drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c:483:35: sparse: sparse: incorrect type in assignment (different base types)
From: kernel test robot
Date: Sun Sep 06 2020 - 04:53:38 EST
tree: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git master
head: dd9fb9bb3340c791a2be106fdc895db75f177343
commit: 1e02e6fbdadb3a0cb56294ff37eeeb8109e1f493 crypto: sun4i-ss - add the A33 variant of SS
date: 9 months ago
config: arm64-randconfig-s031-20200906 (attached as .config)
compiler: aarch64-linux-gcc (GCC) 9.3.0
reproduce:
wget https://raw.githubusercontent.com/intel/lkp-tests/master/sbin/make.cross -O ~/bin/make.cross
chmod +x ~/bin/make.cross
# apt-get install sparse
# sparse version: v0.6.2-191-g10164920-dirty
git checkout 1e02e6fbdadb3a0cb56294ff37eeeb8109e1f493
# save the attached .config to linux build tree
COMPILER_INSTALL_PATH=$HOME/0day COMPILER=gcc-9.3.0 make.cross C=1 CF='-fdiagnostic-prefix -D__CHECK_ENDIAN__' ARCH=arm64
If you fix the issue, kindly add following tag as appropriate
Reported-by: kernel test robot <lkp@xxxxxxxxx>
sparse warnings: (new ones prefixed by >>)
drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c:412:28: sparse: sparse: invalid assignment: &=
drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c:412:28: sparse: left side has type restricted __le32
drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c:412:28: sparse: right side has type unsigned long
drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c:419:12: sparse: sparse: invalid assignment: |=
drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c:419:12: sparse: left side has type restricted __le32
drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c:419:12: sparse: right side has type int
>> drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c:483:35: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [assigned] [usertype] v @@ got restricted __le32 [usertype] @@
drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c:483:35: sparse: expected unsigned int [assigned] [usertype] v
drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c:483:35: sparse: got restricted __le32 [usertype]
drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c:485:35: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [assigned] [usertype] v @@ got restricted __be32 [usertype] @@
drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c:485:35: sparse: expected unsigned int [assigned] [usertype] v
drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c:485:35: sparse: got restricted __be32 [usertype]
drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c:490:27: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [addressable] [assigned] [usertype] v @@ got restricted __le32 [usertype] @@
drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c:490:27: sparse: expected unsigned int [addressable] [assigned] [usertype] v
drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c:490:27: sparse: got restricted __le32 [usertype]
# https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1e02e6fbdadb3a0cb56294ff37eeeb8109e1f493
git remote add linus https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
git fetch --no-tags linus master
git checkout 1e02e6fbdadb3a0cb56294ff37eeeb8109e1f493
vim +483 drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c
148
149 /*
150 * sun4i_hash_update: update hash engine
151 *
152 * Could be used for both SHA1 and MD5
153 * Write data by step of 32bits and put then in the SS.
154 *
155 * Since we cannot leave partial data and hash state in the engine,
156 * we need to get the hash state at the end of this function.
157 * We can get the hash state every 64 bytes
158 *
159 * So the first work is to get the number of bytes to write to SS modulo 64
160 * The extra bytes will go to a temporary buffer op->buf storing op->len bytes
161 *
162 * So at the begin of update()
163 * if op->len + areq->nbytes < 64
164 * => all data will be written to wait buffer (op->buf) and end=0
165 * if not, write all data from op->buf to the device and position end to
166 * complete to 64bytes
167 *
168 * example 1:
169 * update1 60o => op->len=60
170 * update2 60o => need one more word to have 64 bytes
171 * end=4
172 * so write all data from op->buf and one word of SGs
173 * write remaining data in op->buf
174 * final state op->len=56
175 */
176 static int sun4i_hash(struct ahash_request *areq)
177 {
178 /*
179 * i is the total bytes read from SGs, to be compared to areq->nbytes
180 * i is important because we cannot rely on SG length since the sum of
181 * SG->length could be greater than areq->nbytes
182 *
183 * end is the position when we need to stop writing to the device,
184 * to be compared to i
185 *
186 * in_i: advancement in the current SG
187 */
188 unsigned int i = 0, end, fill, min_fill, nwait, nbw = 0, j = 0, todo;
189 unsigned int in_i = 0;
190 u32 spaces, rx_cnt = SS_RX_DEFAULT, bf[32] = {0}, v, ivmode = 0;
191 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
192 struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
193 struct sun4i_tfm_ctx *tfmctx = crypto_ahash_ctx(tfm);
194 struct sun4i_ss_ctx *ss = tfmctx->ss;
195 struct scatterlist *in_sg = areq->src;
196 struct sg_mapping_iter mi;
