[PATCH v14 08/26] x86/mm: Introduce _PAGE_COW

From: Yu-cheng Yu
Date: Fri Oct 09 2020 - 14:34:39 EST


There is essentially no room left in the x86 hardware PTEs on some OSes
(not Linux). That left the hardware architects looking for a way to
represent a new memory type (shadow stack) within the existing bits.
They chose to repurpose a lightly-used state: Write=0,Dirty=1.

The reason it's lightly used is that Dirty=1 is normally set by hardware
and cannot normally be set by hardware on a Write=0 PTE. Software must
normally be involved to create one of these PTEs, so software can simply
opt to not create them.

But that leaves us with a Linux problem: we need to ensure we never create
Write=0,Dirty=1 PTEs. In places where we do create them, we need to find
an alternative way to represent them _without_ using the same hardware bit
combination. Thus, enter _PAGE_COW. This results in the following:

(a) A modified, copy-on-write (COW) page: (R/O + _PAGE_COW)
(b) A R/O page that has been COW'ed: (R/O + _PAGE_COW)
The user page is in a R/O VMA, and get_user_pages() needs a writable
copy. The page fault handler creates a copy of the page and sets
the new copy's PTE as R/O and _PAGE_COW.
(c) A shadow stack PTE: (R/O + _PAGE_DIRTY_HW)
(d) A shared shadow stack PTE: (R/O + _PAGE_COW)
When a shadow stack page is being shared among processes (this happens
at fork()), its PTE is cleared of _PAGE_DIRTY_HW, so the next shadow
stack access causes a fault, and the page is duplicated and
_PAGE_DIRTY_HW is set again. This is the COW equivalent for shadow
stack pages, even though it's copy-on-access rather than copy-on-write.
(e) A page where the processor observed a Write=1 PTE, started a write, set
Dirty=1, but then observed a Write=0 PTE. That's possible today, but
will not happen on processors that support shadow stack.

Use _PAGE_COW in pte_wrprotect() and _PAGE_DIRTY_HW in pte_mkwrite().
Apply the same changes to pmd and pud.

When this patch is applied, there are six free bits left in the 64-bit PTE.
There are no more free bits in the 32-bit PTE (except for PAE) and shadow
stack is not implemented for the 32-bit kernel.

Signed-off-by: Yu-cheng Yu <yu-cheng.yu@xxxxxxxxx>
Reviewed-by: Kees Cook <keescook@xxxxxxxxxxxx>

v10:
- Change _PAGE_BIT_DIRTY_SW to _PAGE_BIT_COW, as it is used for copy-on-
write PTEs.
- Update pte_write() and treat shadow stack as writable.
- Change *_mkdirty_shstk() to *_mkwrite_shstk() as these make shadow stack
pages writable.
- Use bit test & shift to move _PAGE_BIT_DIRTY_HW to _PAGE_BIT_COW.
- Change static_cpu_has() to cpu_feature_enabled().
- Revise commit log.

v9:
- Remove pte_move_flags() etc. and put the logic directly in
pte_wrprotect()/pte_mkwrite() etc.
- Change compile-time conditionals to run-time checks.
- Split out pte_modify()/pmd_modify() to a new patch.
- Update comments.
---
arch/x86/include/asm/pgtable.h | 120 ++++++++++++++++++++++++---
arch/x86/include/asm/pgtable_types.h | 41 ++++++++-
2 files changed, 150 insertions(+), 11 deletions(-)

diff --git a/arch/x86/include/asm/pgtable.h b/arch/x86/include/asm/pgtable.h
index 86b7acd221c1..ac4ed814be96 100644
--- a/arch/x86/include/asm/pgtable.h
+++ b/arch/x86/include/asm/pgtable.h
@@ -122,9 +122,9 @@ extern pmdval_t early_pmd_flags;
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
-static inline int pte_dirty(pte_t pte)
+static inline bool pte_dirty(pte_t pte)
{
- return pte_flags(pte) & _PAGE_DIRTY_HW;
+ return pte_flags(pte) & _PAGE_DIRTY_BITS;
}


@@ -161,9 +161,9 @@ static inline int pte_young(pte_t pte)
return pte_flags(pte) & _PAGE_ACCESSED;
}

