[PATCH v3] Driver for ON Semi AR0521 camera sensor

From: Krzysztof Hałasa
Date: Wed Jul 21 2021 - 05:00:58 EST


The driver has been extensively tested in an i.MX6-based system.

Signed-off-by: Krzysztof Hałasa <khalasa@xxxxxxx>
---
Changes from v2:
- updated for v5.14 (struct v4l2_subdev_pad_config -> v4l2_subdev_state)
- fixes needed by DTS changes (xclk -> extclk and power regulators)
- now comes with the SOB. Hope nothing bad will happen.
- UTF-8 experiments :-)
- cosmetics
- checkpatch still complains:

WARNING: Unnecessary ftrace-like logging - prefer using ftrace (multiple cases)
#238: FILE: drivers/media/i2c/ar0521.c:238:
+ v4l2_dbg(2, debug, &sensor->sd, "%s()\n", __func__);

I'm leaving this as is for consistency with other debugging.

WARNING: Block comments use * on subsequent lines
#271: FILE: drivers/media/i2c/ar0521.c:271:
+ /* 0x300 */ be(4), // vt_pix_clk_div = number of bits / 2
+ /* 0x302 */ be(1), // vt_sys_clk_div
+ /* 0x304 */ be((sensor->pll_pre2 << 8) | sensor->pll_pre),
...
+ /* 0x308 */ be(8), // op_pix_clk_div = 2 * vt_pix_clk_div
+ /* 0x30A */ be(1) // op_sys_clk_div

These aren't block comments :-)

Fire away.

diff --git a/MAINTAINERS b/MAINTAINERS
index a61f4f3b78a9..f92b56487fc6 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -1331,6 +1331,12 @@ S: Supported
W: http://www.aquantia.com
F: drivers/net/ethernet/aquantia/atlantic/aq_ptp*

+AR0521 ON SEMICONDUCTOR CAMERA SENSOR DRIVER
+M: Krzysztof Hałasa <khalasa@xxxxxxx>
+L: linux-media@xxxxxxxxxxxxxxx
+S: Maintained
+F: drivers/media/i2c/ar0521.c
+
ARASAN NAND CONTROLLER DRIVER
M: Miquel Raynal <miquel.raynal@xxxxxxxxxxx>
M: Naga Sureshkumar Relli <nagasure@xxxxxxxxxx>
diff --git a/drivers/media/i2c/Kconfig b/drivers/media/i2c/Kconfig
index 588f8eb95984..0c41a3c18671 100644
--- a/drivers/media/i2c/Kconfig
+++ b/drivers/media/i2c/Kconfig
@@ -729,6 +729,16 @@ config VIDEO_APTINA_PLL
config VIDEO_CCS_PLL
tristate

+config VIDEO_AR0521
+ tristate "ON Semiconductor AR0521 sensor support"
+ depends on I2C && VIDEO_V4L2
+ help
+ This is a Video4Linux2 sensor driver for the ON Semiconductor
+ AR0521 camera.
+
+ To compile this driver as a module, choose M here: the
+ module will be called ar0521.
+
config VIDEO_HI556
tristate "Hynix Hi-556 sensor support"
depends on I2C && VIDEO_V4L2
diff --git a/drivers/media/i2c/Makefile b/drivers/media/i2c/Makefile
index 1168fa6b84ed..3351deeb741b 100644
--- a/drivers/media/i2c/Makefile
+++ b/drivers/media/i2c/Makefile
@@ -8,6 +8,7 @@ obj-$(CONFIG_VIDEO_CX25840) += cx25840/
obj-$(CONFIG_VIDEO_M5MOLS) += m5mols/

