[PATCH v2 7/9] Documentation/admin-guide/mm: Add a document for DAMON
From: sjpark
Date: Tue Jan 28 2020 - 04:01:35 EST
From: SeongJae Park <sjpark@xxxxxxxxx>
This commit adds a simple document for DAMON under
`Documentation/admin-guide/mm`.
Signed-off-by: SeongJae Park <sjpark@xxxxxxxxx>
---
.../admin-guide/mm/data_access_monitor.rst | 401 ++++++++++++++++++
Documentation/admin-guide/mm/index.rst | 1 +
MAINTAINERS | 1 +
3 files changed, 403 insertions(+)
create mode 100644 Documentation/admin-guide/mm/data_access_monitor.rst
diff --git a/Documentation/admin-guide/mm/data_access_monitor.rst b/Documentation/admin-guide/mm/data_access_monitor.rst
new file mode 100644
index 000000000000..a9ec8c2e853f
--- /dev/null
+++ b/Documentation/admin-guide/mm/data_access_monitor.rst
@@ -0,0 +1,401 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==========================
+DAMON: Data Access MONitor
+==========================
+
+
+Too Long; Don't Read
+====================
+
+DAMON is a kernel module that allows users to monitor the actual memory access
+pattern of specific user-space processes. It aims to be 1) accurate enough to
+be useful for performance-centric domains, and 2) sufficiently light-weight so
+that it can be applied online.
+
+For the goals, DAMON utilizes its two core mechanisms, called region-based
+sampling and adaptive regions adjustment. The region-based sampling allows
+users to make their own trade-off between the quality and the overhead of the
+monitoring and set the upperbound of the monitoring overhead. Further, the
+adaptive regions adjustment mechanism makes DAMON to maximize the quality and
+minimize the overhead with its best efforts while preserving the users
+configured trade-off.
+
+Please note that the term 'memory' in this document means 'main memory'. It
+also assumes that it would usually utilizes the middle level speed memory
+devices such as DRAMs or NVRAMs. CPU caches or storage devices are not our
+concern, as those are too fast or too slow to be in DAMON's scope.
+
+
+Background
+==========
+
+For performance-centric analysis and optimizations of memory management schemes
+(either that of kernel space or user space), the actual data access pattern of
+the workloads is highly useful. The information need to be only reasonable
+rather than strictly correct, because some level of incorrectness can be
+handled in many performance-centric domains. It also need to be taken within
+reasonably short time with only light-weight overhead.
+
+Manually extracting such data is not easy and time consuming if the target
+workload is huge and complex, even for the developers of the programs. There
+are a range of tools and techniques developed for general memory access
+investigations, and some of those could be partially used for this purpose.
+However, most of those are not practical or unscalable, mainly because those
+are designed with no consideration about the trade-off between the accuracy of
+the output and the overhead.
+
+The memory access instrumentation techniques which is applied to many tools
+such as Intel PIN is essential for correctness required cases such as invalid
+memory access bug detections. However, those usually incur high overhead which
+is unacceptable for many of the performance-centric domains. Periodic access
+checks based on H/W or S/W access counting features (e.g., the Accessed bits of
+PTEs or the PG_Idle flags of pages) can dramatically decrease the overhead by
+forgiving some of the quality, compared to the instrumentation based
+techniques. The reduced quality is still reasonable for many of the domains,
+but the overhead can arbitrarily increase as the size of the target workload
+grows. Miniature-like static region based sampling can set the upperbound of
+the overhead, but it will now decrease the quality of the output as the size of
+the workload grows.
+
+
+Expected Use-cases
+==================
+
+A straightforward usecase of DAMON would be the program behavior analysis.
+With the DAMON output, users can confirm whether the program is running as
+intended or not. This will be useful for debuggings and tests of design
+points.
+
+The monitored results can also be useful for counting the dynamic working set
+size of workloads. For the administration of memory overcommitted systems or
+selection of the environments (e.g., containers providing different amount of
+memory) for your workloads, this will be useful.
+
+If you are a programmer, you can optimize your program by managing the memory
+based on the actual data access pattern. For example, you can identify the
+dynamic hotness of your data using DAMON and call ``mlock()`` to keep your hot
+data in DRAM, or call ``madvise()`` with ``MADV_PAGEOUT`` to proactively
+reclaim cold data. Even though your program is guaranteed to not encounter
+memory pressure, you can still improve the performance by applying the DAMON
+outputs for call of ``MADV_HUGEPAGE`` and ``MADV_NOHUGEPAGE``. More creative
+optimizations would be possible. Our evaluations of DAMON includes a
+straightforward optimization using the ``mlock()``. Please refer to the below
+Evaluation section for more detail.