-static inline int pmd_dirty(pmd_t pmd)
+static inline bool pmd_dirty(pmd_t pmd)
{
- return pmd_flags(pmd) & _PAGE_DIRTY_HW;
+ return pmd_flags(pmd) & _PAGE_DIRTY_BITS;
}

static inline int pmd_young(pmd_t pmd)
@@ -171,9 +171,9 @@ static inline int pmd_young(pmd_t pmd)
return pmd_flags(pmd) & _PAGE_ACCESSED;
}

-static inline int pud_dirty(pud_t pud)
+static inline bool pud_dirty(pud_t pud)
{
- return pud_flags(pud) & _PAGE_DIRTY_HW;
+ return pud_flags(pud) & _PAGE_DIRTY_BITS;
}

static inline int pud_young(pud_t pud)
@@ -183,6 +183,12 @@ static inline int pud_young(pud_t pud)

static inline int pte_write(pte_t pte)
{
+ /*
+ * If _PAGE_DIRTY_HW is set, the PTE must either have
+ * _PAGE_RW or be a shadow stack PTE, which is logically writable.
+ */
+ if (cpu_feature_enabled(X86_FEATURE_SHSTK))
+ return pte_flags(pte) & (_PAGE_RW | _PAGE_DIRTY_HW);
return pte_flags(pte) & _PAGE_RW;
}

@@ -334,7 +340,7 @@ static inline pte_t pte_clear_uffd_wp(pte_t pte)

static inline pte_t pte_mkclean(pte_t pte)
{
- return pte_clear_flags(pte, _PAGE_DIRTY_HW);
+ return pte_clear_flags(pte, _PAGE_DIRTY_BITS);
}

static inline pte_t pte_mkold(pte_t pte)
@@ -344,6 +350,17 @@ static inline pte_t pte_mkold(pte_t pte)

static inline pte_t pte_wrprotect(pte_t pte)
{
+ /*
+ * Blindly clearing _PAGE_RW might accidentally create
+ * a shadow stack PTE (RW=0,Dirty=1). Move the hardware
+ * dirty value to the software bit.
+ */
+ if (cpu_feature_enabled(X86_FEATURE_SHSTK)) {
+ pte.pte |= (pte.pte & _PAGE_DIRTY_HW) >>
+ _PAGE_BIT_DIRTY_HW << _PAGE_BIT_COW;
+ pte = pte_clear_flags(pte, _PAGE_DIRTY_HW);
+ }
+
return pte_clear_flags(pte, _PAGE_RW);
}

@@ -354,6 +371,18 @@ static inline pte_t pte_mkexec(pte_t pte)

static inline pte_t pte_mkdirty(pte_t pte)
{
+ pteval_t dirty = _PAGE_DIRTY_HW;
+
+ /* Avoid creating (HW)Dirty=1,Write=0 PTEs */
+ if (cpu_feature_enabled(X86_FEATURE_SHSTK) && !pte_write(pte))
+ dirty = _PAGE_COW;
+
+ return pte_set_flags(pte, dirty | _PAGE_SOFT_DIRTY);
+}
+
+static inline pte_t pte_mkwrite_shstk(pte_t pte)
+{
+ pte = pte_clear_flags(pte, _PAGE_COW);
return pte_set_flags(pte, _PAGE_DIRTY_HW | _PAGE_SOFT_DIRTY);
}

@@ -364,6 +393,13 @@ static inline pte_t pte_mkyoung(pte_t pte)

static inline pte_t pte_mkwrite(pte_t pte)
{
+ if (cpu_feature_enabled(X86_FEATURE_SHSTK)) {
+ if (pte_flags(pte) & _PAGE_COW) {
+ pte = pte_clear_flags(pte, _PAGE_COW);
+ pte = pte_set_flags(pte, _PAGE_DIRTY_HW);
+ }
+ }
+
return pte_set_flags(pte, _PAGE_RW);
}

