Re: [PATCH v6 02/14] mm/damon: Implement region based sampling

From: Jonathan Cameron
Date: Fri Mar 13 2020 - 13:30:02 EST


On Mon, 24 Feb 2020 13:30:35 +0100
SeongJae Park <sjpark@xxxxxxxxxx> wrote:

> From: SeongJae Park <sjpark@xxxxxxxxx>
>
> This commit implements DAMON's basic access check and region based
> sampling mechanisms. This change would seems make no sense, mainly
> because it is only a part of the DAMON's logics. Following two commits
> will make more sense.
>
> This commit also exports `lookup_page_ext()` to GPL modules because
> DAMON uses the function but also supports the module build.
>
> Basic Access Check
> ------------------
>
> DAMON basically reports what pages are how frequently accessed. Note
> that the frequency is not an absolute number of accesses, but a relative
> frequency among the pages of the target workloads.
>
> Users can control the resolution of the reports by setting two time
> intervals, ``sampling interval`` and ``aggregation interval``. In
> detail, DAMON checks access to each page per ``sampling interval``,
> aggregates the results (counts the number of the accesses to each page),
> and reports the aggregated results per ``aggregation interval``. For
> the access check of each page, DAMON uses the Accessed bits of PTEs.
>
> This is thus similar to common periodic access checks based access
> tracking mechanisms, which overhead is increasing as the size of the
> target process grows.
>
> Region Based Sampling
> ---------------------
>
> To avoid the unbounded increase of the overhead, DAMON groups a number
> of adjacent pages that assumed to have same access frequencies into a
> region. As long as the assumption (pages in a region have same access
> frequencies) is kept, only one page in the region is required to be
> checked. Thus, for each ``sampling interval``, DAMON randomly picks one
> page in each region and clears its Accessed bit. After one more
> ``sampling interval``, DAMON reads the Accessed bit of the page and
> increases the access frequency of the region if the bit has set
> meanwhile. Therefore, the monitoring overhead is controllable by
> setting the number of regions.
>
> Nonetheless, this scheme cannot preserve the quality of the output if
> the assumption is not kept. Following commit will introduce how we can
> make the guarantee with best effort.
>
> Signed-off-by: SeongJae Park <sjpark@xxxxxxxxx>

Came across a minor issue inline. kthread_run calls kthread_create.
That gives a potential sleep while atomic issue given the spin lock.

Can probably be fixed by preallocating the thread then starting it later.

Jonathan
> ---
> mm/damon.c | 509 ++++++++++++++++++++++++++++++++++++++++++++++++++
> mm/page_ext.c | 1 +
> 2 files changed, 510 insertions(+)
>
> diff --git a/mm/damon.c b/mm/damon.c
> index aafdca35b7b8..6bdeb84d89af 100644
> --- a/mm/damon.c
> +++ b/mm/damon.c
> @@ -9,9 +9,14 @@
>
> #define pr_fmt(fmt) "damon: " fmt
>
> +#include <linux/delay.h>
> +#include <linux/kthread.h>
> #include <linux/mm.h>
> #include <linux/module.h>
> +#include <linux/page_idle.h>
> #include <linux/random.h>
> +#include <linux/sched/mm.h>
> +#include <linux/sched/task.h>
> #include <linux/slab.h>
>
> #define damon_get_task_struct(t) \
> @@ -51,7 +56,24 @@ struct damon_task {
> struct list_head list;
> };
>
> +/*
> + * For each 'sample_interval', DAMON checks whether each region is accessed or
> + * not. It aggregates and keeps the access information (number of accesses to
> + * each region) for each 'aggr_interval' time.
> + *
> + * All time intervals are in micro-seconds.
> + */
> struct damon_ctx {
> + unsigned long sample_interval;
> + unsigned long aggr_interval;
> + unsigned long min_nr_regions;
> +
> + struct timespec64 last_aggregation;
> +
> + struct task_struct *kdamond;
> + bool kdamond_stop;
> + spinlock_t kdamond_lock;
> +
> struct rnd_state rndseed;
>
> struct list_head tasks_list; /* 'damon_task' objects */
> @@ -204,6 +226,493 @@ static unsigned int nr_damon_regions(struct damon_task *t)
> return ret;
> }
>
> +/*
> + * Get the mm_struct of the given task
> + *
> + * Callser should put the mm_struct after use, unless it is NULL.
