[RFC PATCH 1/5] mm: Introduce Data Access MONitor (DAMON)
From: SeongJae Park
Date: Fri Jan 10 2020 - 08:16:14 EST
From: SeongJae Park <sjpark@xxxxxxxxx>
This commit introduces the main logic of DAMON. Because this commit is
for the core logic only, it lacks an external interface to run DAMON.
Following commit will add the interface.
----
DAMON is a kernel module that allows users to monitor the actual memory
access pattern of specific user-space processes. It aims to be 1)
accurate enough to be useful for performance-centric domains, and 2)
sufficiently light-weight so that it can be applied online.
For the goals, DAMON utilizes its two core mechanisms, called
region-based sampling and adaptive regions adjustment. The region-based
sampling allows users to make their own trade-off between the quality
and the overhead of the monitoring and set the upperbound of the
monitoring overhead. Further, the adaptive regions adjustment mechanism
makes DAMON to maximize the quality and minimize the overhead with its
best efforts while preserving the users configured trade-off.
Expected Use-cases
==================
A straightforward usecase of DAMON would be the program behavior
analysis. With the DAMON output, users can confirm whether the program
is running as intended or not. This will be useful for debuggings and
tests of design points.
The monitored results can also be useful for counting the dynamic
working set size of workloads. For the administration of memory
overcommitted systems or selection of the environments (e.g., containers
providing different amount of memory) for your workloads, this will be
useful.
If you are a programmer, you can optimize your program by managing the
memory based on the actual data access pattern. For example, you can
identify the dynamic hotness of your data using DAMON and call
``mlock()`` to keep your hot data in DRAM, or call ``madvise()`` with
``MADV_PAGEOUT`` to proactively reclaim cold data. Even though your
program is guaranteed to not encounter memory pressure, you can still
improve the performance by applying the DAMON outputs for call of
``MADV_HUGEPAGE`` and ``MADV_NOHUGEPAGE``. More creative optimizations
would be possible. Our evaluations of DAMON includes a straightforward
optimization using the ``mlock()``. Please refer to the below
Evaluation section for more detail.
As DAMON incurs very low overhead, such optimizations can be applied not
only offline, but also online. Also, there is no reason to limit such
optimizations to the user space. Several parts of the kernel's memory
management mechanisms could be also optimized using DAMON. The
reclamation, the THP (de)promotion decisions, and the compaction would
be such a candidates. Nevertheless, current version of DAMON is not
highly optimized for the online/in-kernel uses.
Mechanisms of DAMON
===================
Basic Access Check
------------------
DAMON basically reports what pages are how frequently accessed. The
report is passed to users in binary format via a ``result file`` which
users can set it's path. Note that the frequency is not an absolute
number of accesses, but a relative frequency among the pages of the
target workloads.
Users can also control the resolution of the reports by setting two time
intervals, ``sampling interval`` and ``aggregation interval``. In
detail, DAMON checks access to each page per ``sampling interval``,
aggregates the results (counts the number of the accesses to each page),
and reports the aggregated results per ``aggregation interval``. For
the access check of each page, DAMON uses the Accessed bits of PTEs.
This is thus similar to the previously mentioned periodic access checks
based mechanisms, which overhead is increasing as the size of the target
process grows.
Region Based Sampling
---------------------
To avoid the unbounded increase of the overhead, DAMON groups a number
of adjacent pages that assumed to have same access frequencies into a
region. As long as the assumption (pages in a region have same access
frequencies) is kept, only one page in the region is required to be
checked. Thus, for each ``sampling interval``, DAMON randomly picks one
page in each region and clears its Accessed bit. After one more
``sampling interval``, DAMON reads the Accessed bit of the page and
increases the access frequency of the region if the bit has set
meanwhile. Therefore, the monitoring overhead is controllable by
setting the number of regions. DAMON allows users to set the minimal
and maximum number of regions for the trade-off.
Except the assumption, this is almost same with the above-mentioned
miniature-like static region based sampling. In other words, this
scheme cannot preserve the quality of the output if the assumption is
not guaranteed.
Adaptive Regions Adjustment
---------------------------
At the beginning of the monitoring, DAMON constructs the initial regions
by evenly splitting the memory mapped address space of the process into
the user-specified minimal number of regions. In this initial state,
the assumption is normally not kept and thus the quality could be low.
To keep the assumption as much as possible, DAMON adaptively merges and
splits each region. For each ``aggregation interval``, it compares the
access frequencies of adjacent regions and merges those if the frequency
difference is small. Then, after it reports and clears the aggregated
access frequency of each region, it splits each region into two regions
if the total number of regions is smaller than the half of the
user-specified maximum number of regions.
In this way, DAMON provides its best-effort quality and minimal overhead
while keeping the bounds users set for their trade-off.
