[PATCH v16 2/8] mtd: rawnand: rockchip: NFC drivers for RK3308, RK2928 and others

From: Yifeng Zhao
Date: Wed Dec 09 2020 - 19:27:14 EST


This driver supports Rockchip NFC (NAND Flash Controller) found on RK3308,
RK2928, RKPX30, RV1108 and other SOCs. The driver has been tested using
8-bit NAND interface on the ARM based RK3308 platform.

Support Rockchip SoCs and NFC versions:
- PX30 and RK3326(NFCv900).
ECC: 16/40/60/70 bits/1KB.
CLOCK: ahb and nfc.
- RK3308 and RV1108(NFCv800).
ECC: 16 bits/1KB.
CLOCK: ahb and nfc.
- RK3036 and RK3128(NFCv622).
ECC: 16/24/40/60 bits/1KB.
CLOCK: ahb and nfc.
- RK3066, RK3188 and RK2928(NFCv600).
ECC: 16/24/40/60 bits/1KB.
CLOCK: ahb.

Supported features:
- Read full page data by DMA.
- Support HW ECC(one step is 1KB).
- Support 2 - 32K page size.
- Support 8 CS(depend on SoCs)

Limitations:
- No support for the ecc step size is 512.
- Untested on some SoCs.
- No support for subpages.
- No support for the builtin randomizer.
- The original bad block mask is not supported. It is recommended to use
the BBT(bad block table).

Suggested-by: Johan Jonker <jbx6244@xxxxxxxxx>
Signed-off-by: Yifeng Zhao <yifeng.zhao@xxxxxxxxxxxxxx>
---

Changes in v16:
- Fix some comments about 'ret' variable.

Changes in v15:
- Use a buffer pointer nfc->page_buf instead of the original two pointers.
- Fix coding style.
- Fix some comments.

Changes in v14:
- Add oob_read and oob_write hook api.
- Support timing config and ecc config for each chips.
- Fix some comments.

Changes in v13:
- The nfc->buffer will realloc while the page size of the second mtd
is large than the first one.
- Fix coding style.
- Fix some comments.

Changes in v12: None
Changes in v11:
- Fix compile error.

Changes in v10:
- Fix compile error on master v5.9-rc7.

Changes in v9:
- The nfc->buffer will realloc while the page size of the second mtd
is large than the first one
- Fix coding style.
- Remove struct rk_nfc_clk.
- Prepend some function with rk_nfc_.
- Replace function readl_poll_timeout_atomic with readl_relaxed_poll_timeout.
- Remove function rk_nfc_read_byte and rk_nfc_write_byte.
- Don't select the die if 'check_only == true' in function rk_nfc_exec_op.
- Modify function rk_nfc_write_page and rk_nfc_write_page_raw.

Changes in v8: None
Changes in v7:
- Rebase to linux-next.
- Fix coding style.
- Reserved 4 bytes at the beginning of the oob area.
- Page raw read and write included ecc data.

Changes in v6:
- The mtd->name set by NAND label property.
- Add some comments.
- Fix compile error.

Changes in v5:
- Add boot blocks support with different ECC for bootROM.
- Rename rockchip-nand.c to rockchip-nand-controller.c.
- Unification of other variable names.
- Remove some compatible define.

Changes in v4:
- Define platform data structure for the register offsets.
- The compatible define with rkxx_nfc.
- Use SET_SYSTEM_SLEEP_PM_OPS to define PM_OPS.
- Use exec_op instead of legacy hooks.

Changes in v3: None
Changes in v2:
- Fix compile error.
- Include header files sorted by file name.

drivers/mtd/nand/raw/Kconfig | 12 +
drivers/mtd/nand/raw/Makefile | 1 +
.../mtd/nand/raw/rockchip-nand-controller.c | 1495 +++++++++++++++++
3 files changed, 1508 insertions(+)
create mode 100644 drivers/mtd/nand/raw/rockchip-nand-controller.c

diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
index 6c46f25b57e2..2cc533e4e239 100644
--- a/drivers/mtd/nand/raw/Kconfig
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -462,6 +462,18 @@ config MTD_NAND_ARASAN
Enables the driver for the Arasan NAND flash controller on
Zynq Ultrascale+ MPSoC.

+config MTD_NAND_ROCKCHIP
+ tristate "Rockchip NAND controller"
+ depends on ARCH_ROCKCHIP && HAS_IOMEM
+ help
+ Enables support for NAND controller on Rockchip SoCs.
+ There are four different versions of NAND FLASH Controllers,
+ including:
+ NFC v600: RK2928, RK3066, RK3188
+ NFC v622: RK3036, RK3128
+ NFC v800: RK3308, RV1108
+ NFC v900: PX30, RK3326
+
comment "Misc"

config MTD_SM_COMMON
diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
index 2930f5b9015d..960c9be25204 100644
--- a/drivers/mtd/nand/raw/Makefile
+++ b/drivers/mtd/nand/raw/Makefile
@@ -58,6 +58,7 @@ obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o
obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o
obj-$(CONFIG_MTD_NAND_CADENCE) += cadence-nand-controller.o
obj-$(CONFIG_MTD_NAND_ARASAN) += arasan-nand-controller.o
+obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o

nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o
nand-objs += nand_onfi.o
diff --git a/drivers/mtd/nand/raw/rockchip-nand-controller.c b/drivers/mtd/nand/raw/rockchip-nand-controller.c
new file mode 100644
index 000000000000..796b678cb108
--- /dev/null
+++ b/drivers/mtd/nand/raw/rockchip-nand-controller.c
@@ -0,0 +1,1495 @@
+// SPDX-License-Identifier: GPL-2.0 OR MIT
+/*
+ * Rockchip NAND Flash controller driver.
+ * Copyright (C) 2020 Rockchip Inc.
+ * Author: Yifeng Zhao <yifeng.zhao@xxxxxxxxxxxxxx>
+ */
+
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/interrupt.h>
+#include <linux/iopoll.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+
+/*
+ * NFC Page Data Layout:
+ * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
+ * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
+ * ......
+ * NAND Page Data Layout:
+ * 1024 * n data + m Bytes oob
+ * Original Bad Block Mask Location:
+ * First byte of oob(spare).
+ * nand_chip->oob_poi data layout:
+ * 4Bytes sys data + .... + 4Bytes sys data + ECC data.
+ */
+
+/* NAND controller register definition */
+#define NFC_READ (0)
+#define NFC_WRITE (1)
+
+#define NFC_FMCTL (0x00)
+#define FMCTL_CE_SEL_M 0xFF
+#define FMCTL_CE_SEL(x) (1 << (x))
+#define FMCTL_WP BIT(8)
+#define FMCTL_RDY BIT(9)
+
+#define NFC_FMWAIT (0x04)
+#define FLCTL_RST BIT(0)
+#define FLCTL_WR (1) /* 0: read, 1: write */
+#define FLCTL_XFER_ST BIT(2)
+#define FLCTL_XFER_EN BIT(3)
+#define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */
+#define FLCTL_XFER_READY BIT(20)
+#define FLCTL_XFER_SECTOR (22)
+#define FLCTL_TOG_FIX BIT(29)
+
+#define BCHCTL_BANK_M (7 << 5)
+#define BCHCTL_BANK (5)
+
+#define DMA_ST BIT(0)
+#define DMA_WR (1) /* 0: write, 1: read */
+#define DMA_EN BIT(2)
+#define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */
+#define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */
+#define DMA_INC_NUM (9) /* 1 - 16 */
+
+#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
+ (((x) >> (e).high) & (e).high_mask) << (e).low_bn)
+#define INT_DMA BIT(0)
+#define NFC_BANK (0x800)
+#define NFC_BANK_STEP (0x100)
+#define BANK_DATA (0x00)
+#define BANK_ADDR (0x04)
+#define BANK_CMD (0x08)
+#define NFC_SRAM0 (0x1000)
+#define NFC_SRAM1 (0x1400)
+#define NFC_SRAM_SIZE (0x400)
+#define NFC_TIMEOUT (500000)
+#define NFC_MAX_OOB_PER_STEP 128
+#define NFC_MIN_OOB_PER_STEP 64
+#define MAX_DATA_SIZE 0xFFFC
+#define MAX_ADDRESS_CYC 6
+#define NFC_ECC_MAX_MODES 4
+#define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */
+#define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 data.*/
+#define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */
+#define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs))
+
+enum nfc_type {
+ NFC_V6,
+ NFC_V8,
+ NFC_V9,
+};
+
+/**
+ * struct rk_ecc_cnt_status: represent a ecc status data.
+ * @err_flag_bit: error flag bit index at register.
+ * @low: ECC count low bit index at register.
+ * @low_mask: mask bit.
+ * @low_bn: ECC count low bit number.
+ * @high: ECC count high bit index at register.
+ * @high_mask: mask bit
+ */
+struct ecc_cnt_status {
+ u8 err_flag_bit;
+ u8 low;
+ u8 low_mask;
+ u8 low_bn;
+ u8 high;
+ u8 high_mask;
+};
+
+/**
+ * @type: NFC version
+ * @ecc_strengths: ECC strengths
+ * @ecc_cfgs: ECC config values
+ * @flctl_off: FLCTL register offset
+ * @bchctl_off: BCHCTL register offset
+ * @dma_data_buf_off: DMA_DATA_BUF register offset
+ * @dma_oob_buf_off: DMA_OOB_BUF register offset
+ * @dma_cfg_off: DMA_CFG register offset
+ * @dma_st_off: DMA_ST register offset
+ * @bch_st_off: BCG_ST register offset
+ * @randmz_off: RANDMZ register offset
+ * @int_en_off: interrupt enable register offset
+ * @int_clr_off: interrupt clean register offset
+ * @int_st_off: interrupt status register offset
+ * @oob0_off: oob0 register offset
+ * @oob1_off: oob1 register offset
+ * @ecc0: represent ECC0 status data
+ * @ecc1: represent ECC1 status data
+ */
+struct nfc_cfg {
+ enum nfc_type type;
+ u8 ecc_strengths[NFC_ECC_MAX_MODES];
+ u32 ecc_cfgs[NFC_ECC_MAX_MODES];
+ u32 flctl_off;
+ u32 bchctl_off;
+ u32 dma_cfg_off;
+ u32 dma_data_buf_off;
+ u32 dma_oob_buf_off;
+ u32 dma_st_off;
+ u32 bch_st_off;
+ u32 randmz_off;
+ u32 int_en_off;
+ u32 int_clr_off;
+ u32 int_st_off;
+ u32 oob0_off;
+ u32 oob1_off;
+ struct ecc_cnt_status ecc0;
+ struct ecc_cnt_status ecc1;
+};
+
+struct rk_nfc_nand_chip {
+ struct list_head node;
+ struct nand_chip chip;
+
+ u16 boot_blks;
+ u16 metadata_size;
+ u32 boot_ecc;
+ u32 timing;
+
+ u8 nsels;
+ u8 sels[0];
+ /* Nothing after this field. */
+};
+
+struct rk_nfc {
+ struct nand_controller controller;
+ const struct nfc_cfg *cfg;
+ struct device *dev;
+
+ struct clk *nfc_clk;
+ struct clk *ahb_clk;
+ void __iomem *regs;
+
+ u32 selected_bank;
+ u32 band_offset;
+ u32 cur_ecc;
+ u32 cur_timing;
+
+ struct completion done;
+ struct list_head chips;
+
+ u8 *page_buf;
+ u32 *oob_buf;
+ u32 page_buf_size;
+ u32 oob_buf_size;
+
+ unsigned long assigned_cs;
+};
+
+static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip)
+{
+ return container_of(chip, struct rk_nfc_nand_chip, chip);
+}
+
+static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i)
+{
+ return (u8 *)p + i * chip->ecc.size;
+}
+
