[PATCH net-next 08/11] net: z85230: remove trailing whitespaces
From: Guangbin Huang
Date: Sun Jun 13 2021 - 03:42:08 EST
From: Peng Li <lipeng321@xxxxxxxxxx>
This patch removes trailing whitespaces.
Signed-off-by: Peng Li <lipeng321@xxxxxxxxxx>
Signed-off-by: Guangbin Huang <huangguangbin2@xxxxxxxxxx>
---
drivers/net/wan/z85230.c | 224 ++++++++++++++++++++++-------------------------
1 file changed, 105 insertions(+), 119 deletions(-)
diff --git a/drivers/net/wan/z85230.c b/drivers/net/wan/z85230.c
index 556de05..ea4628c 100644
--- a/drivers/net/wan/z85230.c
+++ b/drivers/net/wan/z85230.c
@@ -10,7 +10,7 @@
* Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
* unification of all the Z85x30 asynchronous drivers for real.
*
- * DMA now uses get_free_page as kmalloc buffers may span a 64K
+ * DMA now uses get_free_page as kmalloc buffers may span a 64K
* boundary.
*
* Modified for SMP safety and SMP locking by Alan Cox
@@ -59,7 +59,7 @@
*
* Provided port access methods. The Comtrol SV11 requires no delays
* between accesses and uses PC I/O. Some drivers may need a 5uS delay
- *
+ *
* In the longer term this should become an architecture specific
* section so that this can become a generic driver interface for all
* platforms. For now we only handle PC I/O ports with or without the
@@ -104,16 +104,16 @@ static void z8530_rx_done(struct z8530_channel *c);
static void z8530_tx_done(struct z8530_channel *c);
/**
- * read_zsreg - Read a register from a Z85230
+ * read_zsreg - Read a register from a Z85230
* @c: Z8530 channel to read from (2 per chip)
* @reg: Register to read
* FIXME: Use a spinlock.
- *
+ *
* Most of the Z8530 registers are indexed off the control registers.
* A read is done by writing to the control register and reading the
* register back. The caller must hold the lock
*/
-
+
static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
{
if(reg)
@@ -183,7 +183,7 @@ static inline void write_zsdata(struct z8530_channel *c, u8 val)
/* Register loading parameters for a dead port
*/
-
+
u8 z8530_dead_port[]=
{
255
@@ -196,7 +196,7 @@ EXPORT_SYMBOL(z8530_dead_port);
/* Data clocked by telco end. This is the correct data for the UK
* "kilostream" service, and most other similar services.
*/
-
+
u8 z8530_hdlc_kilostream[]=
{
4, SYNC_ENAB|SDLC|X1CLK,
@@ -219,7 +219,7 @@ EXPORT_SYMBOL(z8530_hdlc_kilostream);
/* As above but for enhanced chips.
*/
-
+
u8 z8530_hdlc_kilostream_85230[]=
{
4, SYNC_ENAB|SDLC|X1CLK,
@@ -237,7 +237,7 @@ u8 z8530_hdlc_kilostream_85230[]=
1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
9, NV|MIE|NORESET,
23, 3, /* Extended mode AUTO TX and EOM*/
-
+
255
};
EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
@@ -246,14 +246,14 @@ EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
* z8530_flush_fifo - Flush on chip RX FIFO
* @c: Channel to flush
*
- * Flush the receive FIFO. There is no specific option for this, we
+ * Flush the receive FIFO. There is no specific option for this, we
* blindly read bytes and discard them. Reading when there is no data
* is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
- *
+ *
* All locking is handled for the caller. On return data may still be
* present if it arrived during the flush.