Applying Dynamic Memory Mappings
--------------------------------
Only a number of small parts in the super-huge virtual address space of
the processes is mapped to physical memory and accessed. Thus, tracking
the unmapped address regions is just wasteful. However, tracking every
memory mapping change might incur an overhead. For the reason, DAMON
applies the dynamic memory mapping changes to the tracking regions only
for each of a user-specified time interval (``regions update
interval``).
Signed-off-by: SeongJae Park <sjpark@xxxxxxxxx>
---
mm/Kconfig | 12 +
mm/Makefile | 1 +
mm/damon.c | 1037 +++++++++++++++++++++++++++++++++++++++++++++++++++
3 files changed, 1050 insertions(+)
create mode 100644 mm/damon.c
diff --git a/mm/Kconfig b/mm/Kconfig
index a5dae9a7eb51..b7af8a1b5cb5 100644
--- a/mm/Kconfig
+++ b/mm/Kconfig
@@ -736,4 +736,16 @@ config ARCH_HAS_PTE_SPECIAL
config ARCH_HAS_HUGEPD
bool
+config DAMON
+ bool "Data Access Monitor"
+ depends on MMU
+ default y
+ help
+ Provides data access monitoring.
+
+ DAMON is a kernel module that allows users to monitor the actual
+ memory access pattern of specific user-space processes. It aims to
+ be 1) accurate enough to be useful for performance-centric domains,
+ and 2) sufficiently light-weight so that it can be applied online.
+
endmenu
diff --git a/mm/Makefile b/mm/Makefile
index d996846697ef..6c3c7c364015 100644
--- a/mm/Makefile
+++ b/mm/Makefile
@@ -107,3 +107,4 @@ obj-$(CONFIG_PERCPU_STATS) += percpu-stats.o
obj-$(CONFIG_ZONE_DEVICE) += memremap.o
obj-$(CONFIG_HMM_MIRROR) += hmm.o
obj-$(CONFIG_MEMFD_CREATE) += memfd.o
+obj-$(CONFIG_DAMON) += damon.o
diff --git a/mm/damon.c b/mm/damon.c
new file mode 100644
index 000000000000..9a603c3f966a
--- /dev/null
+++ b/mm/damon.c
@@ -0,0 +1,1037 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Data Access Monitor
+ *
+ * Copyright 2019 Amazon.com, Inc. or its affiliates. All rights reserved.
+ *
+ * Author: SeongJae Park <sjpark@xxxxxxxxx>
+ */
+
+#define pr_fmt(fmt) "damon: " fmt
+
+#include <linux/delay.h>
+#include <linux/kthread.h>
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/page_idle.h>
+#include <linux/random.h>
+#include <linux/sched/mm.h>
+#include <linux/sched/task.h>
+#include <linux/slab.h>
+
+#define damon_get_task_struct(t) \
+ (get_pid_task(find_vpid(t->pid), PIDTYPE_PID))
+
+#define damon_next_region(r) \
+ (container_of(r->list.next, struct damon_region, list))
+
+#define damon_prev_region(r) \
+ (container_of(r->list.prev, struct damon_region, list))
+
+#define damon_for_each_region(r, t) \
+ list_for_each_entry(r, &t->regions_list, list)
+
+#define damon_for_each_region_safe(r, next, t) \
+ list_for_each_entry_safe(r, next, &t->regions_list, list)
+
+#define damon_for_each_task(t) \
+ list_for_each_entry(t, &damon_tasks_list, list)
+
+#define damon_for_each_task_safe(t, next) \
+ list_for_each_entry_safe(t, next, &damon_tasks_list, list)
+
+/* Represents a monitoring target region on the virtual address space */
+struct damon_region {
+ unsigned long vm_start;
+ unsigned long vm_end;
+ unsigned long sampling_addr;
+ unsigned int nr_accesses;
+ struct list_head list;
+};
+
+/* Represents a monitoring target task */
+struct damon_task {
+ unsigned long pid;
+ struct list_head regions_list;
+ struct list_head list;
+};
+
+/* List of damon_task objects */
+static LIST_HEAD(damon_tasks_list);
+
+/*
+ * For each 'sample_interval', DAMON checks whether each region is accessed or
+ * not. It aggregates and keeps the access information (number of accesses to
+ * each region) for 'aggr_interval' and then flushes it to the result buffer if
+ * an 'aggr_interval' surpassed. And for each 'regions_update_interval', damon
+ * checks whether the memory mapping of the target tasks has changed (e.g., by
+ * mmap() calls from the applications) and applies the changes.
+ *
+ * All time intervals are in micro-seconds.