> + *
> + * Returns the mm_struct of the task on success, NULL on failure
> + */
> +static struct mm_struct *damon_get_mm(struct damon_task *t)
> +{
> + struct task_struct *task;
> + struct mm_struct *mm;
> +
> + task = damon_get_task_struct(t);
> + if (!task)
> + return NULL;
> +
> + mm = get_task_mm(task);
> + put_task_struct(task);
> + return mm;
> +}
> +
> +/*
> + * Size-evenly split a region into 'nr_pieces' small regions
> + *
> + * Returns 0 on success, or negative error code otherwise.
> + */
> +static int damon_split_region_evenly(struct damon_ctx *ctx,
> + struct damon_region *r, unsigned int nr_pieces)
> +{
> + unsigned long sz_orig, sz_piece, orig_end;
> + struct damon_region *piece = NULL, *next;
> + unsigned long start;
> +
> + if (!r || !nr_pieces)
> + return -EINVAL;
> +
> + orig_end = r->vm_end;
> + sz_orig = r->vm_end - r->vm_start;
> + sz_piece = sz_orig / nr_pieces;
> +
> + if (!sz_piece)
> + return -EINVAL;
> +
> + r->vm_end = r->vm_start + sz_piece;
> + next = damon_next_region(r);
> + for (start = r->vm_end; start + sz_piece <= orig_end;
> + start += sz_piece) {
> + piece = damon_new_region(ctx, start, start + sz_piece);
> + damon_add_region(piece, r, next);
> + r = piece;
> + }
> + if (piece)
> + piece->vm_end = orig_end;
> + return 0;
> +}
> +
> +struct region {
> + unsigned long start;
> + unsigned long end;
> +};
> +
> +static unsigned long sz_region(struct region *r)
> +{
> + return r->end - r->start;
> +}
> +
> +static void swap_regions(struct region *r1, struct region *r2)
> +{
> + struct region tmp;
> +
> + tmp = *r1;
> + *r1 = *r2;
> + *r2 = tmp;
> +}
> +
> +/*
> + * Find the three regions in an address space
> + *
> + * vma the head vma of the target address space
> + * regions an array of three 'struct region's that results will be saved
> + *
> + * This function receives an address space and finds three regions in it which
> + * separated by the two biggest unmapped regions in the space. Please refer to
> + * below comments of 'damon_init_regions_of()' function to know why this is
> + * necessary.
> + *
> + * Returns 0 if success, or negative error code otherwise.
> + */
> +static int damon_three_regions_in_vmas(struct vm_area_struct *vma,
> + struct region regions[3])
> +{
> + struct region gap = {0,}, first_gap = {0,}, second_gap = {0,};
> + struct vm_area_struct *last_vma = NULL;
> + unsigned long start = 0;
> +
> + /* Find two biggest gaps so that first_gap > second_gap > others */
> + for (; vma; vma = vma->vm_next) {
> + if (!last_vma) {
> + start = vma->vm_start;
> + last_vma = vma;
> + continue;
> + }
> + gap.start = last_vma->vm_end;
> + gap.end = vma->vm_start;
> + if (sz_region(&gap) > sz_region(&second_gap)) {
> + swap_regions(&gap, &second_gap);
> + if (sz_region(&second_gap) > sz_region(&first_gap))
> + swap_regions(&second_gap, &first_gap);
> + }
> + last_vma = vma;
> + }
> +
> + if (!sz_region(&second_gap) || !sz_region(&first_gap))
> + return -EINVAL;
> +
> + /* Sort the two biggest gaps by address */
> + if (first_gap.start > second_gap.start)
> + swap_regions(&first_gap, &second_gap);
> +
> + /* Store the result */
> + regions[0].start = start;
> + regions[0].end = first_gap.start;
> + regions[1].start = first_gap.end;
> + regions[1].end = second_gap.start;
> + regions[2].start = second_gap.end;
> + regions[2].end = last_vma->vm_end;
> +
> + return 0;
> +}
> +
> +/*
> + * Get the three regions in the given task
> + *
> + * Returns 0 on success, negative error code otherwise.