+
+As DAMON incurs very low overhead, such optimizations can be applied not only
+offline, but also online. Also, there is no reason to limit such optimizations
+to the user space. Several parts of the kernel's memory management mechanisms
+could be also optimized using DAMON. The reclamation, the THP (de)promotion
+decisions, and the compaction would be such a candidates.
+
+
+Mechanisms of DAMON
+===================
+
+
+Basic Access Check
+------------------
+
+DAMON basically reports what pages are how frequently accessed. The report is
+passed to users in binary format via a ``result file`` which users can set it's
+path. Note that the frequency is not an absolute number of accesses, but a
+relative frequency among the pages of the target workloads.
+
+Users can also control the resolution of the reports by setting two time
+intervals, ``sampling interval`` and ``aggregation interval``. In detail,
+DAMON checks access to each page per ``sampling interval``, aggregates the
+results (counts the number of the accesses to each page), and reports the
+aggregated results per ``aggregation interval``. For the access check of each
+page, DAMON uses the Accessed bits of PTEs.
+
+This is thus similar to the previously mentioned periodic access checks based
+mechanisms, which overhead is increasing as the size of the target process
+grows.
+
+
+Region Based Sampling
+---------------------
+
+To avoid the unbounded increase of the overhead, DAMON groups a number of
+adjacent pages that assumed to have same access frequencies into a region. As
+long as the assumption (pages in a region have same access frequencies) is
+kept, only one page in the region is required to be checked. Thus, for each
+``sampling interval``, DAMON randomly picks one page in each region and clears
+its Accessed bit. After one more ``sampling interval``, DAMON reads the
+Accessed bit of the page and increases the access frequency of the region if
+the bit has set meanwhile. Therefore, the monitoring overhead is controllable
+by setting the number of regions. DAMON allows users to set the minimal and
+maximum number of regions for the trade-off.
+
+Except the assumption, this is almost same with the above-mentioned
+miniature-like static region based sampling. In other words, this scheme
+cannot preserve the quality of the output if the assumption is not guaranteed.
+
+
+Adaptive Regions Adjustment
+---------------------------
+
+At the beginning of the monitoring, DAMON constructs the initial regions by
+evenly splitting the memory mapped address space of the process into the
+user-specified minimal number of regions. In this initial state, the
+assumption is normally not kept and thus the quality could be low. To keep the
+assumption as much as possible, DAMON adaptively merges and splits each region.
+For each ``aggregation interval``, it compares the access frequencies of
+adjacent regions and merges those if the frequency difference is small. Then,
+after it reports and clears the aggregated access frequency of each region, it
+splits each region into two regions if the total number of regions is smaller
+than the half of the user-specified maximum number of regions.
+
+In this way, DAMON provides its best-effort quality and minimal overhead while
+keeping the bounds users set for their trade-off.
+
+
+Applying Dynamic Memory Mappings
+--------------------------------
+
+Only a number of small parts in the super-huge virtual address space of the
+processes is mapped to physical memory and accessed. Thus, tracking the
+unmapped address regions is just wasteful. However, tracking every memory
+mapping change might incur an overhead. For the reason, DAMON applies the
+dynamic memory mapping changes to the tracking regions only for each of an
+user-specified time interval (``regions update interval``).
+
+
+User Interface
+==============
+
+DAMON exports three files, ``attrs``, ``pids``, and ``monitor_on`` under its
+debugfs directory, ``<debugfs>/damon/``.
+
+
+Attributes
+----------
+
+Users can read and write the ``sampling interval``, ``aggregation interval``,
+``regions update interval``, min/max number of regions, and the path to
+``result file`` by reading from and writing to the ``attrs`` file. For
+example, below commands set those values to 5 ms, 100 ms, 1,000 ms, 10, 1000,
+and ``/damon.data`` and check it again::
+
+ # cd <debugfs>/damon
+ # echo 5000 100000 1000000 10 1000 /damon.data > attrs
+ # cat attrs
+ 5000 100000 1000000 10 1000 /damon.data
+
+
+Target PIDs
+-----------
+
+Users can read and write the pids of current monitoring target processes by
+reading from and writing to the `pids` file. For example, below commands set
+processes having pids 42 and 4242 as the processes to be monitored and check
+it again::
+
+ # cd <debugfs>/damon
+ # echo 42 4242 > pids
+ # cat pids
+ 42 4242
+
+Note that setting the pids doesn't starts the monitoring.
