[PATCH v37 23/24] docs: x86/sgx: Document SGX micro architecture and kernel internals

From: Jarkko Sakkinen
Date: Fri Sep 11 2020 - 08:52:33 EST

Document the Intel SGX kernel architecture. The fine-grained micro
architecture details can be looked up from Intel SDM Volume 3D.

Cc: linux-doc@xxxxxxxxxxxxxxx
Acked-by: Randy Dunlap <rdunlap@xxxxxxxxxxxxx>
Co-developed-by: Sean Christopherson <sean.j.christopherson@xxxxxxxxx>
Signed-off-by: Sean Christopherson <sean.j.christopherson@xxxxxxxxx>
Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@xxxxxxxxxxxxxxx>
Documentation/x86/index.rst | 1 +
Documentation/x86/sgx.rst | 200 ++++++++++++++++++++++++++++++++++++
2 files changed, 201 insertions(+)
create mode 100644 Documentation/x86/sgx.rst

diff --git a/Documentation/x86/index.rst b/Documentation/x86/index.rst
index 265d9e9a093b..807290bf357c 100644
--- a/Documentation/x86/index.rst
+++ b/Documentation/x86/index.rst
@@ -30,3 +30,4 @@ x86-specific Documentation
+ sgx
diff --git a/Documentation/x86/sgx.rst b/Documentation/x86/sgx.rst
new file mode 100644
index 000000000000..706a846ae353
--- /dev/null
+++ b/Documentation/x86/sgx.rst
@@ -0,0 +1,200 @@
+.. SPDX-License-Identifier: GPL-2.0
+*Software Guard eXtensions (SGX)* is a set of instructions that enable ring-3
+applications to set aside private regions of code and data. These regions are
+called enclaves. An enclave can be entered to a fixed set of entry points. Only
+a CPU running inside the enclave can access its code and data.
+The support can be determined by
+ ``grep sgx /proc/cpuinfo``
+Enclave Page Cache
+SGX utilizes an *Enclave Page Cache (EPC)* to store pages that are associated
+with an enclave. It is contained in a BIOS reserved region of physical memory.
+Unlike pages used for regular memory, pages can only be accessed outside the
+enclave for different purposes with the instructions **ENCLS**, **ENCLV** and
+Direct memory accesses to an enclave can be only done by a CPU executing inside
+the enclave. An enclave can be entered with **ENCLU[EENTER]** to a fixed set of
+entry points. However, a CPU executing inside the enclave can do outside memory
+Page Types
+**SGX Enclave Control Structure (SECS)**
+ Enclave's address range, attributes and other global data are defined
+ by this structure.
+**Regular (REG)**
+ Regular EPC pages contain the code and data of an enclave.
+**Thread Control Structure (TCS)**
+ Thread Control Structure pages define the entry points to an enclave and
+ track the execution state of an enclave thread.
+**Version Array (VA)**
+ Version Array pages contain 512 slots, each of which can contain a version
+ number for a page evicted from the EPC.
+Enclave Page Cache Map
+The processor tracks EPC pages via the *Enclave Page Cache Map (EPCM)*. EPCM
+contains an entry for each EPC page, which describes the owning enclave, access
+rights and page type among the other things.
+The permissions from EPCM is consulted if and only if walking the kernel page
+tables succeeds. The total permissions are thus a conjunction between page table
+and EPCM permissions.
+For all intents and purposes the SGX architecture allows the processor to
+invalidate all EPCM entries at will, i.e. requires that software be prepared to
+handle an EPCM fault at any time. The contents of EPC are encrypted with an
+ephemeral key, which is lost on power transitions.
+EPC management
+EPC pages do not have ``struct page`` instances. They are IO memory from kernel
+perspective. The consequence is that they are always mapped as shared memory.
+Kernel defines ``/dev/sgx/enclave`` that can be mapped as ``MAP_SHARED`` to
+define the address range for an enclave.
+EPC Over-subscription
+When the amount of free EPC pages goes below a low watermark the swapping thread
+starts reclaiming pages. The pages that do not have the **A** bit set are
+selected as victim pages.
+Launch Control
+SGX provides a launch control mechanism. After all enclave pages have been
+copied, kernel executes **ENCLS[EINIT]**, which initializes the enclave. Only
+after this the CPU can execute inside the enclave.
+This leaf function takes an RSA-3072 signature of the enclave measurement and an
+optional cryptographic token. Linux does not take advantage of launch tokens.
+The instruction checks that the signature is signed with the key defined in
+**IA32_SGXLEPUBKEYHASH?** MSRs and the measurement is correct. If so, the
+enclave is allowed to be executed.
+MSRs can be configured by the BIOS to be either readable or writable. Linux