+static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i)
+{
+ u8 *poi;
+
+ poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
+
+ return poi;
+}
+
+static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i)
+{
+ struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+ u8 *poi;
+
+ poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i;
+
+ return poi;
+}
+
+static inline int rk_nfc_data_len(struct nand_chip *chip)
+{
+ return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE;
+}
+
+static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
+{
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+
+ return nfc->page_buf + i * rk_nfc_data_len(chip);
+}
+
+static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
+{
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+
+ return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size;
+}
+
+static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength)
+{
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ u32 reg, i;
+
+ for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
+ if (strength == nfc->cfg->ecc_strengths[i]) {
+ reg = nfc->cfg->ecc_cfgs[i];
+ break;
+ }
+ }
+
+ if (i >= NFC_ECC_MAX_MODES)
+ return -EINVAL;
+
+ writel(reg, nfc->regs + nfc->cfg->bchctl_off);
+
+ /* Save chip ECC setting */
+ nfc->cur_ecc = strength;
+
+ return 0;
+}
+
+static void rk_nfc_select_chip(struct nand_chip *chip, int cs)
+{
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ u32 val;
+
+ if (cs < 0) {
+ nfc->selected_bank = -1;
+ /* Deselect the currently selected target. */
+ val = readl_relaxed(nfc->regs + NFC_FMCTL);
+ val &= ~FMCTL_CE_SEL_M;
+ writel(val, nfc->regs + NFC_FMCTL);
+ return;
+ }
+
+ nfc->selected_bank = rknand->sels[cs];
+ nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
+
+ val = readl_relaxed(nfc->regs + NFC_FMCTL);
+ val &= ~FMCTL_CE_SEL_M;
+ val |= FMCTL_CE_SEL(nfc->selected_bank);
+
+ writel(val, nfc->regs + NFC_FMCTL);
+
+ /*
+ * Compare current chip timing with selected chip timing and
+ * change if needed.
+ */
+ if (nfc->cur_timing != rknand->timing) {
+ writel(rknand->timing, nfc->regs + NFC_FMWAIT);
+ nfc->cur_timing = rknand->timing;
+ }
+
+ /*
+ * Compare current chip ECC setting with selected chip ECC setting and
+ * change if needed.
+ */
+ if (nfc->cur_ecc != ecc->strength)
+ rk_nfc_hw_ecc_setup(chip, ecc->strength);
+}
+
+static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
+{
+ int rc;
+ u32 val;
+
+ rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val,
+ val & FMCTL_RDY, 10, NFC_TIMEOUT);
+
+ return rc;
+}
+
+static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len)
+{
+ int i;
+
+ for (i = 0; i < len; i++)
+ buf[i] = readb_relaxed(nfc->regs + nfc->band_offset +
+ BANK_DATA);
+}
+
+static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len)
+{
+ int i;
+
+ for (i = 0; i < len; i++)
+ writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA);
+}
+
+static int rk_nfc_cmd(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ unsigned int i, j, remaining, start;
+ int reg_offset = nfc->band_offset;
+ u8 *inbuf = NULL;
+ const u8 *outbuf;
+ u32 cnt = 0;
+ int ret = 0;
+
+ for (i = 0; i < subop->ninstrs; i++) {
+ const struct nand_op_instr *instr = &subop->instrs[i];
+
+ switch (instr->type) {
+ case NAND_OP_CMD_INSTR:
+ writeb(instr->ctx.cmd.opcode,
+ nfc->regs + reg_offset + BANK_CMD);
+ break;
+
+ case NAND_OP_ADDR_INSTR:
+ remaining = nand_subop_get_num_addr_cyc(subop, i);
+ start = nand_subop_get_addr_start_off(subop, i);
+
+ for (j = 0; j < 8 && j + start < remaining; j++)
+ writeb(instr->ctx.addr.addrs[j + start],
+ nfc->regs + reg_offset + BANK_ADDR);
+ break;
+
+ case NAND_OP_DATA_IN_INSTR:
+ case NAND_OP_DATA_OUT_INSTR:
+ start = nand_subop_get_data_start_off(subop, i);
+ cnt = nand_subop_get_data_len(subop, i);
+
+ if (instr->type == NAND_OP_DATA_OUT_INSTR) {
+ outbuf = instr->ctx.data.buf.out + start;
+ rk_nfc_write_buf(nfc, outbuf, cnt);
+ } else {
+ inbuf = instr->ctx.data.buf.in + start;
+ rk_nfc_read_buf(nfc, inbuf, cnt);
+ }
+ break;
+
+ case NAND_OP_WAITRDY_INSTR:
+ if (rk_nfc_wait_ioready(nfc) < 0) {
+ ret = -ETIMEDOUT;
+ dev_err(nfc->dev, "IO not ready\n");
+ }
+ break;
+ }
+ }
+
+ return ret;
+}
+
+static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER(
+ NAND_OP_PARSER_PATTERN(
+ rk_nfc_cmd,
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)),
+ NAND_OP_PARSER_PATTERN(
+ rk_nfc_cmd,
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
+ NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE),
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+);
+
+static int rk_nfc_exec_op(struct nand_chip *chip,
+ const struct nand_operation *op,
+ bool check_only)
+{
+ if (!check_only)
+ rk_nfc_select_chip(chip, op->cs);
+
+ return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op,
+ check_only);
+}
+
+static int rk_nfc_setup_interface(struct nand_chip *chip, int target,
+ const struct nand_interface_config *conf)
+{
+ struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ const struct nand_sdr_timings *timings;
+ u32 rate, tc2rw, trwpw, trw2c;
+ u32 temp;
+
+ if (target < 0)
+ return 0;
+
+ timings = nand_get_sdr_timings(conf);
+ if (IS_ERR(timings))
+ return -EOPNOTSUPP;
+
+ if (IS_ERR(nfc->nfc_clk))