obj-$(CONFIG_VIDEO_APTINA_PLL) += aptina-pll.o
+obj-$(CONFIG_VIDEO_AR0521) += ar0521.o
obj-$(CONFIG_VIDEO_TVAUDIO) += tvaudio.o
obj-$(CONFIG_VIDEO_TDA7432) += tda7432.o
obj-$(CONFIG_VIDEO_SAA6588) += saa6588.o
diff --git a/drivers/media/i2c/ar0521.c b/drivers/media/i2c/ar0521.c
new file mode 100644
index 000000000000..0ab10bf2f99f
--- /dev/null
+++ b/drivers/media/i2c/ar0521.c
@@ -0,0 +1,1065 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2021 Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów PIAP
+ * Written by Krzysztof Hałasa
+ */
+
+#include <linux/clk.h>
+#include <linux/clk-provider.h>
+#include <linux/clkdev.h>
+#include <linux/ctype.h>
+#include <linux/delay.h>
+#include <linux/device.h>
+#include <linux/i2c.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/of_device.h>
+#include <linux/slab.h>
+#include <linux/types.h>
+#include <linux/gpio/consumer.h>
+#include <linux/math64.h>
+#include <linux/regulator/consumer.h>
+#include <media/v4l2-async.h>
+#include <media/v4l2-ctrls.h>
+#include <media/v4l2-device.h>
+#include <media/v4l2-event.h>
+#include <media/v4l2-fwnode.h>
+#include <media/v4l2-subdev.h>
+
+// External clock (extclk) frequencies
+#define AR0521_EXTCLK_RATE (27 * 1000 * 1000)
+#define AR0521_EXTCLK_MIN (10 * 1000 * 1000)
+#define AR0521_EXTCLK_MAX (48 * 1000 * 1000)
+
+// PLL and PLL2
+#define AR0521_PLL_MIN (320 * 1000 * 1000)
+#define AR0521_PLL_MAX (1280 * 1000 * 1000)
+
+// effective pixel clocks, the registers may be DDR
+#define AR0521_PIXEL_CLOCK_MIN (168 * 1000 * 1000)
+#define AR0521_PIXEL_CLOCK_MAX (414 * 1000 * 1000)
+
+#define AR0521_WIDTH_MIN 8u
+#define AR0521_WIDTH_MAX 2608u
+#define AR0521_HEIGHT_MIN 8u
+#define AR0521_HEIGHT_MAX 1958u
+
+#define AR0521_WIDTH_BLANKING_MIN 572u
+#define AR0521_HEIGHT_BLANKING_MIN 28u // must be even
+#define AR0521_TOTAL_WIDTH_MIN 2968u
+
+// AR0521 registers
+#define AR0521_REG_VT_PIX_CLK_DIV 0x0300
+#define AR0521_REG_FRAME_LENGTH_LINES 0x0340
+
+#define AR0521_REG_CHIP_ID 0x3000
+#define AR0521_REG_COARSE_INTEGRATION_TIME 0x3012
+#define AR0521_REG_ROW_SPEED 0x3016
+#define AR0521_REG_EXTRA_DELAY 0x3018
+#define AR0521_REG_RESET 0x301A
+#define AR0521_REG_RESET_DEFAULTS 0x0238
+#define AR0521_REG_RESET_GROUP_PARAM_HOLD 0x8000
+#define AR0521_REG_RESET_STREAM BIT(2)
+#define AR0521_REG_RESET_RESTART BIT(1)
+#define AR0521_REG_RESET_INIT BIT(0)
+
+#define AR0521_REG_GREEN1_GAIN 0x3056
+#define AR0521_REG_BLUE_GAIN 0x3058
+#define AR0521_REG_RED_GAIN 0x305A
+#define AR0521_REG_GREEN2_GAIN 0x305C
+#define AR0521_REG_GLOBAL_GAIN 0x305E
+
+#define AR0521_REG_HISPI_TEST_MODE 0x3066
+#define AR0521_REG_HISPI_TEST_MODE_LP11 0x0004
+
+#define AR0521_REG_TEST_PATTERN_MODE 0x3070
+
+#define AR0521_REG_SERIAL_FORMAT 0x31AE
+#define AR0521_REG_SERIAL_FORMAT_MIPI 0x0200
+
+#define AR0521_REG_HISPI_CONTROL_STATUS 0x31C6
+#define AR0521_REG_HISPI_CONTROL_STATUS_FRAMER_TEST_MODE_ENABLE 0x80
+
+#define be cpu_to_be16
+
+// regulator supplies
+static const char * const ar0521_supply_names[] = {
+ "vdd_io", // I/O (1.8V) supply
+ "vdd", // Core, PLL and MIPI (1.2V) supply
+ "vaa", // Analog (2.7V) supply
+};
+
+#define AR0521_NUM_SUPPLIES ARRAY_SIZE(ar0521_supply_names)