*/
-
+
static void z8530_flush_fifo(struct z8530_channel *c)
{
read_zsreg(c, R1);
@@ -267,7 +267,7 @@ static void z8530_flush_fifo(struct z8530_channel *c)
read_zsreg(c, R1);
read_zsreg(c, R1);
}
-}
+}
/**
* z8530_rtsdtr - Control the outgoing DTS/RTS line
@@ -293,7 +293,7 @@ static void z8530_rtsdtr(struct z8530_channel *c, int set)
* z8530_rx - Handle a PIO receive event
* @c: Z8530 channel to process
*
- * Receive handler for receiving in PIO mode. This is much like the
+ * Receive handler for receiving in PIO mode. This is much like the
* async one but not quite the same or as complex
*
* Note: Its intended that this handler can easily be separated from
@@ -306,13 +306,13 @@ static void z8530_rtsdtr(struct z8530_channel *c, int set)
* other code - this is true in the RT case too.
*
* We only cover the sync cases for this. If you want 2Mbit async
- * do it yourself but consider medical assistance first. This non DMA
- * synchronous mode is portable code. The DMA mode assumes PCI like
+ * do it yourself but consider medical assistance first. This non DMA
+ * synchronous mode is portable code. The DMA mode assumes PCI like
* ISA DMA
*
* Called with the device lock held
*/
-
+
static void z8530_rx(struct z8530_channel *c)
{
u8 ch,stat;
@@ -324,7 +324,7 @@ static void z8530_rx(struct z8530_channel *c)
break;
ch=read_zsdata(c);
stat=read_zsreg(c, R1);
-
+
/* Overrun ?
*/
if(c->count < c->max)
@@ -378,7 +378,7 @@ static void z8530_rx(struct z8530_channel *c)
* in as possible, its quite possible that we won't keep up with the
* data rate otherwise.
*/
-
+
static void z8530_tx(struct z8530_channel *c)
{
while(c->txcount) {
@@ -400,10 +400,10 @@ static void z8530_tx(struct z8530_channel *c)
/* End of frame TX - fire another one
*/
-
+
write_zsctrl(c, RES_Tx_P);
- z8530_tx_done(c);
+ z8530_tx_done(c);
write_zsctrl(c, RES_H_IUS);
}
@@ -468,29 +468,29 @@ EXPORT_SYMBOL(z8530_sync);
* events are handled by the DMA hardware. We get a kick here only if
* a frame ended.
*/
-
+
static void z8530_dma_rx(struct z8530_channel *chan)
{
if(chan->rxdma_on)
{
/* Special condition check only */
u8 status;
-
+
read_zsreg(chan, R7);
read_zsreg(chan, R6);
-
+
status=read_zsreg(chan, R1);
-
+
if(status&END_FR)
{
z8530_rx_done(chan); /* Fire up the next one */
- }
+ }
write_zsctrl(chan, ERR_RES);
write_zsctrl(chan, RES_H_IUS);
} else {
/* DMA is off right now, drain the slow way */
z8530_rx(chan);
- }
+ }
}
/**
@@ -500,7 +500,6 @@ static void z8530_dma_rx(struct z8530_channel *chan)
* We have received an interrupt while doing DMA transmissions. It
* shouldn't happen. Scream loudly if it does.
*/
-
static void z8530_dma_tx(struct z8530_channel *chan)
{
if(!chan->dma_tx)
@@ -517,20 +516,19 @@ static void z8530_dma_tx(struct z8530_channel *chan)
/**
* z8530_dma_status - Handle a DMA status exception
* @chan: Z8530 channel to process
- *
+ *
* A status event occurred on the Z8530. We receive these for two reasons
* when in DMA mode. Firstly if we finished a packet transfer we get one
* and kick the next packet out. Secondly we may see a DCD change.