+ rate = clk_get_rate(nfc->ahb_clk);
+ else
+ rate = clk_get_rate(nfc->nfc_clk);
+
+ /* Turn clock rate into kHz. */
+ rate /= 1000;
+
+ tc2rw = 1;
+ trw2c = 1;
+
+ trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
+ trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);
+
+ temp = timings->tREA_max / 1000;
+ temp = DIV_ROUND_UP(temp * rate, 1000000);
+
+ if (trwpw < temp)
+ trwpw = temp;
+
+ /*
+ * ACCON: access timing control register
+ * -------------------------------------
+ * 31:18: reserved
+ * 17:12: csrw, clock cycles from the falling edge of CSn to the
+ * falling edge of RDn or WRn
+ * 11:11: reserved
+ * 10:05: rwpw, the width of RDn or WRn in processor clock cycles
+ * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
+ * rising edge of CSn
+ */
+
+ /* Save chip timing */
+ rknand->timing = ACCTIMING(tc2rw, trwpw, trw2c);
+
+ return 0;
+}
+
+static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
+ dma_addr_t dma_data, dma_addr_t dma_oob)
+{
+ u32 dma_reg, fl_reg, bch_reg;
+
+ dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
+ (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
+
+ fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
+ (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
+
+ if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
+ bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
+ bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
+ (nfc->selected_bank << BCHCTL_BANK);
+ writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
+ }
+
+ writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
+ writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
+ writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
+ writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
+ fl_reg |= FLCTL_XFER_ST;
+ writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
+}
+
+static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
+{
+ void __iomem *ptr;
+ u32 reg;
+
+ ptr = nfc->regs + nfc->cfg->flctl_off;
+
+ return readl_relaxed_poll_timeout(ptr, reg,
+ reg & FLCTL_XFER_READY,
+ 10, NFC_TIMEOUT);
+}
+
+static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
+ int oob_on, int page)
+{
+ struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int i, pages_per_blk;
+
+ pages_per_blk = mtd->erasesize / mtd->writesize;
+ if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
+ (page < (pages_per_blk * rknand->boot_blks)) &&
+ rknand->boot_ecc != ecc->strength) {
+ /*
+ * There's currently no method to notify the MTD framework that
+ * a different ECC strength is in use for the boot blocks.
+ */
+ return -EIO;
+ }
+
+ if (!buf)
+ memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize);
+
+ for (i = 0; i < ecc->steps; i++) {
+ /* Copy data to the NFC buffer. */
+ if (buf)
+ memcpy(rk_nfc_data_ptr(chip, i),
+ rk_nfc_buf_to_data_ptr(chip, buf, i),
+ ecc->size);
+ /*
+ * The first four bytes of OOB are reserved for the
+ * boot ROM. In some debugging cases, such as with a
+ * read, erase and write back test these 4 bytes stored
+ * in OOB also need to be written back.
+ *
+ * The function nand_block_bad detects bad blocks like:
+ *
+ * bad = chip->oob_poi[chip->badblockpos];
+ *
+ * chip->badblockpos == 0 for a large page NAND Flash,
+ * so chip->oob_poi[0] is the bad block mask (BBM).
+ *
+ * The OOB data layout on the NFC is:
+ *
+ * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
+ *
+ * or
+ *
+ * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
+ *
+ * The code here just swaps the first 4 bytes with the last
+ * 4 bytes without losing any data.
+ *
+ * The chip->oob_poi data layout:
+ *
+ * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3
+ *
+ * The rk_nfc_ooblayout_free() function already has reserved
+ * these 4 bytes with:
+ *
+ * oob_region->offset = NFC_SYS_DATA_SIZE + 2;
+ */
+ if (!i)
+ memcpy(rk_nfc_oob_ptr(chip, i),
+ rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
+ NFC_SYS_DATA_SIZE);
+ else
+ memcpy(rk_nfc_oob_ptr(chip, i),
+ rk_nfc_buf_to_oob_ptr(chip, i - 1),
+ NFC_SYS_DATA_SIZE);
+ /* Copy ECC data to the NFC buffer. */
+ memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
+ rk_nfc_buf_to_oob_ecc_ptr(chip, i),
+ ecc->bytes);
+ }
+
+ nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+ rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize);
+ return nand_prog_page_end_op(chip);
+}
+
+static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
+ int oob_on, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
+ NFC_MIN_OOB_PER_STEP;
+ int pages_per_blk = mtd->erasesize / mtd->writesize;
+ int ret = 0, i, boot_rom_mode = 0;
+ dma_addr_t dma_data, dma_oob;
+ u32 reg;
+ u8 *oob;
+
+ nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+
+ if (buf)
+ memcpy(nfc->page_buf, buf, mtd->writesize);
+ else
+ memset(nfc->page_buf, 0xFF, mtd->writesize);
+
+ /*
+ * The first blocks (4, 8 or 16 depending on the device) are used
+ * by the boot ROM and the first 32 bits of OOB need to link to
+ * the next page address in the same block. We can't directly copy
+ * OOB data from the MTD framework, because this page address
+ * conflicts for example with the bad block marker (BBM),
+ * so we shift all OOB data including the BBM with 4 byte positions.