+supports only writable configuration in order to give full control to the kernel
+on launch control policy. Readable configuration requires the use of previously
+mentioned launch tokens.
+The current kernel implementation supports only writable MSRs. The launch is
+performed by setting the MSRs to the hash of the enclave signer's public key.
+The alternative would be to have *a launch enclave* that would be signed with
+the key set into MSRs, which would then generate launch tokens for other
+enclaves. This would only make sense with read-only MSRs, and thus the option
+has been discarded.
+Local Attestation
+In local attestation an enclave creates a **REPORT** data structure with
+**ENCLS[EREPORT]**, which describes the origin of an enclave. In particular, it
+contains a AES-CMAC of the enclave contents signed with a report key unique to
+each processor. All enclaves have access to this key.
+This mechanism can also be used in addition as a communication channel as the
+**REPORT** data structure includes a 64-byte field for variable information.
+Remote Attestation
+Provisioning Certification Enclave (PCE), the root of trust for other enclaves,
+generates a signing key from a fused key called Provisioning Certification Key.
+PCE can then use this key to certify an attestation key of a Quoting Enclave
+(QE), e.g. we get the chain of trust down to the hardware if the Intel signed
+PCE is used.
+To use the needed keys, ATTRIBUTE.PROVISIONKEY is required but should be only
+allowed for those who actually need it so that only the trusted parties can
+certify QE's.
+A device file called /dev/sgx/provision exists to provide file descriptors that
+act as privilege tokens for building provisioning enclaves. These can be
+associated with enclaves with the ioctl SGX_IOC_ENCLAVE_SET_ATTRIBUTE.
+Encryption engines
+In order to conceal the enclave data while it is out of the CPU package,
+memory controller has to be extended with an encryption engine. MC can then
+route incoming requests coming from CPU cores running in enclave mode to the
+encryption engine.
+In CPUs prior to Icelake, Memory Encryption Engine (MEE) is used to
+encrypt pages leaving the CPU caches. MEE uses a n-ary Merkle tree with root in
+SRAM to maintain integrity of the encrypted data. This provides integrity and
+anti-replay protection but does not scale to large memory sizes because the time
+required to update the Merkle tree grows logarithmically in relation to the
+memory size.
+CPUs starting from Icelake use Total Memory Encryption (TME) in the place of
+MEE. SGX using TME does not have an integrity Merkle tree, which means losing HW
+protections from integrity and replay-attacks, but includes additional changes
+to prevent cipher text from being return and SW memory aliases from being
+created. DMA remains blocked by the PRMRR to the EPC memory even systems that
+use TME (SDM section 41.10).
+Backing storage
+Backing storage is shared and not accounted. It is implemented as a private
+shmem file. Providing a backing storage in some form from user space is not
+possible - accounting would go to invalid state as reclaimed pages would get
+accounted to the processes of which behalf the kernel happened to be acting on.
+Access control
+`mmap()` permissions are capped by the enclave permissions. A direct
+consequence of this is that all the pages for an address range must be added
+before `mmap()` can be applied. Effectively an enclave page with minimum
+permissions in the address range sets the permission cap for the mapping
+Usage Models
+Shared Library
+Sensitive data and the code that acts on it is partitioned from the application
+into a separate library. The library is then linked as a DSO which can be loaded
+into an enclave. The application can then make individual function calls into
+the enclave through special SGX instructions. A run-time within the enclave is
+configured to marshal function parameters into and out of the enclave and to
+call the correct library function.
+Application Container
+An application may be loaded into a container enclave which is specially
+configured with a library OS and run-time which permits the application to run.
+The enclave run-time and library OS work together to execute the application
+when a thread enters the enclave.
+"Supporting Third Party Attestation for IntelĀ® SGX with IntelĀ® Data Center
+Attestation Primitives"
+ https://software.intel.com/sites/default/files/managed/f1/b8/intel-sgx-support-for-third-party-attestation.pdf