*
*/
-
static void z8530_dma_status(struct z8530_channel *chan)
{
u8 status, altered;
status=read_zsreg(chan, R0);
altered=chan->status^status;
-
+
chan->status=status;
if(chan->dma_tx)
@@ -538,10 +536,10 @@ static void z8530_dma_status(struct z8530_channel *chan)
if(status&TxEOM)
{
unsigned long flags;
-
+
flags=claim_dma_lock();
disable_dma(chan->txdma);
- clear_dma_ff(chan->txdma);
+ clear_dma_ff(chan->txdma);
chan->txdma_on=0;
release_dma_lock(flags);
z8530_tx_done(chan);
@@ -597,7 +595,7 @@ static void z8530_rx_clear(struct z8530_channel *c)
read_zsdata(c);
stat=read_zsreg(c, R1);
-
+
if(stat&END_FR)
write_zsctrl(c, RES_Rx_CRC);
/* Clear irq
@@ -670,7 +668,7 @@ irqreturn_t z8530_interrupt(int irq, void *dev_id)
static int locker;
int work=0;
struct z8530_irqhandler *irqs;
-
+
if(locker)
{
pr_err("IRQ re-enter\n");
@@ -685,15 +683,15 @@ irqreturn_t z8530_interrupt(int irq, void *dev_id)
intr = read_zsreg(&dev->chanA, R3);
if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT)))
break;
-
+
/* This holds the IRQ status. On the 8530 you must read it
* from chan A even though it applies to the whole chip
*/
-
+
/* Now walk the chip and see what it is wanting - it may be
* an IRQ for someone else remember
*/
-
+
irqs=dev->chanA.irqs;
if(intr & (CHARxIP|CHATxIP|CHAEXT))
@@ -744,7 +742,6 @@ static const u8 reg_init[16]=
* Switch a Z8530 into synchronous mode without DMA assist. We
* raise the RTS/DTR and commence network operation.
*/
-
int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
{
unsigned long flags;
@@ -780,17 +777,16 @@ EXPORT_SYMBOL(z8530_sync_open);
* Close down a Z8530 interface and switch its interrupt handlers
* to discard future events.
*/
-
int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
{
u8 chk;
unsigned long flags;
-
+
spin_lock_irqsave(c->lock, flags);
c->irqs = &z8530_nop;
c->max = 0;
c->sync = 0;
-
+
chk=read_zsreg(c,R0);
write_zsreg(c, R3, c->regs[R3]);
z8530_rtsdtr(c,0);
@@ -809,11 +805,10 @@ EXPORT_SYMBOL(z8530_sync_close);
* ISA DMA channels must be available for this to work. We assume ISA
* DMA driven I/O and PC limits on access.
*/
-
int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
{
unsigned long cflags, dflags;
-
+
c->sync = 1;
c->mtu = dev->mtu+64;
c->count = 0;
@@ -829,15 +824,15 @@ int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
* Everyone runs 1500 mtu or less on wan links so this
* should be fine.
*/
-
+
if(c->mtu > PAGE_SIZE/2)
return -EMSGSIZE;
-
+
c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
if (!c->rx_buf[0])
return -ENOBUFS;
c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2;
-
+
c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
if (!c->tx_dma_buf[0])
{
@@ -851,7 +846,7 @@ int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
c->dma_tx = 1;
c->dma_num=0;
c->dma_ready=1;
-
+
/* Enable DMA control mode
*/
@@ -859,15 +854,15 @@ int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
/* TX DMA via DIR/REQ
*/
-
+
c->regs[R14]|= DTRREQ;
- write_zsreg(c, R14, c->regs[R14]);
+ write_zsreg(c, R14, c->regs[R14]);
c->regs[R1]&= ~TxINT_ENAB;
write_zsreg(c, R1, c->regs[R1]);
/* RX DMA via W/Req
- */
+ */
c->regs[R1]|= WT_FN_RDYFN;
c->regs[R1]|= WT_RDY_RT;
@@ -875,16 +870,16 @@ int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
c->regs[R1]&= ~TxINT_ENAB;
write_zsreg(c, R1, c->regs[R1]);
c->regs[R1]|= WT_RDY_ENAB;
- write_zsreg(c, R1, c->regs[R1]);
+ write_zsreg(c, R1, c->regs[R1]);
/* DMA interrupts
*/
/* Set up the DMA configuration
- */
-
+ */
+
dflags=claim_dma_lock();
-
+
disable_dma(c->rxdma);
clear_dma_ff(c->rxdma);
set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
@@ -896,7 +891,7 @@ int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
clear_dma_ff(c->txdma);
set_dma_mode(c->txdma, DMA_MODE_WRITE);
disable_dma(c->txdma);
-
+
release_dma_lock(dflags);
/* Select the DMA interrupt handlers
@@ -905,13 +900,13 @@ int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
c->rxdma_on = 1;
c->txdma_on = 1;
c->tx_dma_used = 1;
-
+
c->irqs = &z8530_dma_sync;
z8530_rtsdtr(c,1);
write_zsreg(c, R3, c->regs[R3]|RxENABLE);
spin_unlock_irqrestore(c->lock, cflags);
-
+
return 0;
}
EXPORT_SYMBOL(z8530_sync_dma_open);
@@ -924,29 +919,28 @@ EXPORT_SYMBOL(z8530_sync_dma_open);
* Shut down a DMA mode synchronous interface. Halt the DMA, and
* free the buffers.