+ * As a consequence the OOB size available to the MTD framework is
+ * also reduced with 4 bytes.
+ *
+ * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
+ *
+ * If a NAND is not a boot medium or the page is not a boot block,
+ * the first 4 bytes are left untouched by writing 0xFF to them.
+ *
+ * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
+ *
+ * Configure the ECC algorithm supported by the boot ROM.
+ */
+ if ((page < (pages_per_blk * rknand->boot_blks)) &&
+ (chip->options & NAND_IS_BOOT_MEDIUM)) {
+ boot_rom_mode = 1;
+ if (rknand->boot_ecc != ecc->strength)
+ rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
+ }
+
+ for (i = 0; i < ecc->steps; i++) {
+ if (!i) {
+ reg = 0xFFFFFFFF;
+ } else {
+ oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
+ reg = oob[0] | oob[1] << 8 | oob[2] << 16 |
+ oob[3] << 24;
+ }
+
+ if (!i && boot_rom_mode)
+ reg = (page & (pages_per_blk - 1)) * 4;
+
+ if (nfc->cfg->type == NFC_V9)
+ nfc->oob_buf[i] = reg;
+ else
+ nfc->oob_buf[i * (oob_step / 4)] = reg;
+ }
+
+ dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
+ mtd->writesize, DMA_TO_DEVICE);
+ dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
+ ecc->steps * oob_step,
+ DMA_TO_DEVICE);
+
+ reinit_completion(&nfc->done);
+ writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
+
+ rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
+ dma_oob);
+ ret = wait_for_completion_timeout(&nfc->done,
+ msecs_to_jiffies(100));
+ if (!ret)
+ dev_warn(nfc->dev, "write: wait dma done timeout.\n");
+ /*
+ * Whether the DMA transfer is completed or not. The driver
+ * needs to check the NFC`s status register to see if the data
+ * transfer was completed.
+ */
+ ret = rk_nfc_wait_for_xfer_done(nfc);
+
+ dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
+ DMA_TO_DEVICE);
+ dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
+ DMA_TO_DEVICE);
+
+ if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
+ rk_nfc_hw_ecc_setup(chip, ecc->strength);
+
+ if (ret) {
+ dev_err(nfc->dev, "write: wait transfer done timeout.\n");
+ return -ETIMEDOUT;
+ }
+
+ return nand_prog_page_end_op(chip);
+}
+
+static int rk_nfc_write_oob(struct nand_chip *chip, int page)
+{
+ return rk_nfc_write_page_hwecc(chip, NULL, 1, page);
+}
+
+static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
+ int page)
+{
+ struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int i, pages_per_blk;
+
+ pages_per_blk = mtd->erasesize / mtd->writesize;
+ if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
+ (page < (pages_per_blk * rknand->boot_blks)) &&
+ rknand->boot_ecc != ecc->strength) {
+ /*
+ * There's currently no method to notify the MTD framework that
+ * a different ECC strength is in use for the boot blocks.
+ */
+ return -EIO;
+ }
+
+ nand_read_page_op(chip, page, 0, NULL, 0);
+ rk_nfc_read_buf(nfc, nfc->page_buf, mtd->writesize + mtd->oobsize);
+ for (i = 0; i < ecc->steps; i++) {
+ /*
+ * The first four bytes of OOB are reserved for the
+ * boot ROM. In some debugging cases, such as with a read,
+ * erase and write back test, these 4 bytes also must be
+ * saved somewhere, otherwise this information will be
+ * lost during a write back.
+ */
+ if (!i)
+ memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
+ rk_nfc_oob_ptr(chip, i),
+ NFC_SYS_DATA_SIZE);
+ else
+ memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1),
+ rk_nfc_oob_ptr(chip, i),
+ NFC_SYS_DATA_SIZE);
+
+ /* Copy ECC data from the NFC buffer. */
+ memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i),
+ rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
+ ecc->bytes);
+
+ /* Copy data from the NFC buffer. */
+ if (buf)
+ memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i),
+ rk_nfc_data_ptr(chip, i),
+ ecc->size);
+ }
+
+ return 0;
+}
+
+static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on,
+ int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
+ NFC_MIN_OOB_PER_STEP;
+ int pages_per_blk = mtd->erasesize / mtd->writesize;
+ dma_addr_t dma_data, dma_oob;
+ int ret = 0, i, cnt, boot_rom_mode = 0;
+ int max_bitflips = 0, bch_st, ecc_fail = 0;
+ u8 *oob;
+ u32 tmp;
+
+ nand_read_page_op(chip, page, 0, NULL, 0);
+
+ dma_data = dma_map_single(nfc->dev, nfc->page_buf,
+ mtd->writesize,
+ DMA_FROM_DEVICE);
+ dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
+ ecc->steps * oob_step,
+ DMA_FROM_DEVICE);
+
+ /*
+ * The first blocks (4, 8 or 16 depending on the device)
+ * are used by the boot ROM.
+ * Configure the ECC algorithm supported by the boot ROM.
+ */
+ if ((page < (pages_per_blk * rknand->boot_blks)) &&
+ (chip->options & NAND_IS_BOOT_MEDIUM)) {
+ boot_rom_mode = 1;
+ if (rknand->boot_ecc != ecc->strength)
+ rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
+ }
+
+ reinit_completion(&nfc->done);
+ writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
+ rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
+ dma_oob);
+ ret = wait_for_completion_timeout(&nfc->done,
+ msecs_to_jiffies(100));
+ if (!ret)
+ dev_warn(nfc->dev, "read: wait dma done timeout.\n");
+ /*
+ * Whether the DMA transfer is completed or not. The driver
+ * needs to check the NFC`s status register to see if the data
+ * transfer was completed.
+ */
+ ret = rk_nfc_wait_for_xfer_done(nfc);
