i]);
+ set_pthread_cpu(rim_threads[i], start_cpu + i);
+ }
+
+ pthread_create(&mem_snapshot_thread, &attr, mem_snapshot_fn, map1);
+ set_pthread_cpu(mem_snapshot_thread, start_cpu + i);
+
+
+ pthread_join(mem_snapshot_thread, NULL);
+ for (i = 0; i < nrthreads; i++) {
+ pthread_join(rim_threads[i], NULL);
+ }
+
+ if (!timeout) {
+ time(&now);
+ printf("=================================\n");
+ printf(" Data Corruption Detected\n");
+ printf(" %s", ctime(&now));
+ printf(" See logfiles in %s\n", logdir);
+ printf("=================================\n");
+ return 1;
+ }
+ return 0;
+}