*/
-
int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
{
u8 chk;
unsigned long flags;
-
+
c->irqs = &z8530_nop;
c->max = 0;
c->sync = 0;
/* Disable the PC DMA channels
*/
-
- flags=claim_dma_lock();
+
+ flags = claim_dma_lock();
disable_dma(c->rxdma);
clear_dma_ff(c->rxdma);
-
+
c->rxdma_on = 0;
-
+
disable_dma(c->txdma);
clear_dma_ff(c->txdma);
release_dma_lock(flags);
-
+
c->txdma_on = 0;
c->tx_dma_used = 0;
@@ -954,15 +948,15 @@ int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
/* Disable DMA control mode
*/
-
+
c->regs[R1]&= ~WT_RDY_ENAB;
- write_zsreg(c, R1, c->regs[R1]);
+ write_zsreg(c, R1, c->regs[R1]);
c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
c->regs[R1]|= INT_ALL_Rx;
write_zsreg(c, R1, c->regs[R1]);
c->regs[R14]&= ~DTRREQ;
- write_zsreg(c, R14, c->regs[R14]);
-
+ write_zsreg(c, R14, c->regs[R14]);
+
if(c->rx_buf[0])
{
free_page((unsigned long)c->rx_buf[0]);
@@ -1008,10 +1002,10 @@ int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
* Everyone runs 1500 mtu or less on wan links so this
* should be fine.
*/
-
+
if(c->mtu > PAGE_SIZE/2)
return -EMSGSIZE;
-
+
c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
if (!c->tx_dma_buf[0])
return -ENOBUFS;
@@ -1031,7 +1025,7 @@ int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
c->rxdma_on = 0;
c->txdma_on = 0;
-
+
c->tx_dma_used=0;
c->dma_num=0;
c->dma_ready=1;
@@ -1043,14 +1037,14 @@ int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
/* TX DMA via DIR/REQ
*/
c->regs[R14]|= DTRREQ;
- write_zsreg(c, R14, c->regs[R14]);
-
+ write_zsreg(c, R14, c->regs[R14]);
+
c->regs[R1]&= ~TxINT_ENAB;
write_zsreg(c, R1, c->regs[R1]);
/* Set up the DMA configuration
- */
-
+ */
+
dflags = claim_dma_lock();
disable_dma(c->txdma);
@@ -1066,12 +1060,12 @@ int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
c->rxdma_on = 0;
c->txdma_on = 1;
c->tx_dma_used = 1;
-
+
c->irqs = &z8530_txdma_sync;
z8530_rtsdtr(c,1);
write_zsreg(c, R3, c->regs[R3]|RxENABLE);
spin_unlock_irqrestore(c->lock, cflags);
-
+
return 0;
}
EXPORT_SYMBOL(z8530_sync_txdma_open);
@@ -1081,7 +1075,7 @@ EXPORT_SYMBOL(z8530_sync_txdma_open);
* @dev: Network device to detach
* @c: Z8530 channel to move into discard mode
*
- * Shut down a DMA/PIO split mode synchronous interface. Halt the DMA,
+ * Shut down a DMA/PIO split mode synchronous interface. Halt the DMA,
* and free the buffers.