+
+ dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
+ DMA_FROM_DEVICE);
+ dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
+ DMA_FROM_DEVICE);
+
+ if (ret) {
+ ret = -ETIMEDOUT;
+ dev_err(nfc->dev, "read: wait transfer done timeout.\n");
+ goto timeout_err;
+ }
+
+ for (i = 1; i < ecc->steps; i++) {
+ oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
+ if (nfc->cfg->type == NFC_V9)
+ tmp = nfc->oob_buf[i];
+ else
+ tmp = nfc->oob_buf[i * (oob_step / 4)];
+ *oob++ = (u8)tmp;
+ *oob++ = (u8)(tmp >> 8);
+ *oob++ = (u8)(tmp >> 16);
+ *oob++ = (u8)(tmp >> 24);
+ }
+
+ for (i = 0; i < (ecc->steps / 2); i++) {
+ bch_st = readl_relaxed(nfc->regs +
+ nfc->cfg->bch_st_off + i * 4);
+ if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
+ bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
+ mtd->ecc_stats.failed++;
+ ecc_fail = 1;
+ } else {
+ cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
+ mtd->ecc_stats.corrected += cnt;
+ max_bitflips = max_t(u32, max_bitflips, cnt);
+
+ cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
+ mtd->ecc_stats.corrected += cnt;
+ max_bitflips = max_t(u32, max_bitflips, cnt);
+ }
+ }
+
+ if (buf)
+ memcpy(buf, nfc->page_buf, mtd->writesize);
+
+timeout_err:
+ if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
+ rk_nfc_hw_ecc_setup(chip, ecc->strength);
+
+ if (ret)
+ return ret;
+
+ if (ecc_fail) {
+ dev_err(nfc->dev, "read page: %x ecc error!\n", page);
+ return 0;
+ }
+
+ return max_bitflips;
+}
+
+static int rk_nfc_read_oob(struct nand_chip *chip, int page)
+{
+ return rk_nfc_read_page_hwecc(chip, NULL, 1, page);
+}
+
+static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
+{
+ /* Disable flash wp. */
+ writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
+ /* Config default timing 40ns at 150 Mhz NFC clock. */
+ writel(0x1081, nfc->regs + NFC_FMWAIT);
+ nfc->cur_timing = 0x1081;
+ /* Disable randomizer and DMA. */
+ writel(0, nfc->regs + nfc->cfg->randmz_off);
+ writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
+ writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
+}
+
+static irqreturn_t rk_nfc_irq(int irq, void *id)
+{
+ struct rk_nfc *nfc = id;
+ u32 sta, ien;
+
+ sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off);
+ ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off);
+
+ if (!(sta & ien))
+ return IRQ_NONE;
+
+ writel(sta, nfc->regs + nfc->cfg->int_clr_off);
+ writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off);
+
+ complete(&nfc->done);
+
+ return IRQ_HANDLED;
+}
+
+static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc)
+{
+ int ret;
+
+ if (!IS_ERR(nfc->nfc_clk)) {
+ ret = clk_prepare_enable(nfc->nfc_clk);
+ if (ret) {
+ dev_err(dev, "failed to enable NFC clk\n");
+ return ret;
+ }
+ }
+
+ ret = clk_prepare_enable(nfc->ahb_clk);
+ if (ret) {
+ dev_err(dev, "failed to enable ahb clk\n");
+ if (!IS_ERR(nfc->nfc_clk))
+ clk_disable_unprepare(nfc->nfc_clk);
+ return ret;
+ }
+
+ return 0;
+}
+
+static void rk_nfc_disable_clks(struct rk_nfc *nfc)
+{
+ if (!IS_ERR(nfc->nfc_clk))
+ clk_disable_unprepare(nfc->nfc_clk);
+ clk_disable_unprepare(nfc->ahb_clk);
+}
+
+static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oob_region)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+
+ if (section)
+ return -ERANGE;
+
+ /*
+ * The beginning of the OOB area stores the reserved data for the NFC,
+ * the size of the reserved data is NFC_SYS_DATA_SIZE bytes.
+ */
+ oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
+ oob_region->offset = NFC_SYS_DATA_SIZE + 2;
+
+ return 0;
+}
+
+static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oob_region)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+
+ if (section)
+ return -ERANGE;
+
+ oob_region->length = mtd->oobsize - rknand->metadata_size;
+ oob_region->offset = rknand->metadata_size;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
+ .free = rk_nfc_ooblayout_free,
+ .ecc = rk_nfc_ooblayout_ecc,
+};
+
+static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ const u8 *strengths = nfc->cfg->ecc_strengths;
+ u8 max_strength, nfc_max_strength;
+ int i;
+
+ nfc_max_strength = nfc->cfg->ecc_strengths[0];
+ /* If optional dt settings not present. */
+ if (!ecc->size || !ecc->strength ||
+ ecc->strength > nfc_max_strength) {
+ chip->ecc.size = 1024;
+ ecc->steps = mtd->writesize / ecc->size;
+
+ /*
+ * HW ECC always requests the number of ECC bytes per 1024 byte
+ * blocks. The first 4 OOB bytes are reserved for sys data.
+ */
+ max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
+ fls(8 * 1024);
+ if (max_strength > nfc_max_strength)
+ max_strength = nfc_max_strength;
+
+ for (i = 0; i < 4; i++) {
+ if (max_strength >= strengths[i])
+ break;
+ }
+
+ if (i >= 4) {
+ dev_err(nfc->dev, "unsupported ECC strength\n");
+ return -EOPNOTSUPP;
+ }
+
+ ecc->strength = strengths[i];
+ }
+ ecc->steps = mtd->writesize / ecc->size;
+ ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8);
+
+ return 0;
+}
+
+static int rk_nfc_attach_chip(struct nand_chip *chip)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct device *dev = mtd->dev.parent;
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int new_page_len, new_oob_len;
+ void *buf;
+ int ret;
+
+ if (chip->options & NAND_BUSWIDTH_16) {