+
+struct ar0521_ctrls {
+ struct v4l2_ctrl_handler handler;
+ struct v4l2_ctrl *exposure;
+ struct v4l2_ctrl *gain, *red_balance, *blue_balance;
+ struct v4l2_ctrl *test_pattern;
+ struct v4l2_ctrl *hblank, *vblank, *pixrate;
+};
+
+struct ar0521_dev {
+ struct i2c_client *i2c_client;
+ struct v4l2_subdev sd;
+ struct media_pad pad;
+ struct v4l2_fwnode_endpoint ep;
+ struct clk *extclk;
+ u32 extclk_freq;
+
+ struct regulator *supplies[AR0521_NUM_SUPPLIES];
+ struct gpio_desc *reset_gpio;
+
+ // lock to protect all members below
+ struct mutex lock;
+
+ struct v4l2_mbus_framefmt fmt;
+ struct v4l2_fract frame_interval, current_frame_interval;
+ struct ar0521_ctrls ctrls;
+ u32 pix_clk;
+ unsigned int power_count;
+ u16 total_width, total_height, pll_pre, pll_mult, pll_pre2, pll_mult2, extra_delay;
+ bool streaming;
+};
+
+static int debug;
+module_param(debug, int, 0644);
+MODULE_PARM_DESC(debug, "Debug level 0-3");
+
+static inline struct ar0521_dev *to_ar0521_dev(struct v4l2_subdev *sd)
+{
+ return container_of(sd, struct ar0521_dev, sd);
+}
+
+static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl)
+{
+ return &container_of(ctrl->handler, struct ar0521_dev, ctrls.handler)->sd;
+}
+
+static inline unsigned int lanes(struct ar0521_dev *sensor)
+{
+ return sensor->ep.bus.mipi_csi2.num_data_lanes;
+}
+
+static const char *mhz(u32 value)
+{
+ static char buff[32];
+
+ if (value % 1000)
+ sprintf(buff, "%u.%06u", value / (1000 * 1000), value % (1000 * 1000));
+ else if (value % (1000 * 1000))
+ sprintf(buff, "%u.%03u", value / (1000 * 1000), (value / 1000) % 1000);
+ else
+ sprintf(buff, "%u", value / (1000 * 1000));
+ return buff;
+}
+
+static u32 div64_round(u64 v, u32 d)
+{
+ return div_u64(v + (d >> 1), d);
+}
+
+static u32 div64_round_up(u64 v, u32 d)
+{
+ return div_u64(v + d - 1, d);
+}
+
+#define HEX_DUMP_WORDS 8
+static void dump_i2c(struct ar0521_dev *sensor, const __be16 *data, unsigned int count)
+{
+ char buffer[5 /* " XXXX" */ * HEX_DUMP_WORDS + 1 /* NUL */];
+ u16 addr;
+ int i;
+
+ addr = be16_to_cpu(*data++);
+ count--;
+ while (count) {
+ for (i = 0; i < HEX_DUMP_WORDS; i++) {
+ sprintf(buffer + 5 * i, " %04X", be16_to_cpu(*data++));
+ addr += 2;
+ if (!--count)
+ break;
+ }
+ v4l2_dbg(3, debug, &sensor->sd, "WR %04X:%s\n", addr, buffer);
+ }
+}
+
+// data must be BE16, the first value is the register address
+static int ar0521_write_regs(struct ar0521_dev *sensor, const __be16 *data, unsigned int count)
+{
+ struct i2c_client *client = sensor->i2c_client;
+ struct i2c_msg msg;
+ int ret;
+
+ if (!sensor->power_count)
+ return 0;
+
+ if (debug >= 3)
+ dump_i2c(sensor, data, count);
+
+ msg.addr = client->addr;
+ msg.flags = client->flags;
+ msg.buf = (u8 *)data;
+ msg.len = count * sizeof(*data);
+
+ ret = i2c_transfer(client->adapter, &msg, 1);
+ if (ret < 0) {
+ v4l2_err(&sensor->sd, "%s: I2C write error\n", __func__);
+ return ret;
+ }
+
+ return 0;
+}
+
+static int ar0521_write_reg(struct ar0521_dev *sensor, u16 reg, u16 val)
+{
+ __be16 buf[2] = {be(reg), be(val)};
+
+ return ar0521_write_regs(sensor, buf, 2);
+}
+
+static int ar0521_set_geometry(struct ar0521_dev *sensor)
+{