197 int in_r, err = 0;
198 size_t copied = 0;
199 __le32 wb = 0;
200
201 dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x",
202 __func__, crypto_tfm_alg_name(areq->base.tfm),
203 op->byte_count, areq->nbytes, op->mode,
204 op->len, op->hash[0]);
205
206 if (unlikely(!areq->nbytes) && !(op->flags & SS_HASH_FINAL))
207 return 0;
208
209 /* protect against overflow */
210 if (unlikely(areq->nbytes > UINT_MAX - op->len)) {
211 dev_err(ss->dev, "Cannot process too large request\n");
212 return -EINVAL;
213 }
214
215 if (op->len + areq->nbytes < 64 && !(op->flags & SS_HASH_FINAL)) {
216 /* linearize data to op->buf */
217 copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
218 op->buf + op->len, areq->nbytes, 0);
219 op->len += copied;
220 return 0;
221 }
222
223 spin_lock_bh(&ss->slock);
224
225 /*
226 * if some data have been processed before,
227 * we need to restore the partial hash state
228 */
229 if (op->byte_count) {
230 ivmode = SS_IV_ARBITRARY;
231 for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
232 writel(op->hash[i], ss->base + SS_IV0 + i * 4);
233 }
234 /* Enable the device */
235 writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
236
237 if (!(op->flags & SS_HASH_UPDATE))
238 goto hash_final;
239
240 /* start of handling data */
241 if (!(op->flags & SS_HASH_FINAL)) {
242 end = ((areq->nbytes + op->len) / 64) * 64 - op->len;
243
244 if (end > areq->nbytes || areq->nbytes - end > 63) {
245 dev_err(ss->dev, "ERROR: Bound error %u %u\n",
246 end, areq->nbytes);
247 err = -EINVAL;
248 goto release_ss;
249 }
250 } else {
251 /* Since we have the flag final, we can go up to modulo 4 */
252 if (areq->nbytes < 4)
253 end = 0;
254 else
255 end = ((areq->nbytes + op->len) / 4) * 4 - op->len;
256 }
257
258 /* TODO if SGlen % 4 and !op->len then DMA */
259 i = 1;
260 while (in_sg && i == 1) {
261 if (in_sg->length % 4)
262 i = 0;
263 in_sg = sg_next(in_sg);
264 }
265 if (i == 1 && !op->len && areq->nbytes)
266 dev_dbg(ss->dev, "We can DMA\n");
267
268 i = 0;
269 sg_miter_start(&mi, areq->src, sg_nents(areq->src),
270 SG_MITER_FROM_SG | SG_MITER_ATOMIC);
271 sg_miter_next(&mi);
272 in_i = 0;
273
274 do {
275 /*
276 * we need to linearize in two case:
277 * - the buffer is already used
278 * - the SG does not have enough byte remaining ( < 4)
279 */
280 if (op->len || (mi.length - in_i) < 4) {
281 /*
282 * if we have entered here we have two reason to stop
283 * - the buffer is full
284 * - reach the end
285 */
286 while (op->len < 64 && i < end) {
287 /* how many bytes we can read from current SG */
288 in_r = min(end - i, 64 - op->len);
289 in_r = min_t(size_t, mi.length - in_i, in_r);
290 memcpy(op->buf + op->len, mi.addr + in_i, in_r);
291 op->len += in_r;
292 i += in_r;
293 in_i += in_r;
294 if (in_i == mi.length) {
295 sg_miter_next(&mi);
296 in_i = 0;
297 }
298 }
299 if (op->len > 3 && !(op->len % 4)) {
300 /* write buf to the device */
301 writesl(ss->base + SS_RXFIFO, op->buf,
302 op->len / 4);
303 op->byte_count += op->len;
304 op->len = 0;
305 }
306 }
307 if (mi.length - in_i > 3 && i < end) {
308 /* how many bytes we can read from current SG */
309 in_r = min_t(size_t, mi.length - in_i, areq->nbytes - i);
310 in_r = min_t(size_t, ((mi.length - in_i) / 4) * 4, in_r);
311 /* how many bytes we can write in the device*/
312 todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4);
313 writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo);
314 op->byte_count += todo * 4;
315 i += todo * 4;
316 in_i += todo * 4;
317 rx_cnt -= todo;
318 if (!rx_cnt) {
319 spaces = readl(ss->base + SS_FCSR);
320 rx_cnt = SS_RXFIFO_SPACES(spaces);
321 }
322 if (in_i == mi.length) {
323 sg_miter_next(&mi);
324 in_i = 0;
325 }
326 }
327 } while (i < end);
328
329 /*
330 * Now we have written to the device all that we can,
331 * store the remaining bytes in op->buf
332 */
333 if ((areq->nbytes - i) < 64) {
334 while (i < areq->nbytes && in_i < mi.length && op->len < 64) {
335 /* how many bytes we can read from current SG */
336 in_r = min(areq->nbytes - i, 64 - op->len);
337 in_r = min_t(size_t, mi.length - in_i, in_r);
338 memcpy(op->buf + op->len, mi.addr + in_i, in_r);
339 op->len += in_r;
340 i += in_r;
341 in_i += in_r;
342 if (in_i == mi.length) {
343 sg_miter_next(&mi);
344 in_i = 0;
345 }
346 }
347 }
348
349 sg_miter_stop(&mi);
350
351 /*
352 * End of data process
353 * Now if we have the flag final go to finalize part
354 * If not, store the partial hash
355 */
356 if (op->flags & SS_HASH_FINAL)
357 goto hash_final;
358
359 writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
360 i = 0;
361 do {
362 v = readl(ss->base + SS_CTL);
363 i++;
364 } while (i < SS_TIMEOUT && (v & SS_DATA_END));
365 if (unlikely(i >= SS_TIMEOUT)) {
366 dev_err_ratelimited(ss->dev,
367 "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
368 i, SS_TIMEOUT, v, areq->nbytes);
369 err = -EIO;
370 goto release_ss;
371 }
372
373 /*
374 * The datasheet isn't very clear about when to retrieve the digest. The
375 * bit SS_DATA_END is cleared when the engine has processed the data and
376 * when the digest is computed *but* it doesn't mean the digest is
377 * available in the digest registers. Hence the delay to be sure we can
378 * read it.