> + */
> +static int damon_three_regions_of(struct damon_task *t,
> + struct region regions[3])
> +{
> + struct mm_struct *mm;
> + int ret;
> +
> + mm = damon_get_mm(t);
> + if (!mm)
> + return -EINVAL;
> +
> + down_read(&mm->mmap_sem);
> + ret = damon_three_regions_in_vmas(mm->mmap, regions);
> + up_read(&mm->mmap_sem);
> +
> + mmput(mm);
> + return ret;
> +}
> +
> +/*
> + * Initialize the monitoring target regions for the given task
> + *
> + * t the given target task
> + *
> + * Because only a number of small portions of the entire address space
> + * is acutally mapped to the memory and accessed, monitoring the unmapped
> + * regions is wasteful. That said, because we can deal with small noises,
> + * tracking every mapping is not strictly required but could even incur a high
> + * overhead if the mapping frequently changes or the number of mappings is
> + * high. Nonetheless, this may seems very weird. DAMON's dynamic regions
> + * adjustment mechanism, which will be implemented with following commit will
> + * make this more sense.
> + *
> + * For the reason, we convert the complex mappings to three distinct regions
> + * that cover every mapped areas of the address space. Also the two gaps
> + * between the three regions are the two biggest unmapped areas in the given
> + * address space. In detail, this function first identifies the start and the
> + * end of the mappings and the two biggest unmapped areas of the address space.
> + * Then, it constructs the three regions as below:
> + *
> + * [mappings[0]->start, big_two_unmapped_areas[0]->start)
> + * [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
> + * [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
> + *
> + * As usual memory map of processes is as below, the gap between the heap and
> + * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
> + * region and the stack will be two biggest unmapped regions. Because these
> + * gaps are exceptionally huge areas in usual address space, excluding these
> + * two biggest unmapped regions will be sufficient to make a trade-off.
> + *
> + * <heap>
> + * <BIG UNMAPPED REGION 1>
> + * <uppermost mmap()-ed region>
> + * (other mmap()-ed regions and small unmapped regions)
> + * <lowermost mmap()-ed region>
> + * <BIG UNMAPPED REGION 2>
> + * <stack>
> + */
> +static void damon_init_regions_of(struct damon_ctx *c, struct damon_task *t)
> +{
> + struct damon_region *r;
> + struct region regions[3];
> + int i;
> +
> + if (damon_three_regions_of(t, regions)) {
> + pr_err("Failed to get three regions of task %lu\n", t->pid);
> + return;
> + }
> +
> + /* Set the initial three regions of the task */
> + for (i = 0; i < 3; i++) {
> + r = damon_new_region(c, regions[i].start, regions[i].end);
> + damon_add_region_tail(r, t);
> + }
> +
> + /* Split the middle region into 'min_nr_regions - 2' regions */
> + r = damon_nth_region_of(t, 1);
> + if (damon_split_region_evenly(c, r, c->min_nr_regions - 2))
> + pr_warn("Init middle region failed to be split\n");
> +}
> +
> +/* Initialize '->regions_list' of every task */
> +static void kdamond_init_regions(struct damon_ctx *ctx)
> +{
> + struct damon_task *t;
> +
> + damon_for_each_task(ctx, t)
> + damon_init_regions_of(ctx, t);
> +}
> +
> +/*
> + * Check whether the given region has accessed since the last check
> + *
> + * mm 'mm_struct' for the given virtual address space
> + * r the region to be checked
> + */
> +static void kdamond_check_access(struct damon_ctx *ctx,
> + struct mm_struct *mm, struct damon_region *r)
> +{
> + pte_t *pte = NULL;
> + pmd_t *pmd = NULL;
> + spinlock_t *ptl;
> +
> + if (follow_pte_pmd(mm, r->sampling_addr, NULL, &pte, &pmd, &ptl))
> + goto mkold;
> +
> + /* Read the page table access bit of the page */
> + if (pte && pte_young(*pte))
> + r->nr_accesses++;
> +#ifdef CONFIG_TRANSPARENT_HUGEPAGE
> + else if (pmd && pmd_young(*pmd))