*/
@@ -1091,14 +1085,14 @@ int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
u8 chk;
spin_lock_irqsave(c->lock, cflags);
-
+
c->irqs = &z8530_nop;
c->max = 0;
c->sync = 0;
/* Disable the PC DMA channels
*/
-
+
dflags = claim_dma_lock();
disable_dma(c->txdma);
@@ -1110,15 +1104,15 @@ int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
/* Disable DMA control mode
*/
-
+
c->regs[R1]&= ~WT_RDY_ENAB;
- write_zsreg(c, R1, c->regs[R1]);
+ write_zsreg(c, R1, c->regs[R1]);
c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
c->regs[R1]|= INT_ALL_Rx;
write_zsreg(c, R1, c->regs[R1]);
c->regs[R14]&= ~DTRREQ;
- write_zsreg(c, R14, c->regs[R14]);
-
+ write_zsreg(c, R14, c->regs[R14]);
+
if(c->tx_dma_buf[0])
{
free_page((unsigned long)c->tx_dma_buf[0]);
@@ -1136,7 +1130,6 @@ EXPORT_SYMBOL(z8530_sync_txdma_close);
/* Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
* it exists...
*/
-
static const char *z8530_type_name[]={
"Z8530",
"Z85C30",
@@ -1157,7 +1150,7 @@ static const char *z8530_type_name[]={
void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
{
pr_info("%s: %s found at %s 0x%lX, IRQ %d\n",
- dev->name,
+ dev->name,
z8530_type_name[dev->type],
mapping,
Z8530_PORT_OF(io),
@@ -1167,7 +1160,6 @@ EXPORT_SYMBOL(z8530_describe);
/* Locked operation part of the z8530 init code
*/
-
static inline int do_z8530_init(struct z8530_dev *dev)
{
/* NOP the interrupt handlers first - we might get a
@@ -1188,18 +1180,18 @@ static inline int do_z8530_init(struct z8530_dev *dev)
write_zsreg(&dev->chanA, R12, 0x55);
if(read_zsreg(&dev->chanA, R12)!=0x55)
return -ENODEV;
-
+
dev->type=Z8530;
/* See the application note.
*/
-
+
write_zsreg(&dev->chanA, R15, 0x01);
/* If we can set the low bit of R15 then
* the chip is enhanced.
*/
-
+
if(read_zsreg(&dev->chanA, R15)==0x01)
{
/* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
@@ -1215,15 +1207,15 @@ static inline int do_z8530_init(struct z8530_dev *dev)
* off. Use write_zsext() for these and keep
* this bit clear.
*/
-
+
write_zsreg(&dev->chanA, R15, 0);
/* At this point it looks like the chip is behaving
*/
-
+
memcpy(dev->chanA.regs, reg_init, 16);
memcpy(dev->chanB.regs, reg_init ,16);
-
+
return 0;
}
@@ -1266,13 +1258,12 @@ EXPORT_SYMBOL(z8530_init);
* z8530_shutdown - Shutdown a Z8530 device
* @dev: The Z8530 chip to shutdown
*
- * We set the interrupt handlers to silence any interrupts. We then
+ * We set the interrupt handlers to silence any interrupts. We then
* reset the chip and wait 100uS to be sure the reset completed. Just
* in case the caller then tries to do stuff.
*
* This is called without the lock held
*/
-
int z8530_shutdown(struct z8530_dev *dev)
{
unsigned long flags;
@@ -1295,7 +1286,7 @@ EXPORT_SYMBOL(z8530_shutdown);
* @rtable: table of register, value pairs
* FIXME: ioctl to allow user uploaded tables
*
- * Load a Z8530 channel up from the system data. We use +16 to
+ * Load a Z8530 channel up from the system data. We use +16 to
* indicate the "prime" registers. The value 255 terminates the
* table.
*/
@@ -1339,7 +1330,7 @@ EXPORT_SYMBOL(z8530_channel_load);
*
* This is the speed sensitive side of transmission. If we are called
* and no buffer is being transmitted we commence the next buffer. If
- * nothing is queued we idle the sync.
+ * nothing is queued we idle the sync.