379 */
380 ndelay(1);
381
382 for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
383 op->hash[i] = readl(ss->base + SS_MD0 + i * 4);
384
385 goto release_ss;
386
387 /*
388 * hash_final: finalize hashing operation
389 *
390 * If we have some remaining bytes, we write them.
391 * Then ask the SS for finalizing the hashing operation
392 *
393 * I do not check RX FIFO size in this function since the size is 32
394 * after each enabling and this function neither write more than 32 words.
395 * If we come from the update part, we cannot have more than
396 * 3 remaining bytes to write and SS is fast enough to not care about it.
397 */
398
399 hash_final:
400
401 /* write the remaining words of the wait buffer */
402 if (op->len) {
403 nwait = op->len / 4;
404 if (nwait) {
405 writesl(ss->base + SS_RXFIFO, op->buf, nwait);
406 op->byte_count += 4 * nwait;
407 }
408
409 nbw = op->len - 4 * nwait;
410 if (nbw) {
411 wb = cpu_to_le32(*(u32 *)(op->buf + nwait * 4));
412 wb &= GENMASK((nbw * 8) - 1, 0);
413
414 op->byte_count += nbw;
415 }
416 }
417
418 /* write the remaining bytes of the nbw buffer */
419 wb |= ((1 << 7) << (nbw * 8));
420 bf[j++] = le32_to_cpu(wb);
421
422 /*
423 * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1)
424 * I take the operations from other MD5/SHA1 implementations
425 */
426
427 /* last block size */
428 fill = 64 - (op->byte_count % 64);
429 min_fill = 2 * sizeof(u32) + (nbw ? 0 : sizeof(u32));
430
431 /* if we can't fill all data, jump to the next 64 block */
432 if (fill < min_fill)
433 fill += 64;
434
435 j += (fill - min_fill) / sizeof(u32);
436
437 /* write the length of data */
438 if (op->mode == SS_OP_SHA1) {
439 __be64 *bits = (__be64 *)&bf[j];
440 *bits = cpu_to_be64(op->byte_count << 3);
441 j += 2;
442 } else {
443 __le64 *bits = (__le64 *)&bf[j];
444 *bits = cpu_to_le64(op->byte_count << 3);
445 j += 2;
446 }
447 writesl(ss->base + SS_RXFIFO, bf, j);
448
449 /* Tell the SS to stop the hashing */
450 writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
451
452 /*
453 * Wait for SS to finish the hash.
454 * The timeout could happen only in case of bad overclocking
455 * or driver bug.
456 */
457 i = 0;
458 do {
459 v = readl(ss->base + SS_CTL);
460 i++;
461 } while (i < SS_TIMEOUT && (v & SS_DATA_END));
462 if (unlikely(i >= SS_TIMEOUT)) {
463 dev_err_ratelimited(ss->dev,
464 "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
465 i, SS_TIMEOUT, v, areq->nbytes);
466 err = -EIO;
467 goto release_ss;
468 }
469
470 /*
471 * The datasheet isn't very clear about when to retrieve the digest. The
472 * bit SS_DATA_END is cleared when the engine has processed the data and
473 * when the digest is computed *but* it doesn't mean the digest is
474 * available in the digest registers. Hence the delay to be sure we can
475 * read it.
476 */
477 ndelay(1);
478
479 /* Get the hash from the device */
480 if (op->mode == SS_OP_SHA1) {
481 for (i = 0; i < 5; i++) {
482 if (ss->variant->sha1_in_be)
> 483 v = cpu_to_le32(readl(ss->base + SS_MD0 + i * 4));
484 else
485 v = cpu_to_be32(readl(ss->base + SS_MD0 + i * 4));
486 memcpy(areq->result + i * 4, &v, 4);
487 }
488 } else {
489 for (i = 0; i < 4; i++) {
490 v = cpu_to_le32(readl(ss->base + SS_MD0 + i * 4));
491 memcpy(areq->result + i * 4, &v, 4);
492 }
493 }
494
495 release_ss:
496 writel(0, ss->base + SS_CTL);
497 spin_unlock_bh(&ss->slock);
498 return err;
499 }
500
---
0-DAY CI Kernel Test Service, Intel Corporation
https://lists.01.org/hyperkitty/list/kbuild-all@xxxxxxxxxxxx
Attachment:
.config.gz
Description: application/gzip