> + r->nr_accesses++;
> +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
> +
> + spin_unlock(ptl);
> +
> +mkold:
> + /* mkold next target */
> + r->sampling_addr = damon_rand(ctx, r->vm_start, r->vm_end);
> +
> + if (follow_pte_pmd(mm, r->sampling_addr, NULL, &pte, &pmd, &ptl))
> + return;
> +
> + if (pte) {
> + if (pte_young(*pte)) {
> + clear_page_idle(pte_page(*pte));
> + set_page_young(pte_page(*pte));
> + }
> + *pte = pte_mkold(*pte);
> + }
> +#ifdef CONFIG_TRANSPARENT_HUGEPAGE
> + else if (pmd) {
> + if (pmd_young(*pmd)) {
> + clear_page_idle(pmd_page(*pmd));
> + set_page_young(pmd_page(*pmd));
> + }
> + *pmd = pmd_mkold(*pmd);
> + }
> +#endif
> +
> + spin_unlock(ptl);
> +}
> +
> +/*
> + * Check whether a time interval is elapsed
> + *
> + * baseline the time to check whether the interval has elapsed since
> + * interval the time interval (microseconds)
> + *
> + * See whether the given time interval has passed since the given baseline
> + * time. If so, it also updates the baseline to current time for next check.
> + *
> + * Returns true if the time interval has passed, or false otherwise.
> + */
> +static bool damon_check_reset_time_interval(struct timespec64 *baseline,
> + unsigned long interval)
> +{
> + struct timespec64 now;
> +
> + ktime_get_coarse_ts64(&now);
> + if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) <
> + interval * 1000)
> + return false;
> + *baseline = now;
> + return true;
> +}
> +
> +/*
> + * Check whether it is time to flush the aggregated information
> + */
> +static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx)
> +{
> + return damon_check_reset_time_interval(&ctx->last_aggregation,
> + ctx->aggr_interval);
> +}
> +
> +/*
> + * Reset the aggregated monitoring results
> + */
> +static void kdamond_flush_aggregated(struct damon_ctx *c)
> +{
> + struct damon_task *t;
> + struct damon_region *r;
> +
> + damon_for_each_task(c, t) {
> + damon_for_each_region(r, t)
> + r->nr_accesses = 0;
> + }
> +}
> +
> +/*
> + * Check whether current monitoring should be stopped
> + *
> + * If users asked to stop, need stop. Even though no user has asked to stop,
> + * need stop if every target task has dead.
> + *
> + * Returns true if need to stop current monitoring.
> + */
> +static bool kdamond_need_stop(struct damon_ctx *ctx)
> +{
> + struct damon_task *t;
> + struct task_struct *task;
> + bool stop;
> +
> + spin_lock(&ctx->kdamond_lock);
> + stop = ctx->kdamond_stop;
> + spin_unlock(&ctx->kdamond_lock);
> + if (stop)
> + return true;
> +
> + damon_for_each_task(ctx, t) {
> + task = damon_get_task_struct(t);
> + if (task) {
> + put_task_struct(task);
> + return false;
> + }
> + }
> +
> + return true;
> +}
> +
> +/*
> + * The monitoring daemon that runs as a kernel thread
> + */
> +static int kdamond_fn(void *data)
> +{
> + struct damon_ctx *ctx = (struct damon_ctx *)data;
> + struct damon_task *t;
> + struct damon_region *r, *next;
> + struct mm_struct *mm;
> +
> + pr_info("kdamond (%d) starts\n", ctx->kdamond->pid);
> + kdamond_init_regions(ctx);
> + while (!kdamond_need_stop(ctx)) {
> + damon_for_each_task(ctx, t) {
> + mm = damon_get_mm(t);
> + if (!mm)
> + continue;
> + damon_for_each_region(r, t)
> + kdamond_check_access(ctx, mm, r);
> + mmput(mm);
> + }
> +
> + if (kdamond_aggregate_interval_passed(ctx))
> + kdamond_flush_aggregated(ctx);
> +
> + usleep_range(ctx->sample_interval, ctx->sample_interval + 1);
> + }
> + damon_for_each_task(ctx, t) {
> + damon_for_each_region_safe(r, next, t)
> + damon_destroy_region(r);
> + }
> + pr_info("kdamond (%d) finishes\n", ctx->kdamond->pid);
> + spin_lock(&ctx->kdamond_lock);
> + ctx->kdamond = NULL;
> + spin_unlock(&ctx->kdamond_lock);
> + return 0;
> +}
> +
> +/*
> + * Controller functions
> + */
> +
> +/*
> + * Start or stop the kdamond
> + *
> + * Returns 0 if success, negative error code otherwise.