+ */
+static unsigned long sample_interval = 5 * 1000;
+static unsigned long aggr_interval = 100 * 1000;
+static unsigned long regions_update_interval = 1000 * 1000;
+
+static struct timespec64 last_aggregate_time;
+static struct timespec64 last_regions_update_time;
+
+static unsigned long min_nr_regions = 10;
+static unsigned long max_nr_regions = 1000;
+
+/* result buffer */
+#define DAMON_LEN_RBUF (1024 * 1024 * 4)
+static char damon_rbuf[DAMON_LEN_RBUF];
+static unsigned int damon_rbuf_offset;
+
+/* result file */
+#define LEN_RES_FILE_PATH 256
+static char rfile_path[LEN_RES_FILE_PATH] = "/damon.data";
+
+static struct task_struct *kdamond;
+static bool kdamond_stop;
+
+/* Protects read/write of kdamond and kdamond_stop */
+static DEFINE_SPINLOCK(kdamond_lock);
+
+static struct rnd_state rndseed;
+/* Get a random number in [l, r) */
+#define damon_rand(l, r) (l + prandom_u32_state(&rndseed) % (r - l))
+
+/*
+ * Construct a damon_region struct
+ *
+ * Returns the pointer to the new struct if success, or NULL otherwise
+ */
+static struct damon_region *damon_new_region(unsigned long vm_start,
+ unsigned long vm_end)
+{
+ struct damon_region *ret;
+
+ ret = kmalloc(sizeof(struct damon_region), GFP_KERNEL);
+ if (!ret)
+ return NULL;
+ ret->vm_start = vm_start;
+ ret->vm_end = vm_end;
+ ret->nr_accesses = 0;
+ ret->sampling_addr = damon_rand(vm_start, vm_end);
+ INIT_LIST_HEAD(&ret->list);
+
+ return ret;
+}
+
+/*
+ * Add a region between two other regions
+ */
+static inline void damon_add_region(struct damon_region *r,
+ struct damon_region *prev, struct damon_region *next)
+{
+ __list_add(&r->list, &prev->list, &next->list);
+}
+
+/*
+ * Append a region to a task's list of regions
+ */
+static void damon_add_region_tail(struct damon_region *r, struct damon_task *t)
+{
+ list_add_tail(&r->list, &t->regions_list);
+}
+
+/*
+ * Delete a region from its list
+ */
+static void damon_del_region(struct damon_region *r)
+{
+ list_del(&r->list);
+}
+
+/*
+ * De-allocate a region
+ */
+static void damon_free_region(struct damon_region *r)
+{
+ kfree(r);
+}
+
+static void damon_destroy_region(struct damon_region *r)
+{
+ damon_del_region(r);
+ damon_free_region(r);
+}
+
+/*
+ * Construct a damon_task struct
+ *
+ * Returns the pointer to the new struct if success, or NULL otherwise
+ */
+static struct damon_task *damon_new_task(unsigned long pid)
+{
+ struct damon_task *t;
+
+ t = kmalloc(sizeof(struct damon_task), GFP_KERNEL);
+ if (!t)
+ return NULL;
+ t->pid = pid;
+ INIT_LIST_HEAD(&t->regions_list);
+
+ return t;
+}
+
+/* Returns n-th damon_region of the given task */
+struct damon_region *damon_nth_region_of(struct damon_task *t, unsigned int n)
+{
+ struct damon_region *r;
+ unsigned int i;
+
+ i = 0;
+ damon_for_each_region(r, t) {
+ if (i++ == n)
+ return r;
+ }
+ return NULL;
+}
+
+static void damon_add_task_tail(struct damon_task *t)
+{
+ list_add_tail(&t->list, &damon_tasks_list);
+}
+
+static void damon_del_task(struct damon_task *t)
+{
+ list_del(&t->list);
+}
+
+static void damon_free_task(struct damon_task *t)
+{
+ struct damon_region *r, *next;
+
+ damon_for_each_region_safe(r, next, t)
+ damon_free_region(r);
+ kfree(t);
+}
+
+static void damon_destroy_task(struct damon_task *t)
+{
+ damon_del_task(t);
+ damon_free_task(t);
+}
+
+/*
+ * Returns number of monitoring target tasks
+ */
+static unsigned int nr_damon_tasks(void)
+{
+ struct damon_task *t;
+ unsigned int ret = 0;
+
+ damon_for_each_task(t)
+ ret++;
+ return ret;
+}
+
+/*
+ * Returns the number of target regions for a given target task
+ */
+static unsigned int nr_damon_regions(struct damon_task *t)
+{
+ struct damon_region *r;
+ unsigned int ret = 0;
+
+ damon_for_each_region(r, t)
+ ret++;
+ return ret;
+}
+
+/*
+ * Get the mm_struct of the given task
+ *
+ * Callser should put the mm_struct after use, unless it is NULL.