+ dev_err(dev, "16 bits bus width not supported");
+ return -EINVAL;
+ }
+
+ if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
+ return 0;
+
+ ret = rk_nfc_ecc_init(dev, mtd);
+ if (ret)
+ return ret;
+
+ rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps;
+
+ if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) {
+ dev_err(dev,
+ "driver needs at least %d bytes of meta data\n",
+ NFC_SYS_DATA_SIZE + 2);
+ return -EIO;
+ }
+
+ /* Check buffer first, avoid duplicate alloc buffer. */
+ new_page_len = mtd->writesize + mtd->oobsize;
+ if (nfc->page_buf && new_page_len > nfc->page_buf_size) {
+ buf = krealloc(nfc->page_buf, new_page_len,
+ GFP_KERNEL | GFP_DMA);
+ if (!buf)
+ return -ENOMEM;
+ nfc->page_buf = buf;
+ nfc->page_buf_size = new_page_len;
+ }
+
+ new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
+ if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) {
+ buf = krealloc(nfc->oob_buf, new_oob_len,
+ GFP_KERNEL | GFP_DMA);
+ if (!buf) {
+ kfree(nfc->page_buf);
+ nfc->page_buf = NULL;
+ return -ENOMEM;
+ }
+ nfc->oob_buf = buf;
+ nfc->oob_buf_size = new_oob_len;
+ }
+
+ if (!nfc->page_buf) {
+ nfc->page_buf = kzalloc(new_page_len, GFP_KERNEL | GFP_DMA);
+ if (!nfc->page_buf)
+ return -ENOMEM;
+ nfc->page_buf_size = new_page_len;
+ }
+
+ if (!nfc->oob_buf) {
+ nfc->oob_buf = kzalloc(new_oob_len, GFP_KERNEL | GFP_DMA);
+ if (!nfc->oob_buf) {
+ kfree(nfc->page_buf);
+ nfc->page_buf = NULL;
+ return -ENOMEM;
+ }
+ nfc->oob_buf_size = new_oob_len;
+ }
+
+ chip->ecc.write_page_raw = rk_nfc_write_page_raw;
+ chip->ecc.write_page = rk_nfc_write_page_hwecc;
+ chip->ecc.write_oob = rk_nfc_write_oob;
+
+ chip->ecc.read_page_raw = rk_nfc_read_page_raw;
+ chip->ecc.read_page = rk_nfc_read_page_hwecc;
+ chip->ecc.read_oob = rk_nfc_read_oob;
+
+ return 0;
+}
+
+static const struct nand_controller_ops rk_nfc_controller_ops = {
+ .attach_chip = rk_nfc_attach_chip,
+ .exec_op = rk_nfc_exec_op,
+ .setup_interface = rk_nfc_setup_interface,
+};
+
+static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc,
+ struct device_node *np)
+{
+ struct rk_nfc_nand_chip *rknand;
+ struct nand_chip *chip;
+ struct mtd_info *mtd;
+ int nsels;
+ u32 tmp;
+ int ret;
+ int i;
+
+ if (!of_get_property(np, "reg", &nsels))
+ return -ENODEV;
+ nsels /= sizeof(u32);
+ if (!nsels || nsels > NFC_MAX_NSELS) {
+ dev_err(dev, "invalid reg property size %d\n", nsels);
+ return -EINVAL;
+ }
+
+ rknand = devm_kzalloc(dev, sizeof(*rknand) + nsels * sizeof(u8),
+ GFP_KERNEL);
+ if (!rknand)
+ return -ENOMEM;
+
+ rknand->nsels = nsels;
+ for (i = 0; i < nsels; i++) {
+ ret = of_property_read_u32_index(np, "reg", i, &tmp);
+ if (ret) {
+ dev_err(dev, "reg property failure : %d\n", ret);
+ return ret;
+ }
+
+ if (tmp >= NFC_MAX_NSELS) {
+ dev_err(dev, "invalid CS: %u\n", tmp);
+ return -EINVAL;
+ }
+
+ if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
+ dev_err(dev, "CS %u already assigned\n", tmp);
+ return -EINVAL;
+ }
+
+ rknand->sels[i] = tmp;
+ }
+
+ chip = &rknand->chip;
+ chip->controller = &nfc->controller;
+
+ nand_set_flash_node(chip, np);
+
+ nand_set_controller_data(chip, nfc);
+
+ chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
+ chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
+
+ /* Set default mode in case dt entry is missing. */
+ chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
+
+ mtd = nand_to_mtd(chip);
+ mtd->owner = THIS_MODULE;
+ mtd->dev.parent = dev;
+
+ if (!mtd->name) {
+ dev_err(nfc->dev, "NAND label property is mandatory\n");
+ return -EINVAL;
+ }
+
+ mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops);
+ rk_nfc_hw_init(nfc);
+ ret = nand_scan(chip, nsels);
+ if (ret)
+ return ret;
+
+ if (chip->options & NAND_IS_BOOT_MEDIUM) {
+ ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp);
+ rknand->boot_blks = ret ? 0 : tmp;
+
+ ret = of_property_read_u32(np, "rockchip,boot-ecc-strength",
+ &tmp);
+ rknand->boot_ecc = ret ? chip->ecc.strength : tmp;
+ }
+
+ ret = mtd_device_register(mtd, NULL, 0);
+ if (ret) {
+ dev_err(dev, "MTD parse partition error\n");
+ nand_cleanup(chip);
+ return ret;
+ }
+
+ list_add_tail(&rknand->node, &nfc->chips);
+
+ return 0;
+}
+
+static void rk_nfc_chips_cleanup(struct rk_nfc *nfc)
+{
+ struct rk_nfc_nand_chip *rknand, *tmp;
+ struct nand_chip *chip;
+ int ret;
+
+ list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) {
+ chip = &rknand->chip;
+ ret = mtd_device_unregister(nand_to_mtd(chip));
+ WARN_ON(ret);
+ nand_cleanup(chip);
+ list_del(&rknand->node);
+ }
+}
+
+static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc)
+{
+ struct device_node *np = dev->of_node, *nand_np;
+ int nchips = of_get_child_count(np);
+ int ret;
+
+ if (!nchips || nchips > NFC_MAX_NSELS) {
+ dev_err(nfc->dev, "incorrect number of NAND chips (%d)\n",
+ nchips);
+ return -EINVAL;
+ }
+
+ for_each_child_of_node(np, nand_np) {
+ ret = rk_nfc_nand_chip_init(dev, nfc, nand_np);
+ if (ret) {
+ of_node_put(nand_np);
+ rk_nfc_chips_cleanup(nfc);
+ return ret;
+ }
+ }
+
+ return 0;
+}
+
+static struct nfc_cfg nfc_v6_cfg = {
+ .type = NFC_V6,
+ .ecc_strengths = {60, 40, 24, 16},
+ .ecc_cfgs = {
+ 0x00040011, 0x00040001, 0x00000011, 0x00000001,
+ },
+ .flctl_off = 0x08,
+ .bchctl_off = 0x0C,