> + */
> +static int damon_turn_kdamond(struct damon_ctx *ctx, bool on)
> +{
> + spin_lock(&ctx->kdamond_lock);
> + ctx->kdamond_stop = !on;
> + if (!ctx->kdamond && on) {
> + ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond");

Can't do this under a spin lock.

> + if (!ctx->kdamond)
> + goto fail;
> + goto success;
> + }
> + if (ctx->kdamond && !on) {
> + spin_unlock(&ctx->kdamond_lock);
> + while (true) {
> + spin_lock(&ctx->kdamond_lock);
> + if (!ctx->kdamond)
> + goto success;
> + spin_unlock(&ctx->kdamond_lock);
> +
> + usleep_range(ctx->sample_interval,
> + ctx->sample_interval * 2);
> + }
> + }
> +
> + /* tried to turn on while turned on, or turn off while turned off */
> +
> +fail:
> + spin_unlock(&ctx->kdamond_lock);
> + return -EINVAL;
> +
> +success:
> + spin_unlock(&ctx->kdamond_lock);
> + return 0;
> +}
> +
> +/*
> + * This function should not be called while the kdamond is running.
> + */
> +static int damon_set_pids(struct damon_ctx *ctx,
> + unsigned long *pids, ssize_t nr_pids)
> +{
> + ssize_t i;
> + struct damon_task *t, *next;
> +
> + damon_for_each_task_safe(ctx, t, next)
> + damon_destroy_task(t);
> +
> + for (i = 0; i < nr_pids; i++) {
> + t = damon_new_task(pids[i]);
> + if (!t) {
> + pr_err("Failed to alloc damon_task\n");
> + return -ENOMEM;
> + }
> + damon_add_task_tail(ctx, t);
> + }
> +
> + return 0;
> +}
> +
> +/*
> + * Set attributes for the monitoring
> + *
> + * sample_int time interval between samplings
> + * aggr_int time interval between aggregations
> + * min_nr_reg minimal number of regions
> + *
> + * This function should not be called while the kdamond is running.
> + * Every time interval is in micro-seconds.
> + *
> + * Returns 0 on success, negative error code otherwise.
> + */
> +static int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int,
> + unsigned long aggr_int, unsigned long min_nr_reg)
> +{
> + if (min_nr_reg < 3) {
> + pr_err("min_nr_regions (%lu) should be bigger than 2\n",
> + min_nr_reg);
> + return -EINVAL;
> + }
> +
> + ctx->sample_interval = sample_int;
> + ctx->aggr_interval = aggr_int;
> + ctx->min_nr_regions = min_nr_reg;
> + return 0;
> +}
> +
> static int __init damon_init(void)
> {
> pr_info("init\n");
> diff --git a/mm/page_ext.c b/mm/page_ext.c
> index 4ade843ff588..71169b45bba9 100644
> --- a/mm/page_ext.c
> +++ b/mm/page_ext.c
> @@ -131,6 +131,7 @@ struct page_ext *lookup_page_ext(const struct page *page)
> MAX_ORDER_NR_PAGES);
> return get_entry(base, index);
> }
> +EXPORT_SYMBOL_GPL(lookup_page_ext);
>
> static int __init alloc_node_page_ext(int nid)
> {