+ *
+ * Returns the mm_struct of the task on success, NULL on failure
+ */
+static struct mm_struct *damon_get_mm(struct damon_task *t)
+{
+ struct task_struct *task;
+ struct mm_struct *mm;
+
+ task = damon_get_task_struct(t);
+ if (!task)
+ return NULL;
+
+ mm = get_task_mm(task);
+ put_task_struct(task);
+ return mm;
+}
+
+/*
+ * Size-evenly split a region into 'nr_pieces' small regions
+ *
+ * Returns 0 on success, or negative error code otherwise.
+ */
+static int damon_split_region_evenly(struct damon_region *r,
+ unsigned int nr_pieces)
+{
+ unsigned long sz_orig, sz_piece, orig_end;
+ struct damon_region *piece = NULL, *next;
+ unsigned long start;
+
+ if (!r || !nr_pieces)
+ return -EINVAL;
+
+ orig_end = r->vm_end;
+ sz_orig = r->vm_end - r->vm_start;
+ sz_piece = sz_orig / nr_pieces;
+
+ if (!sz_piece)
+ return -EINVAL;
+
+ r->vm_end = r->vm_start + sz_piece;
+ next = damon_next_region(r);
+ for (start = r->vm_end; start + sz_piece <= orig_end;
+ start += sz_piece) {
+ piece = damon_new_region(start, start + sz_piece);
+ damon_add_region(piece, r, next);
+ r = piece;
+ }
+ if (piece)
+ piece->vm_end = orig_end;
+ return 0;
+}
+
+struct region {
+ unsigned long start;
+ unsigned long end;
+};
+
+static unsigned long sz_region(struct region *r)
+{
+ return r->end - r->start;
+}
+
+static void swap_regions(struct region *r1, struct region *r2)
+{
+ struct region tmp;
+
+ tmp = *r1;
+ *r1 = *r2;
+ *r2 = tmp;
+}
+
+/*
+ * Find the three regions in an address space
+ *
+ * vma the head vma of the target address space
+ * regions an array of three 'struct region's that results will be saved
+ *
+ * This function receives an address space and finds three regions in it which
+ * separated by the two biggest unmapped regions in the space.
+ *
+ * Returns 0 if success, or negative error code otherwise.
+ */
+static int damon_three_regions_in_vmas(struct vm_area_struct *vma,
+ struct region regions[3])
+{
+ struct region gap = {0,}, first_gap = {0,}, second_gap = {0,};
+ struct vm_area_struct *last_vma = NULL;
+ unsigned long start = 0;
+
+ /* Find two biggest gaps so that first_gap > second_gap > others */
+ for (; vma; vma = vma->vm_next) {
+ if (!last_vma) {
+ start = vma->vm_start;
+ last_vma = vma;
+ continue;
+ }
+ gap.start = last_vma->vm_end;
+ gap.end = vma->vm_start;
+ if (sz_region(&gap) > sz_region(&second_gap)) {
+ swap_regions(&gap, &second_gap);
+ if (sz_region(&second_gap) > sz_region(&first_gap))
+ swap_regions(&second_gap, &first_gap);
+ }
+ last_vma = vma;
+ }
+
+ if (!sz_region(&second_gap) || !sz_region(&first_gap))
+ return -EINVAL;
+
+ /* Sort the two biggest gaps by address */
+ if (first_gap.start > second_gap.start)
+ swap_regions(&first_gap, &second_gap);
+
+ /* Store the result */
+ regions[0].start = start;
+ regions[0].end = first_gap.start;
+ regions[1].start = first_gap.end;
+ regions[1].end = second_gap.start;
+ regions[2].start = second_gap.end;
+ regions[2].end = last_vma->vm_end;
+
+ return 0;
+}
+
+/*
+ * Get the three regions in the given task
+ *
+ * Returns 0 on success, negative error code otherwise.
+ */
+static int damon_three_regions_of(struct damon_task *t,
+ struct region regions[3])
+{
+ struct mm_struct *mm;
+ int ret;
+
+ mm = damon_get_mm(t);
+ if (!mm)
+ return -EINVAL;
+
+ down_read(&mm->mmap_sem);
+ ret = damon_three_regions_in_vmas(mm->mmap, regions);
+ up_read(&mm->mmap_sem);
+
+ mmput(mm);
+ return ret;
+}
+
+/*
+ * Initialize the monitoring target regions for the given task
+ *
+ * t the given target task
+ *
+ * Because only a number of small portions of the entire address space
+ * is acutally mapped to the memory and accessed, monitoring the unmapped
+ * regions is wasteful. That said, because we can deal with small noises,
+ * tracking every mapping is not strictly required but could even incur a high
+ * overhead if the mapping frequently changes or the number of mappings is
+ * high.
+ *
+ * As usual memory map of processes is as below, the gap between the heap and
+ * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
+ * region and the stack will be two biggest unmapped regions. Because these
+ * gaps are outliers between the mapped and unmapped regions in the address
+ * space in terms of the size, excluding these two biggest unmapped regions
+ * will be sufficient to make a trade-off.