+
+
+Turning On/Off
+--------------
+
+You can check current status, start and stop the monitoring by reading from and
+writing to the ``monitor_on`` file. Writing ``on`` to the file starts DAMON to
+monitor the target processes with the attributes. Writing ``off`` to the file
+stops DAMON. DAMON also stops if every target processes is be terminated.
+Below example commands turn on, off, and check status of DAMON::
+
+ # cd <debugfs>/damon
+ # echo on > monitor_on
+ # echo off > monitor_on
+ # cat monitor_on
+ off
+
+Please note that you cannot write to the ``attrs`` and ``pids`` files while the
+monitoring is turned on. If you write to the files while DAMON is running,
+``-EINVAL`` will be returned.
+
+
+User Space Tool for DAMON
+=========================
+
+There is a user space tool for DAMON, ``/tools/damon/damo``. It provides
+another user interface which more convenient than the debugfs interface.
+Nevertheless, note that it is only aimed to be used for minimal reference of
+the DAMON's debugfs interfaces and for tests of the DAMON itself. Based on the
+debugfs interface, you can create another cool and more convenient user space
+tools.
+
+The interface of the tool is basically subcommand based. You can almost always
+use ``-h`` option to get help of the use of each subcommand. Currently, it
+supports two subcommands, ``record`` and ``report``.
+
+
+Recording Data Access Pattern
+-----------------------------
+
+The ``record`` subcommand records the data access pattern of target process in
+a file (``./damon.data`` by default) using DAMON. You can specifies the target
+as either pid or a command for an execution of the process. Below example
+shows a command target usage::
+
+ # cd <kernel>/tools/damon/
+ # ./damo record "sleep 5"
+
+The tool will execute ``sleep 5`` by itself and record the data access patterns
+of the process. Below example shows a pid target usage::
+
+ # sleep 5 &
+ # ./damo record `pidof sleep`
+
+You can set more detailed attributes and path to the recorded data file using
+optional arguments to the subcommand. Use the ``-h`` option for more help.
+
+
+Analyzing Data Access Pattern
+-----------------------------
+
+The ``report`` subcommand reads a data access pattern record file (if not
+explicitly specified, reads ``./damon.data`` file if exists) and generates
+reports of various types. You can specify what type of report you want using
+sub-subcommand to ``report`` subcommand. For supported types, pass the ``-h``
+option to ``report`` subcommand.
+
+
+raw
+~~~
+
+``raw`` sub-subcommand simply transforms the record, which is storing the data
+access patterns in binary format to human readable text. For example::
+
+ $ ./damo report raw
+ start_time: 193485829398
+ rel time: 0
+ nr_tasks: 1
+ pid: 1348
+ nr_regions: 4
+ 560189609000-56018abce000( 22827008): 0
+ 7fbdff59a000-7fbdffaf1a00( 5601792): 0
+ 7fbdffaf1a00-7fbdffbb5000( 800256): 1
+ 7ffea0dc0000-7ffea0dfd000( 249856): 0
+
+ rel time: 100000731
+ nr_tasks: 1
+ pid: 1348
+ nr_regions: 6
+ 560189609000-56018abce000( 22827008): 0
+ 7fbdff59a000-7fbdff8ce933( 3361075): 0
+ 7fbdff8ce933-7fbdffaf1a00( 2240717): 1
+ 7fbdffaf1a00-7fbdffb66d99( 480153): 0
+ 7fbdffb66d99-7fbdffbb5000( 320103): 1
+ 7ffea0dc0000-7ffea0dfd000( 249856): 0
+
+The first line shows recording started timestamp (nanosecond). Records of data
+access patterns are following this. Each record is sperated by a blank line.
+Each record first specifies the recorded time (``rel time``), number of
+monitored tasks in this record (``nr_tasks``). Multiple number of records of
+data access pattern for each task continue. Each data access pattern for each
+task shows first it's pid (``pid``) and number of monitored virtual address
+regions in this access pattern (``nr_regions``). After that, each line shows
+start/end address, size, and number of monitored accesses to the region for
+each of the regions.