*
* Note: We are handling this code path in the interrupt path, keep it
* fast or bad things will happen.
@@ -1353,11 +1344,11 @@ static void z8530_tx_begin(struct z8530_channel *c)
if(c->tx_skb)
return;
-
+
c->tx_skb=c->tx_next_skb;
c->tx_next_skb=NULL;
c->tx_ptr=c->tx_next_ptr;
-
+
if (!c->tx_skb)
{
/* Idle on */
@@ -1383,21 +1374,20 @@ static void z8530_tx_begin(struct z8530_channel *c)
/* FIXME. DMA is broken for the original 8530,
* on the older parts we need to set a flag and
* wait for a further TX interrupt to fire this
- * stage off
+ * stage off
*/
-
+
flags=claim_dma_lock();
disable_dma(c->txdma);
/* These two are needed by the 8530/85C30
* and must be issued when idling.
*/
-
if(c->dev->type!=Z85230)
{
write_zsctrl(c, RES_Tx_CRC);
write_zsctrl(c, RES_EOM_L);
- }
+ }
write_zsreg(c, R10, c->regs[10]&~ABUNDER);
clear_dma_ff(c->txdma);
set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
@@ -1410,9 +1400,8 @@ static void z8530_tx_begin(struct z8530_channel *c)
/* ABUNDER off */
write_zsreg(c, R10, c->regs[10]);
write_zsctrl(c, RES_Tx_CRC);
-
- while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP))
- {
+
+ while (c->txcount && (read_zsreg(c, R0) & Tx_BUF_EMP)) {
write_zsreg(c, R8, *c->tx_ptr++);
c->txcount--;
}
@@ -1458,7 +1447,6 @@ static void z8530_tx_done(struct z8530_channel *c)
* We point the receive handler at this function when idle. Instead
* of processing the frames we get to throw them away.
*/
-
void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
{
dev_kfree_skb_any(skb);
@@ -1477,7 +1465,6 @@ EXPORT_SYMBOL(z8530_null_rx);
*
* Called with the lock held
*/
-
static void z8530_rx_done(struct z8530_channel *c)
{
struct sk_buff *skb;
@@ -1495,9 +1482,9 @@ static void z8530_rx_done(struct z8530_channel *c)
unsigned long flags;
/* Complete this DMA. Necessary to find the length
- */
+ */
flags=claim_dma_lock();
-
+
disable_dma(c->rxdma);
clear_dma_ff(c->rxdma);
c->rxdma_on=0;
@@ -1509,7 +1496,7 @@ static void z8530_rx_done(struct z8530_channel *c)
/* Normal case: the other slot is free, start the next DMA
* into it immediately.
*/
-
+
if(ready)
{
c->dma_num^=1;
@@ -1621,18 +1608,17 @@ static inline int spans_boundary(struct sk_buff *skb)
* @skb: The packet to kick down the channel
*
* Queue a packet for transmission. Because we have rather
- * hard to hit interrupt latencies for the Z85230 per packet
+ * hard to hit interrupt latencies for the Z85230 per packet
* even in DMA mode we do the flip to DMA buffer if needed here
* not in the IRQ.
*
- * Called from the network code. The lock is not held at this
+ * Called from the network code. The lock is not held at this
* point.
*/
-
netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
{
unsigned long flags;
-
+
netif_stop_queue(c->netdevice);
if(c->tx_next_skb)
return NETDEV_TX_BUSY;
@@ -1641,7 +1627,7 @@ netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
/* If we will DMA the transmit and its gone over the ISA bus
* limit, then copy to the flip buffer
*/
-
+
if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb)))
{
/* Send the flip buffer, and flip the flippy bit.
@@ -1659,11 +1645,11 @@ netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
RT_LOCK;
c->tx_next_skb=skb;
RT_UNLOCK;
-
+
spin_lock_irqsave(c->lock, flags);
z8530_tx_begin(c);
spin_unlock_irqrestore(c->lock, flags);
-
+
return NETDEV_TX_OK;
}
EXPORT_SYMBOL(z8530_queue_xmit);
--
2.8.1