+ *
+ * <heap>
+ * <BIG UNMAPPED REGION 1>
+ * <uppermost mmap()-ed region>
+ * (other mmap()-ed regions and small unmapped regions)
+ * <lowermost mmap()-ed region>
+ * <BIG UNMAPPED REGION 2>
+ * <stack>
+ *
+ * For the reason, this function converts the original address space of the
+ * given task to a simplified address space, that is constructed with three
+ * regions separated by the two biggest unmapped regions and stores those in
+ * the given task.
+ */
+static void damon_init_regions_of(struct damon_task *t)
+{
+ struct damon_region *r;
+ struct region regions[3];
+ int i;
+
+ if (damon_three_regions_of(t, regions)) {
+ pr_err("Failed to get three regions of task %lu\n", t->pid);
+ return;
+ }
+
+ /* Set the initial three regions of the task */
+ for (i = 0; i < 3; i++) {
+ r = damon_new_region(regions[i].start, regions[i].end);
+ damon_add_region_tail(r, t);
+ }
+
+ /* Split the middle region into 'min_nr_regions - 2' regions */
+ r = damon_nth_region_of(t, 1);
+ if (damon_split_region_evenly(r, min_nr_regions - 2))
+ pr_warn("Init middle region failed to be split\n");
+}
+
+/* Initialize '->regions_list' of every task */
+static void kdamond_init_regions(void)
+{
+ struct damon_task *t;
+
+ damon_for_each_task(t)
+ damon_init_regions_of(t);
+}
+
+/*
+ * Check whether the given region has accessed since the last check
+ *
+ * mm 'mm_struct' for the given virtual address space
+ * r the region to be checked
+ */
+static void kdamond_check_access(struct mm_struct *mm, struct damon_region *r)
+{
+ pte_t *pte = NULL;
+ pmd_t *pmd = NULL;
+ spinlock_t *ptl;
+
+ if (follow_pte_pmd(mm, r->sampling_addr, NULL, &pte, &pmd, &ptl))
+ goto mkold;
+
+ /* Read the page table access bit of the page */
+ if (pte && pte_young(*pte))
+ r->nr_accesses++;
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ else if (pmd && pmd_young(*pmd))
+ r->nr_accesses++;
+#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
+
+ spin_unlock(ptl);
+
+mkold:
+ /* mkold next target */
+ r->sampling_addr = damon_rand(r->vm_start, r->vm_end);
+
+ if (follow_pte_pmd(mm, r->sampling_addr, NULL, &pte, &pmd, &ptl))
+ return;
+
+ if (pte) {
+ if (pte_young(*pte))
+ clear_page_idle(pte_page(*pte));
+ *pte = pte_mkold(*pte);
+ }
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ else if (pmd) {
+ if (pmd_young(*pmd))
+ clear_page_idle(pmd_page(*pmd));
+ *pmd = pmd_mkold(*pmd);
+ }
+#endif
+
+ spin_unlock(ptl);
+}
+
+/*
+ * Check whether a time interval is elapsed
+ *
+ * baseline the time to check whether the interval has elapsed since
+ * interval the time interval (microseconds)
+ *
+ * See whether the given time interval has passed since the given baseline
+ * time. If so, it also updates the baseline to current time for next check.
+ *
+ * Returns true if the time interval has passed, or false otherwise.