+
+
+heats
+~~~~~
+
+The ``raw`` type shows detailed information but it is exhaustive to manually
+read and analyzed. For the reason, ``heats`` plots the data in heatmap form,
+using time as x-axis, virtual address as y-axis, and access frequency as
+z-axis. Also, users set the resolution and start/end point of each axis via
+optional arguments. For example::
+
+ $ ./damo report heats --tres 3 --ares 3
+ 0 0 0.0
+ 0 7609002 0.0
+ 0 15218004 0.0
+ 66112620851 0 0.0
+ 66112620851 7609002 0.0
+ 66112620851 15218004 0.0
+ 132225241702 0 0.0
+ 132225241702 7609002 0.0
+ 132225241702 15218004 0.0
+
+This command shows the recorded access pattern of the ``sleep`` command using 3
+data points for each of time axis and address axis. Therefore, it shows 9 data
+points in total.
+
+Users can easily converts this text output into heatmap image or other 3D
+representation using various tools such as 'gnuplot'. ``raw`` sub-subcommand
+also provides 'gnuplot' based heatmap image creation. For this, you can use
+``--heatmap`` option. Also, note that because it uses 'gnuplot' internally, it
+will fail if 'gnuplot' is not installed on your system. For example::
+
+ $ ./damo report heats --heatmap heatmap.png
+
+Creates ``heatmap.png`` file containing the heatmap image. It supports
+``pdf``, ``png``, ``jpeg``, and ``svg``.
+
+For proper zoom in / zoom out, you need to see the layout of the record. For
+that, use '--guide' option. If the option is given, it will provide useful
+information about the records in the record file. For example::
+
+ $ ./damo report heats --guide
+ pid:1348
+ time: 193485829398-198337863555 (4852034157)
+ region 0: 00000094564599762944-00000094564622589952 (22827008)
+ region 1: 00000140454009610240-00000140454016012288 (6402048)
+ region 2: 00000140731597193216-00000140731597443072 (249856)
+
+The output shows monitored regions (start and end addresses in byte) and
+monitored time duration (start and end time in nanosecond) of each target task.
+Therefore, it would be wise to plot only each region rather than plotting
+entire address space in one heatmap because the gaps between the regions are so
+huge in this case.
+
+
+wss
+~~~
+
+The ``wss`` type shows the distribution or time-varying working set sizes of
+the recorded workload using the records. For example::
+
+ $ ./damo report wss
+ # <percentile> <wss>
+ # pid 1348
+ # avr: 66228
+ 0 0
+ 25 0
+ 50 0
+ 75 0
+ 100 1920615
+
+Without any option, it shows the distribution of the working set sizes as
+above. Basically it shows 0th, 25th, 50th, 75th, and 100th percentile and
+average of the measured working set sizes in the access pattern records. In
+this case, the working set size was zero for 75th percentile but 1,920,615
+bytes in max and 66,228 in average.
+
+By setting the sort key of the percentile using '--sortby', you can also see
+how the working set size is chronologically changed. For example::
+
+ $ ./damo report wss --sortby time
+ # <percentile> <wss>
+ # pid 1348
+ # avr: 66228
+ 0 0
+ 25 0
+ 50 0
+ 75 0
+ 100 0
+
+The average is still 66,228. And, because we sorted the working set using
+recorded time and the access is very short, we cannot show when the access
+made.
+
+Users can specify the resolution of the distribution (``--range``). It also
+supports 'gnuplot' based simple visualization (``--plot``) of the distribution.
diff --git a/Documentation/admin-guide/mm/index.rst b/Documentation/admin-guide/mm/index.rst
index 11db46448354..d3d0ba373eb6 100644
--- a/Documentation/admin-guide/mm/index.rst
+++ b/Documentation/admin-guide/mm/index.rst
@@ -27,6 +27,7 @@ the Linux memory management.
concepts
cma_debugfs
+ data_access_monitor
hugetlbpage
idle_page_tracking
ksm
diff --git a/MAINTAINERS b/MAINTAINERS
index 95729c138d34..5c8a0c4e69b8 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -4617,6 +4617,7 @@ L: linux-mm@xxxxxxxxx
S: Maintained
F: mm/damon.c
F: tools/damon/*
+F: Documentation/admin-guide/mm/data_access_monitor.rst
DAVICOM FAST ETHERNET (DMFE) NETWORK DRIVER
L: netdev@xxxxxxxxxxxxxxx
--
2.17.1