+ // all dimensions are unsigned 12-bit integers
+ u16 x = (AR0521_WIDTH_MAX - sensor->fmt.width) / 2;
+ u16 y = ((AR0521_HEIGHT_MAX - sensor->fmt.height) / 2) & ~1;
+ __be16 regs[] = {
+ be(AR0521_REG_FRAME_LENGTH_LINES),
+ be(sensor->total_height),
+ be(sensor->total_width),
+ be(x),
+ be(y),
+ be(x + sensor->fmt.width - 1),
+ be(y + sensor->fmt.height - 1),
+ be(sensor->fmt.width),
+ be(sensor->fmt.height)
+ };
+
+ v4l2_dbg(2, debug, &sensor->sd, "%s()\n", __func__);
+
+ return ar0521_write_regs(sensor, regs, ARRAY_SIZE(regs));
+}
+
+static int ar0521_set_gains(struct ar0521_dev *sensor)
+{
+ int green = sensor->ctrls.gain->val;
+ int red = max(green + sensor->ctrls.red_balance->val, 0);
+ int blue = max(green + sensor->ctrls.blue_balance->val, 0);
+ unsigned int gain = min(red, min(green, blue));
+ unsigned int analog = min(gain, 64u); // range is 0 - 127
+ __be16 regs[5];
+
+ v4l2_dbg(2, debug, &sensor->sd, "%s()\n", __func__);
+
+ red = min(red - analog + 64, 511u);
+ green = min(green - analog + 64, 511u);
+ blue = min(blue - analog + 64, 511u);
+ regs[0] = be(AR0521_REG_GREEN1_GAIN);
+ regs[1] = be(green << 7 | analog);
+ regs[2] = be(blue << 7 | analog);
+ regs[3] = be(red << 7 | analog);
+ regs[4] = be(green << 7 | analog);
+
+ return ar0521_write_regs(sensor, regs, ARRAY_SIZE(regs));
+}
+
+static int ar0521_write_mode(struct ar0521_dev *sensor)
+{
+ __be16 pll_regs[] = {
+ be(AR0521_REG_VT_PIX_CLK_DIV),
+ /* 0x300 */ be(4), // vt_pix_clk_div = number of bits / 2
+ /* 0x302 */ be(1), // vt_sys_clk_div
+ /* 0x304 */ be((sensor->pll_pre2 << 8) | sensor->pll_pre),
+ /* 0x306 */ be((sensor->pll_mult2 << 8) | sensor->pll_mult),
+ /* 0x308 */ be(8), // op_pix_clk_div = 2 * vt_pix_clk_div
+ /* 0x30A */ be(1) // op_sys_clk_div
+ };
+ u32 num = sensor->current_frame_interval.numerator;
+ u32 denom = sensor->current_frame_interval.denominator;
+ int ret;
+
+ v4l2_dbg(2, debug, &sensor->sd, "%s()\n", __func__);
+
+ // stop streaming for just a moment
+ ret = ar0521_write_reg(sensor, AR0521_REG_RESET, AR0521_REG_RESET_DEFAULTS);
+ if (ret)
+ return ret;
+
+ ret = ar0521_set_geometry(sensor);
+ if (ret)
+ return ret;
+
+ ret = ar0521_write_regs(sensor, pll_regs, ARRAY_SIZE(pll_regs));
+ if (ret)
+ return ret;
+
+ ret = ar0521_write_reg(sensor, AR0521_REG_COARSE_INTEGRATION_TIME, sensor->ctrls.exposure->val);
+ if (ret)
+ return ret;
+
+ ret = ar0521_write_reg(sensor, AR0521_REG_EXTRA_DELAY, sensor->extra_delay);
+ if (ret)
+ return ret;
+
+ ret = ar0521_write_reg(sensor, AR0521_REG_RESET, AR0521_REG_RESET_DEFAULTS | AR0521_REG_RESET_STREAM);
+ if (ret)
+ return ret;
+
+ ret = ar0521_write_reg(sensor, AR0521_REG_TEST_PATTERN_MODE, sensor->ctrls.test_pattern->val);
+ if (ret)
+ return ret;
+
+ dev_info(&sensor->i2c_client->dev,
+ "AR0521: %ux%u, total %ux%u, pixel clock %s MHz, %u (%u/%u) FPS\n",
+ sensor->fmt.width, sensor->fmt.height, sensor->total_width, sensor->total_height,
+ mhz(sensor->pix_clk), (num + denom / 2) / denom, num, denom);
+ return 0;
+}
+
+static int ar0521_set_stream(struct ar0521_dev *sensor, bool on)
+{
+ int ret;
+
+ v4l2_dbg(2, debug, &sensor->sd, "%s(%u)\n", __func__, on);
+
+ ret = ar0521_write_mode(sensor);