+ */
+static bool damon_check_reset_time_interval(struct timespec64 *baseline,
+ unsigned long interval)
+{
+ struct timespec64 now;
+
+ ktime_get_coarse_ts64(&now);
+ if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) / 1000 <
+ interval)
+ return false;
+ *baseline = now;
+ return true;
+}
+
+/*
+ * Check whether it is time to flush the aggregated information
+ */
+static bool kdamond_aggregate_interval_passed(void)
+{
+ return damon_check_reset_time_interval(&last_aggregate_time,
+ aggr_interval);
+}
+
+/*
+ * Flush the content in the result buffer to the result file
+ */
+static void damon_flush_rbuffer(void)
+{
+ ssize_t sz;
+ loff_t pos;
+ struct file *rfile;
+
+ while (damon_rbuf_offset) {
+ pos = 0;
+ rfile = filp_open(rfile_path, O_CREAT | O_RDWR | O_APPEND,
+ 0644);
+ if (IS_ERR(rfile)) {
+ pr_err("Cannot open the result file %s\n", rfile_path);
+ return;
+ }
+
+ sz = kernel_write(rfile, damon_rbuf, damon_rbuf_offset, &pos);
+ filp_close(rfile, NULL);
+
+ damon_rbuf_offset -= sz;
+ }
+}
+
+/*
+ * Write a data into the result buffer
+ */
+static void damon_write_rbuf(void *data, ssize_t size)
+{
+ if (damon_rbuf_offset + size > DAMON_LEN_RBUF)
+ damon_flush_rbuffer();
+
+ memcpy(&damon_rbuf[damon_rbuf_offset], data, size);
+ damon_rbuf_offset += size;
+}
+
+/*
+ * Flush the aggregated monitoring results to the result buffer
+ *
+ * Stores current tracking results to the result buffer and reset 'nr_accesses'
+ * of each regions. The format for the result buffer is as below:
+ *
+ * <time> <number of tasks> <array of task infos>
+ *
+ * task info: <pid> <number of regions> <array of region infos>
+ * region info: <start address> <end address> <nr_accesses>
+ */
+static void kdamond_flush_aggregated(void)
+{
+ struct damon_task *t;
+ struct timespec64 now;
+ unsigned int nr;
+
+ ktime_get_coarse_ts64(&now);
+
+ damon_write_rbuf(&now, sizeof(struct timespec64));
+ nr = nr_damon_tasks();
+ damon_write_rbuf(&nr, sizeof(nr));
+
+ damon_for_each_task(t) {
+ struct damon_region *r;
+
+ damon_write_rbuf(&t->pid, sizeof(t->pid));
+ nr = nr_damon_regions(t);
+ damon_write_rbuf(&nr, sizeof(nr));
+ damon_for_each_region(r, t) {
+ damon_write_rbuf(&r->vm_start, sizeof(r->vm_start));
+ damon_write_rbuf(&r->vm_end, sizeof(r->vm_end));
+ damon_write_rbuf(&r->nr_accesses,
+ sizeof(r->nr_accesses));
+ r->nr_accesses = 0;
+ }
+ }
+}
+
+#define sz_damon_region(r) (r->vm_end - r->vm_start)
+
+/*
+ * Merge two adjacent regions into one region
+ */
+static void damon_merge_two_regions(struct damon_region *l,
+ struct damon_region *r)
+{
+ l->nr_accesses = (l->nr_accesses * sz_damon_region(l) +
+ r->nr_accesses * sz_damon_region(r)) /
+ (sz_damon_region(l) + sz_damon_region(r));
+ l->vm_end = r->vm_end;
+ damon_destroy_region(r);
+}
+
+#define diff_of(a, b) (a > b ? a - b : b - a)
+
+/*
+ * Merge adjacent regions having similar access frequencies
+ *
+ * t task that merge operation will make change
+ * thres merge regions having '->nr_accesses' diff smaller than this
+ */
+static void damon_merge_regions_of(struct damon_task *t, unsigned int thres)
+{
+ struct damon_region *r, *prev = NULL, *next;
+
+ damon_for_each_region_safe(r, next, t) {
+ if (!prev || prev->vm_end != r->vm_start)
+ goto next;
+ if (diff_of(prev->nr_accesses, r->nr_accesses) > thres)
+ goto next;
+ damon_merge_two_regions(prev, r);
+ continue;
+next:
+ prev = r;
+ }
+}
+
+/*
+ * Merge adjacent regions having similar access frequencies
+ *
+ * threshold merge regions havind nr_accesses diff larger than this
+ *
+ * This function merges monitoring target regions which are adjacent and their
+ * access frequencies are similar. This is for minimizing the monitoring
+ * overhead under the dynamically changeable access pattern. If a merge was
+ * unnecessarily made, later 'kdamond_split_regions()' will revert it.
+ */
+static void kdamond_merge_regions(unsigned int threshold)
+{
+ struct damon_task *t;
+
+ damon_for_each_task(t)
+ damon_merge_regions_of(t, threshold);
+}
+
+/*
+ * Split a region into two small regions
+ *
+ * r the region to be split
+ * sz_r size of the first sub-region that will be made
+ */
+static void damon_split_region_at(struct damon_region *r, unsigned long sz_r)
+{
+ struct damon_region *new;
+
+ new = damon_new_region(r->vm_start + sz_r, r->vm_end);
+ r->vm_end = new->vm_start;
+
+ damon_add_region(new, r, damon_next_region(r));
+}
+
+static void damon_split_regions_of(struct damon_task *t)
+{
+ struct damon_region *r, *next;
+ unsigned long sz_left_region;
+
+ damon_for_each_region_safe(r, next, t) {
+ /*
+ * Randomly select size of left sub-region to be at least
+ * 10 percent and at most 90% of original region
+ */
+ sz_left_region = (prandom_u32_state(&rndseed) % 9 + 1) *
+ (r->vm_end - r->vm_start) / 10;
+ /* Do not allow blank region */
+ if (sz_left_region == 0)
+ continue;
+ damon_split_region_at(r, sz_left_region);
+ }
+}
+
+/*
+ * splits every target regions into two randomly-sized regions
+ *
+ * This function splits every target regions into two random-sized regions if
+ * current total number of the regions is smaller than the half of the
+ * user-specified maximum number of regions. This is for maximizing the
+ * monitoring accuracy under the dynamically changeable access patterns. If a
+ * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
+ * it.