+ .dma_cfg_off = 0x10,
+ .dma_data_buf_off = 0x14,
+ .dma_oob_buf_off = 0x18,
+ .dma_st_off = 0x1C,
+ .bch_st_off = 0x20,
+ .randmz_off = 0x150,
+ .int_en_off = 0x16C,
+ .int_clr_off = 0x170,
+ .int_st_off = 0x174,
+ .oob0_off = 0x200,
+ .oob1_off = 0x230,
+ .ecc0 = {
+ .err_flag_bit = 2,
+ .low = 3,
+ .low_mask = 0x1F,
+ .low_bn = 5,
+ .high = 27,
+ .high_mask = 0x1,
+ },
+ .ecc1 = {
+ .err_flag_bit = 15,
+ .low = 16,
+ .low_mask = 0x1F,
+ .low_bn = 5,
+ .high = 29,
+ .high_mask = 0x1,
+ },
+};
+
+static struct nfc_cfg nfc_v8_cfg = {
+ .type = NFC_V8,
+ .ecc_strengths = {16, 16, 16, 16},
+ .ecc_cfgs = {
+ 0x00000001, 0x00000001, 0x00000001, 0x00000001,
+ },
+ .flctl_off = 0x08,
+ .bchctl_off = 0x0C,
+ .dma_cfg_off = 0x10,
+ .dma_data_buf_off = 0x14,
+ .dma_oob_buf_off = 0x18,
+ .dma_st_off = 0x1C,
+ .bch_st_off = 0x20,
+ .randmz_off = 0x150,
+ .int_en_off = 0x16C,
+ .int_clr_off = 0x170,
+ .int_st_off = 0x174,
+ .oob0_off = 0x200,
+ .oob1_off = 0x230,
+ .ecc0 = {
+ .err_flag_bit = 2,
+ .low = 3,
+ .low_mask = 0x1F,
+ .low_bn = 5,
+ .high = 27,
+ .high_mask = 0x1,
+ },
+ .ecc1 = {
+ .err_flag_bit = 15,
+ .low = 16,
+ .low_mask = 0x1F,
+ .low_bn = 5,
+ .high = 29,
+ .high_mask = 0x1,
+ },
+};
+
+static struct nfc_cfg nfc_v9_cfg = {
+ .type = NFC_V9,
+ .ecc_strengths = {70, 60, 40, 16},
+ .ecc_cfgs = {
+ 0x00000001, 0x06000001, 0x04000001, 0x02000001,
+ },
+ .flctl_off = 0x10,
+ .bchctl_off = 0x20,
+ .dma_cfg_off = 0x30,
+ .dma_data_buf_off = 0x34,
+ .dma_oob_buf_off = 0x38,
+ .dma_st_off = 0x3C,
+ .bch_st_off = 0x150,
+ .randmz_off = 0x208,
+ .int_en_off = 0x120,
+ .int_clr_off = 0x124,
+ .int_st_off = 0x128,
+ .oob0_off = 0x200,
+ .oob1_off = 0x204,
+ .ecc0 = {
+ .err_flag_bit = 2,
+ .low = 3,
+ .low_mask = 0x7F,
+ .low_bn = 7,
+ .high = 0,
+ .high_mask = 0x0,
+ },
+ .ecc1 = {
+ .err_flag_bit = 18,
+ .low = 19,
+ .low_mask = 0x7F,
+ .low_bn = 7,
+ .high = 0,
+ .high_mask = 0x0,
+ },
+};
+
+static const struct of_device_id rk_nfc_id_table[] = {
+ {
+ .compatible = "rockchip,px30-nfc",
+ .data = &nfc_v9_cfg
+ },
+ {
+ .compatible = "rockchip,rk2928-nfc",
+ .data = &nfc_v6_cfg
+ },
+ {
+ .compatible = "rockchip,rv1108-nfc",
+ .data = &nfc_v8_cfg
+ },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, rk_nfc_id_table);
+
+static int rk_nfc_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct rk_nfc *nfc;
+ int ret, irq;
+
+ nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
+ if (!nfc)
+ return -ENOMEM;
+
+ nand_controller_init(&nfc->controller);
+ INIT_LIST_HEAD(&nfc->chips);
+ nfc->controller.ops = &rk_nfc_controller_ops;
+
+ nfc->cfg = of_device_get_match_data(dev);
+ nfc->dev = dev;
+
+ init_completion(&nfc->done);
+
+ nfc->regs = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(nfc->regs)) {
+ ret = PTR_ERR(nfc->regs);
+ goto release_nfc;
+ }
+
+ nfc->nfc_clk = devm_clk_get(dev, "nfc");
+ if (IS_ERR(nfc->nfc_clk)) {
+ dev_dbg(dev, "no NFC clk\n");
+ /* Some earlier models, such as rk3066, have no NFC clk. */
+ }
+
+ nfc->ahb_clk = devm_clk_get(dev, "ahb");
+ if (IS_ERR(nfc->ahb_clk)) {
+ dev_err(dev, "no ahb clk\n");
+ ret = PTR_ERR(nfc->ahb_clk);
+ goto release_nfc;
+ }
+
+ ret = rk_nfc_enable_clks(dev, nfc);
+ if (ret)
+ goto release_nfc;
+
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0) {
+ dev_err(dev, "no NFC irq resource\n");
+ ret = -EINVAL;
+ goto clk_disable;
+ }
+
+ writel(0, nfc->regs + nfc->cfg->int_en_off);
+ ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc);
+ if (ret) {
+ dev_err(dev, "failed to request NFC irq\n");
+ goto clk_disable;
+ }
+
+ platform_set_drvdata(pdev, nfc);
+
+ ret = rk_nfc_nand_chips_init(dev, nfc);
+ if (ret) {
+ dev_err(dev, "failed to init NAND chips\n");
+ goto clk_disable;
+ }
+ return 0;
+
+clk_disable:
+ rk_nfc_disable_clks(nfc);
+release_nfc:
+ return ret;
+}
+
+static int rk_nfc_remove(struct platform_device *pdev)
+{
+ struct rk_nfc *nfc = platform_get_drvdata(pdev);
+
+ kfree(nfc->page_buf);
+ kfree(nfc->oob_buf);
+ rk_nfc_chips_cleanup(nfc);
+ rk_nfc_disable_clks(nfc);
+
+ return 0;
+}
+
+static int __maybe_unused rk_nfc_suspend(struct device *dev)
+{
+ struct rk_nfc *nfc = dev_get_drvdata(dev);
+
+ rk_nfc_disable_clks(nfc);
+
+ return 0;
+}
+
+static int __maybe_unused rk_nfc_resume(struct device *dev)
+{
+ struct rk_nfc *nfc = dev_get_drvdata(dev);
+ struct rk_nfc_nand_chip *rknand;
+ struct nand_chip *chip;
+ int ret;
+ u32 i;
+
+ ret = rk_nfc_enable_clks(dev, nfc);
+ if (ret)
+ return ret;
+
+ /* Reset NAND chip if VCC was powered off. */
+ list_for_each_entry(rknand, &nfc->chips, node) {
+ chip = &rknand->chip;
+ for (i = 0; i < rknand->nsels; i++)
+ nand_reset(chip, i);
+ }
+
+ return 0;
+}
+
+static const struct dev_pm_ops rk_nfc_pm_ops = {
+ SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume)
+};
+
+static struct platform_driver rk_nfc_driver = {
+ .probe = rk_nfc_probe,
+ .remove = rk_nfc_remove,
+ .driver = {
+ .name = "rockchip-nfc",
+ .of_match_table = rk_nfc_id_table,
+ .pm = &rk_nfc_pm_ops,
+ },
+};
+
+module_platform_driver(rk_nfc_driver);
+
+MODULE_LICENSE("Dual MIT/GPL");
+MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@xxxxxxxxxxxxxx>");
+MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
+MODULE_ALIAS("platform:rockchip-nand-controller");
--
2.17.1