+ if (ret)
+ return ret;
+
+ if (on) {
+ ret = ar0521_set_gains(sensor);
+ if (ret)
+ return ret;
+
+ // normal output on clock and data lanes
+ ret = ar0521_write_reg(sensor, AR0521_REG_HISPI_CONTROL_STATUS, 0);
+ if (ret)
+ return ret;
+ } else {
+ // reset gain, the sensor may produce all white pixels without this
+ ret = ar0521_write_reg(sensor, AR0521_REG_GLOBAL_GAIN, 0x2000);
+ if (ret)
+ return ret;
+
+ // set LP-11 on clock and data lanes
+ ret = ar0521_write_reg(sensor, AR0521_REG_HISPI_CONTROL_STATUS,
+ AR0521_REG_HISPI_CONTROL_STATUS_FRAMER_TEST_MODE_ENABLE);
+ if (ret)
+ return ret;
+ }
+
+ // start streaming (possibly with LP-11 on all lines)
+ return ar0521_write_reg(sensor, AR0521_REG_RESET,
+ AR0521_REG_RESET_DEFAULTS |
+ AR0521_REG_RESET_RESTART |
+ AR0521_REG_RESET_STREAM);
+}
+
+static u32 calc_pll(struct ar0521_dev *sensor, int num, u32 freq, u16 *pre_ptr, u16 *mult_ptr)
+{
+ u16 pre = 1, mult = 1, new_pre;
+ u32 pll = AR0521_PLL_MAX + 1;
+
+ for (new_pre = 1; new_pre < 64; new_pre++) {
+ u32 new_pll;
+ u32 new_mult = div64_round_up((u64)freq * new_pre, sensor->extclk_freq);
+
+ if (new_mult < 32)
+ continue; // minimum value
+ if (new_mult > 254)
+ break; // maximum, larger pre won't work either
+ if (sensor->extclk_freq * (u64)new_mult < AR0521_PLL_MIN * new_pre)
+ continue;
+ if (sensor->extclk_freq * (u64)new_mult > AR0521_PLL_MAX * new_pre)
+ break; // larger pre won't work either
+ new_pll = div64_round_up(sensor->extclk_freq * (u64)new_mult, new_pre);
+ if (new_pll < pll) {
+ pll = new_pll;
+ pre = new_pre;
+ mult = new_mult;
+ }
+ }
+
+ pll = div64_round(sensor->extclk_freq * (u64)mult, pre);
+ *pre_ptr = pre;
+ *mult_ptr = mult;
+ return pll;
+}
+
+static void ar0521_adj_fmt(struct v4l2_mbus_framefmt *fmt)
+{
+ fmt->width = clamp(ALIGN(fmt->width, 4), AR0521_WIDTH_MIN, AR0521_WIDTH_MAX);
+ fmt->height = clamp(ALIGN(fmt->height, 4), AR0521_HEIGHT_MIN, AR0521_HEIGHT_MAX);
+ fmt->code = MEDIA_BUS_FMT_SGRBG8_1X8;
+ fmt->field = V4L2_FIELD_NONE;
+ fmt->colorspace = V4L2_COLORSPACE_SRGB;
+ fmt->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
+ fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE;
+ fmt->xfer_func = V4L2_XFER_FUNC_DEFAULT;
+}
+
+#define DIV 4
+static void ar0521_calc_mode(struct ar0521_dev *sensor)
+{
+ unsigned int speed_mod = 4 / lanes(sensor); // 1 with 4 DDR lanes
+ u64 pix_clk; // for calculations
+ u32 pixels, num, denom, new_total_height, new_pixels;
+ u16 total_width, total_height;
+
+ total_width = max(sensor->fmt.width + AR0521_WIDTH_BLANKING_MIN, AR0521_TOTAL_WIDTH_MIN);
+ total_height = sensor->fmt.height + AR0521_HEIGHT_BLANKING_MIN;
+
+ pixels = total_width * total_height;
+ num = sensor->frame_interval.numerator;
+ denom = sensor->frame_interval.denominator;
+
+ // calculate approximate pixel clock first
+ pix_clk = div64_round_up(pixels * (u64)num, denom);
+ if (pix_clk > AR0521_PIXEL_CLOCK_MAX) {
+ u32 cnt;
+ // have to recalculate FPS
+ num = pix_clk = AR0521_PIXEL_CLOCK_MAX;
+ denom = pixels;
+ // try to reduce the numbers a bit
+ for (cnt = 2; cnt * cnt < denom; cnt++)
+ while (num % cnt == 0 && denom % cnt == 0) {
+ num /= cnt;
+ denom /= cnt;
+ }