+ */
+static void kdamond_split_regions(void)
+{
+ struct damon_task *t;
+ unsigned int nr_regions = 0;
+
+ damon_for_each_task(t)
+ nr_regions += nr_damon_regions(t);
+ if (nr_regions > max_nr_regions / 2)
+ return;
+
+ damon_for_each_task(t)
+ damon_split_regions_of(t);
+}
+
+/*
+ * Check whether it is time to check and apply the dynamic mmap changes
+ *
+ * Returns true if it is.
+ */
+static bool kdamond_need_update_regions(void)
+{
+ return damon_check_reset_time_interval(&last_regions_update_time,
+ regions_update_interval);
+}
+
+static bool damon_intersect(struct damon_region *r, struct region *re)
+{
+ return !(r->vm_end <= re->start || re->end <= r->vm_start);
+}
+
+/*
+ * Update damon regions for the three big regions of the given task
+ *
+ * t the given task
+ * bregions the three big regions of the task
+ */
+static void damon_apply_three_regions(struct damon_task *t,
+ struct region bregions[3])
+{
+ struct damon_region *r, *next;
+ unsigned int i = 0;
+
+ /* Remove regions which isn't in the three big regions now */
+ damon_for_each_region_safe(r, next, t) {
+ for (i = 0; i < 3; i++) {
+ if (damon_intersect(r, &bregions[i]))
+ break;
+ }
+ if (i == 3)
+ damon_destroy_region(r);
+ }
+
+ /* Adjust intersecting regions to fit with the threee big regions */
+ for (i = 0; i < 3; i++) {
+ struct damon_region *first = NULL, *last;
+ struct damon_region *newr;
+ struct region *br;
+
+ br = &bregions[i];
+ /* Get the first and last regions which intersects with br */
+ damon_for_each_region(r, t) {
+ if (damon_intersect(r, br)) {
+ if (!first)
+ first = r;
+ last = r;
+ }
+ if (r->vm_start >= br->end)
+ break;
+ }
+ if (!first) {
+ /* no damon_region intersects with this big region */
+ newr = damon_new_region(br->start, br->end);
+ damon_add_region(newr, damon_prev_region(r), r);
+ } else {
+ first->vm_start = br->start;
+ last->vm_end = br->end;
+ }
+ }
+}
+
+/*
+ * Update regions for current memory mappings
+ */
+static void kdamond_update_regions(void)
+{
+ struct region three_regions[3];
+ struct damon_task *t;
+
+ damon_for_each_task(t) {
+ if (damon_three_regions_of(t, three_regions))
+ continue;
+ damon_apply_three_regions(t, three_regions);
+ }
+}
+
+/*
+ * Check whether current monitoring should be stopped
+ *
+ * If users asked to stop, need stop. Even though no user has asked to stop,
+ * need stop if every target task has dead.
+ *
+ * Returns true if need to stop current monitoring.
+ */
+static bool kdamond_need_stop(void)
+{
+ struct damon_task *t;
+ struct task_struct *task;
+ bool stop;
+
+ spin_lock(&kdamond_lock);
+ stop = kdamond_stop;
+ spin_unlock(&kdamond_lock);
+ if (stop)
+ return true;
+
+ damon_for_each_task(t) {
+ task = damon_get_task_struct(t);
+ if (task) {
+ put_task_struct(task);
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/*
+ * The monitoring daemon that runs as a kernel thread
+ */
+static int kdamond_fn(void *data)
+{
+ struct damon_task *t;
+ struct damon_region *r, *next;
+ struct mm_struct *mm;
+ unsigned long max_nr_accesses;
+
+ pr_info("kdamond (%d) starts\n", kdamond->pid);
+ kdamond_init_regions();
+ while (!kdamond_need_stop()) {
+ max_nr_accesses = 0;
+ damon_for_each_task(t) {
+ mm = damon_get_mm(t);
+ if (!mm)
+ continue;
+ damon_for_each_region(r, t) {
+ kdamond_check_access(mm, r);
+ if (r->nr_accesses > max_nr_accesses)
+ max_nr_accesses = r->nr_accesses;
+ }
+ mmput(mm);
+ }
+
+ if (kdamond_aggregate_interval_passed()) {
+ kdamond_merge_regions(max_nr_accesses / 10);
+ kdamond_flush_aggregated();
+ kdamond_split_regions();
+ }
+
+ if (kdamond_need_update_regions())
+ kdamond_update_regions();
+
+ usleep_range(sample_interval, sample_interval + 1);
+ }
+ damon_flush_rbuffer();
+ damon_for_each_task(t) {
+ damon_for_each_region_safe(r, next, t)
+ damon_destroy_region(r);
+ }
+ pr_info("kdamond (%d) finishes\n", kdamond->pid);
+ spin_lock(&kdamond_lock);
+ kdamond = NULL;
+ spin_unlock(&kdamond_lock);
+ return 0;
+}
+
+/*
+ * Controller functions
+ */
+
+/*
+ * Start or stop the kdamond
+ *
+ * Returns 0 if success, negative error code otherwise.