@@ -435,16 +471,41 @@ static inline pmd_t pmd_mkold(pmd_t pmd)

static inline pmd_t pmd_mkclean(pmd_t pmd)
{
- return pmd_clear_flags(pmd, _PAGE_DIRTY_HW);
+ return pmd_clear_flags(pmd, _PAGE_DIRTY_BITS);
}

static inline pmd_t pmd_wrprotect(pmd_t pmd)
{
+ /*
+ * Blindly clearing _PAGE_RW might accidentally create
+ * a shadow stack PMD (RW=0,Dirty=1). Move the hardware
+ * dirty value to the software bit.
+ */
+ if (cpu_feature_enabled(X86_FEATURE_SHSTK)) {
+ pmdval_t v = native_pmd_val(pmd);
+
+ v |= (v & _PAGE_DIRTY_HW) >> _PAGE_BIT_DIRTY_HW <<
+ _PAGE_BIT_COW;
+ pmd = pmd_clear_flags(__pmd(v), _PAGE_DIRTY_HW);
+ }
+
return pmd_clear_flags(pmd, _PAGE_RW);
}

static inline pmd_t pmd_mkdirty(pmd_t pmd)
{
+ pmdval_t dirty = _PAGE_DIRTY_HW;
+
+ /* Avoid creating (HW)Dirty=1,Write=0 PMDs */
+ if (cpu_feature_enabled(X86_FEATURE_SHSTK) && !(pmd_flags(pmd) & _PAGE_RW))
+ dirty = _PAGE_COW;
+
+ return pmd_set_flags(pmd, dirty | _PAGE_SOFT_DIRTY);
+}
+
+static inline pmd_t pmd_mkwrite_shstk(pmd_t pmd)
+{
+ pmd = pmd_clear_flags(pmd, _PAGE_COW);
return pmd_set_flags(pmd, _PAGE_DIRTY_HW | _PAGE_SOFT_DIRTY);
}

@@ -465,6 +526,13 @@ static inline pmd_t pmd_mkyoung(pmd_t pmd)

static inline pmd_t pmd_mkwrite(pmd_t pmd)
{
+ if (cpu_feature_enabled(X86_FEATURE_SHSTK)) {
+ if (pmd_flags(pmd) & _PAGE_COW) {
+ pmd = pmd_clear_flags(pmd, _PAGE_COW);
+ pmd = pmd_set_flags(pmd, _PAGE_DIRTY_HW);
+ }
+ }
+
return pmd_set_flags(pmd, _PAGE_RW);
}

@@ -489,17 +557,36 @@ static inline pud_t pud_mkold(pud_t pud)

static inline pud_t pud_mkclean(pud_t pud)
{
- return pud_clear_flags(pud, _PAGE_DIRTY_HW);
+ return pud_clear_flags(pud, _PAGE_DIRTY_BITS);
}

static inline pud_t pud_wrprotect(pud_t pud)
{
+ /*
+ * Blindly clearing _PAGE_RW might accidentally create
+ * a shadow stack PUD (RW=0,Dirty=1). Move the hardware
+ * dirty value to the software bit.
+ */
+ if (cpu_feature_enabled(X86_FEATURE_SHSTK)) {
+ pudval_t v = native_pud_val(pud);
+
+ v |= (v & _PAGE_DIRTY_HW) >> _PAGE_BIT_DIRTY_HW <<
+ _PAGE_BIT_COW;
+ pud = pud_clear_flags(__pud(v), _PAGE_DIRTY_HW);
+ }
+
return pud_clear_flags(pud, _PAGE_RW);
}

static inline pud_t pud_mkdirty(pud_t pud)
{
- return pud_set_flags(pud, _PAGE_DIRTY_HW | _PAGE_SOFT_DIRTY);
+ pudval_t dirty = _PAGE_DIRTY_HW;
+
+ /* Avoid creating (HW)Dirty=1,Write=0 PUDs */
+ if (cpu_feature_enabled(X86_FEATURE_SHSTK) && !(pud_flags(pud) & _PAGE_RW))
+ dirty = _PAGE_COW;
+
+ return pud_set_flags(pud, dirty | _PAGE_SOFT_DIRTY);
}

static inline pud_t pud_mkdevmap(pud_t pud)
@@ -519,6 +606,13 @@ static inline pud_t pud_mkyoung(pud_t pud)

static inline pud_t pud_mkwrite(pud_t pud)
{
+ if (cpu_feature_enabled(X86_FEATURE_SHSTK)) {
+ if (pud_flags(pud) & _PAGE_COW) {
+ pud = pud_clear_flags(pud, _PAGE_COW);
+ pud = pud_set_flags(pud, _PAGE_DIRTY_HW);
+ }
+ }
+
return pud_set_flags(pud, _PAGE_RW);
}