+ */
+static int damon_turn_kdamond(bool on)
+{
+ spin_lock(&kdamond_lock);
+ kdamond_stop = !on;
+ if (!kdamond && on) {
+ kdamond = kthread_run(kdamond_fn, NULL, "kdamond");
+ if (!kdamond)
+ goto fail;
+ goto success;
+ }
+ if (kdamond && !on) {
+ spin_unlock(&kdamond_lock);
+ while (true) {
+ spin_lock(&kdamond_lock);
+ if (!kdamond)
+ goto success;
+ spin_unlock(&kdamond_lock);
+
+ usleep_range(sample_interval, sample_interval * 2);
+ }
+ }
+
+ /* tried to turn on while turned on, or turn off while turned off */
+
+fail:
+ spin_unlock(&kdamond_lock);
+ return -EINVAL;
+
+success:
+ spin_unlock(&kdamond_lock);
+ return 0;
+}
+
+static inline bool damon_is_target_pid(unsigned long pid)
+{
+ struct damon_task *t;
+
+ damon_for_each_task(t) {
+ if (t->pid == pid)
+ return true;
+ }
+ return false;
+}
+
+/*
+ * This function should not be called while the kdamond is running.
+ */
+static long damon_set_pids(unsigned long *pids, ssize_t nr_pids)
+{
+ ssize_t i;
+ struct damon_task *t, *next;
+
+ /* Remove unselected tasks */
+ damon_for_each_task_safe(t, next) {
+ for (i = 0; i < nr_pids; i++) {
+ if (pids[i] == t->pid)
+ break;
+ }
+ if (i != nr_pids)
+ continue;
+ damon_destroy_task(t);
+ }
+
+ /* Add new tasks */
+ for (i = 0; i < nr_pids; i++) {
+ if (damon_is_target_pid(pids[i]))
+ continue;
+ t = damon_new_task(pids[i]);
+ if (!t) {
+ pr_err("Failed to alloc damon_task\n");
+ return -ENOMEM;
+ }
+ damon_add_task_tail(t);
+ }
+
+ return 0;
+}
+
+/*
+ * Set attributes for the monitoring
+ *
+ * sample_int time interval between samplings
+ * aggr_int time interval between aggregations
+ * regions_update_int time interval between vma update checks
+ * min_nr_reg minimal number of regions
+ * max_nr_reg maximum number of regions
+ * path_to_rfile path to the monitor result files
+ *
+ * This function should not be called while the kdamond is running.
+ * Every time interval is in micro-seconds.
+ *
+ * Returns 0 on success, negative error code otherwise.
+ */
+static long damon_set_attrs(unsigned long sample_int,
+ unsigned long aggr_int, unsigned long regions_update_int,
+ unsigned long min_nr_reg, unsigned long max_nr_reg,
+ char *path_to_rfile)
+{
+ if (strnlen(path_to_rfile, LEN_RES_FILE_PATH) >= LEN_RES_FILE_PATH) {
+ pr_err("too long (>%d) result file path %s\n",
+ LEN_RES_FILE_PATH, path_to_rfile);
+ return -EINVAL;
+ }
+ if (min_nr_reg < 3) {
+ pr_err("min_nr_regions (%lu) should be bigger than 2\n",
+ min_nr_reg);
+ return -EINVAL;
+ }
+ if (min_nr_reg >= max_nr_regions) {
+ pr_err("invalid nr_regions. min (%lu) >= max (%lu)\n",
+ min_nr_reg, max_nr_reg);
+ return -EINVAL;
+ }
+
+ sample_interval = sample_int;
+ aggr_interval = aggr_int;
+ regions_update_interval = regions_update_int;
+ min_nr_regions = min_nr_reg;
+ max_nr_regions = max_nr_reg;
+ strncpy(rfile_path, path_to_rfile, LEN_RES_FILE_PATH);
+ return 0;
+}
+
+static int __init damon_init(void)
+{
+ pr_info("init\n");
+
+ prandom_seed_state(&rndseed, 42);
+ ktime_get_coarse_ts64(&last_aggregate_time);
+ last_regions_update_time = last_aggregate_time;
+
+ return 0;
+}
+
+module_init(damon_init);
--
2.17.1