@@ -1132,6 +1226,12 @@ extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
#define pmd_write pmd_write
static inline int pmd_write(pmd_t pmd)
{
+ /*
+ * If _PAGE_DIRTY_HW is set, then the PMD must either have
+ * _PAGE_RW or be a shadow stack PMD, which is logically writable.
+ */
+ if (cpu_feature_enabled(X86_FEATURE_SHSTK))
+ return pmd_flags(pmd) & (_PAGE_RW | _PAGE_DIRTY_HW);
return pmd_flags(pmd) & _PAGE_RW;
}

diff --git a/arch/x86/include/asm/pgtable_types.h b/arch/x86/include/asm/pgtable_types.h
index 5f31f1c407b9..75362df8b226 100644
--- a/arch/x86/include/asm/pgtable_types.h
+++ b/arch/x86/include/asm/pgtable_types.h
@@ -23,7 +23,8 @@
#define _PAGE_BIT_SOFTW2 10 /* " */
#define _PAGE_BIT_SOFTW3 11 /* " */
#define _PAGE_BIT_PAT_LARGE 12 /* On 2MB or 1GB pages */
-#define _PAGE_BIT_SOFTW4 58 /* available for programmer */
+#define _PAGE_BIT_SOFTW4 57 /* available for programmer */
+#define _PAGE_BIT_SOFTW5 58 /* available for programmer */
#define _PAGE_BIT_PKEY_BIT0 59 /* Protection Keys, bit 1/4 */
#define _PAGE_BIT_PKEY_BIT1 60 /* Protection Keys, bit 2/4 */
#define _PAGE_BIT_PKEY_BIT2 61 /* Protection Keys, bit 3/4 */
@@ -36,6 +37,16 @@
#define _PAGE_BIT_SOFT_DIRTY _PAGE_BIT_SOFTW3 /* software dirty tracking */
#define _PAGE_BIT_DEVMAP _PAGE_BIT_SOFTW4

+/*
+ * This bit indicates a copy-on-write page, and is different from
+ * _PAGE_BIT_SOFT_DIRTY, which tracks which pages a task writes to.
+ */
+#ifdef CONFIG_X86_64
+#define _PAGE_BIT_COW _PAGE_BIT_SOFTW5 /* copy-on-write */
+#else
+#define _PAGE_BIT_COW 0
+#endif
+
/* If _PAGE_BIT_PRESENT is clear, we use these: */
/* - if the user mapped it with PROT_NONE; pte_present gives true */
#define _PAGE_BIT_PROTNONE _PAGE_BIT_GLOBAL
@@ -117,6 +128,34 @@
#define _PAGE_DEVMAP (_AT(pteval_t, 0))
#endif

+/*
+ * _PAGE_COW is used to separate R/O and copy-on-write PTEs created by
+ * software from the shadow stack PTE setting required by the hardware:
+ * (a) A modified, copy-on-write (COW) page: (R/O + _PAGE_COW)
+ * (b) A R/O page that has been COW'ed: (R/O +_PAGE_COW)
+ * The user page is in a R/O VMA, and get_user_pages() needs a
+ * writable copy. The page fault handler creates a copy of the page
+ * and sets the new copy's PTE as R/O and _PAGE_COW.
+ * (c) A shadow stack PTE: (R/O + _PAGE_DIRTY_HW)
+ * (d) A shared (copy-on-access) shadow stack PTE: (R/O + _PAGE_COW)
+ * When a shadow stack page is being shared among processes (this
+ * happens at fork()), its PTE is cleared of _PAGE_DIRTY_HW, so the
+ * next shadow stack access causes a fault, and the page is duplicated
+ * and _PAGE_DIRTY_HW is set again. This is the COW equivalent for
+ * shadow stack pages, even though it's copy-on-access rather than
+ * copy-on-write.
+ * (e) A page where the processor observed a Write=1 PTE, started a write,
+ * set Dirty=1, but then observed a Write=0 PTE. That's possible
+ * today, but will not happen on processors that support shadow stack.
+ */
+#ifdef CONFIG_X86_SHADOW_STACK_USER
+#define _PAGE_COW (_AT(pteval_t, 1) << _PAGE_BIT_COW)
+#else
+#define _PAGE_COW (_AT(pteval_t, 0))
+#endif
+
+#define _PAGE_DIRTY_BITS (_PAGE_DIRTY_HW | _PAGE_COW)
+
#define _PAGE_PROTNONE (_AT(pteval_t, 1) << _PAGE_BIT_PROTNONE)

/*
--
2.21.0