+ } else if (pix_clk < AR0521_PIXEL_CLOCK_MIN)
+ // we will compensate with total_height and extra_delay
+ pix_clk = AR0521_PIXEL_CLOCK_MIN;
+
+ sensor->current_frame_interval.numerator = num;
+ sensor->current_frame_interval.denominator = denom;
+
+ // PLL1 drives pixel clock - dual rate
+ pix_clk = calc_pll(sensor, 1, pix_clk * (DIV / 2), &sensor->pll_pre, &sensor->pll_mult);
+ pix_clk = div64_round(pix_clk, (DIV / 2));
+ calc_pll(sensor, 2, pix_clk * (DIV / 2) * speed_mod, &sensor->pll_pre2, &sensor->pll_mult2);
+
+ // let's see if we can do better
+ new_total_height = (div64_round((u64)pix_clk * denom, num) / total_width) & ~1; // must be even
+ if (new_total_height > total_height) {
+ total_height = new_total_height;
+ pixels = total_width * total_height;
+ }
+
+ // maybe there is still room for improvement
+ new_pixels = div64_round(pix_clk * denom, num);
+ sensor->extra_delay = 0;
+ if (new_pixels > pixels)
+ sensor->extra_delay = new_pixels - pixels;
+
+ sensor->pix_clk = pix_clk;
+ sensor->total_width = total_width;
+ sensor->total_height = total_height;
+}
+
+static int ar0521_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state,
+ struct v4l2_subdev_format *format)
+{
+ struct ar0521_dev *sensor = to_ar0521_dev(sd);
+ struct v4l2_mbus_framefmt *fmt;
+
+ if (format->pad)
+ return -EINVAL;
+
+ v4l2_dbg(1, debug, &sensor->sd, "%s(%u)\n", __func__, format->which);
+
+ mutex_lock(&sensor->lock);
+
+ if (format->which == V4L2_SUBDEV_FORMAT_TRY)
+ fmt = v4l2_subdev_get_try_format(&sensor->sd, sd_state, 0 /* pad */);
+ else
+ fmt = &sensor->fmt;
+
+ format->format = *fmt;
+
+ mutex_unlock(&sensor->lock);
+ return 0;
+}
+
+static int ar0521_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state,
+ struct v4l2_subdev_format *format)
+{
+ struct ar0521_dev *sensor = to_ar0521_dev(sd);
+ int ret = 0;
+
+ if (format->pad)
+ return -EINVAL;
+
+ v4l2_dbg(1, debug, &sensor->sd, "%s(%u)\n", __func__, format->which);
+
+ ar0521_adj_fmt(&format->format);
+
+ mutex_lock(&sensor->lock);
+
+ if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
+ struct v4l2_mbus_framefmt *fmt;
+
+ fmt = v4l2_subdev_get_try_format(sd, sd_state, 0 /* pad */);
+ *fmt = format->format;
+ } else {
+ sensor->fmt = format->format;
+ ar0521_calc_mode(sensor);
+ ret = ar0521_write_mode(sensor);
+ }
+
+ mutex_unlock(&sensor->lock);
+ return ret;
+}
+
+static int ar0521_s_ctrl(struct v4l2_ctrl *ctrl)
+{
+ struct v4l2_subdev *sd = ctrl_to_sd(ctrl);
+ struct ar0521_dev *sensor = to_ar0521_dev(sd);
+ int ret;
+
+ // v4l2_ctrl_lock() locks our own mutex
+
+ v4l2_dbg(1, debug, &sensor->sd, "%s(0x%X)\n", __func__, ctrl->id);
+
+ switch (ctrl->id) {
+ case V4L2_CID_HBLANK:
+ case V4L2_CID_VBLANK:
+ sensor->total_width = sensor->fmt.width + sensor->ctrls.hblank->val;
+ sensor->total_height = sensor->fmt.width + sensor->ctrls.vblank->val;
+ ret = ar0521_set_geometry(sensor);
+ break;
+ case V4L2_CID_GAIN:
+ case V4L2_CID_RED_BALANCE:
+ case V4L2_CID_BLUE_BALANCE:
+ ret = ar0521_set_gains(sensor);
+ break;
+ case V4L2_CID_EXPOSURE:
+ ret = ar0521_write_reg(sensor, AR0521_REG_COARSE_INTEGRATION_TIME, ctrl->val);
+ break;
+ case V4L2_CID_TEST_PATTERN:
+ ret = ar0521_write_reg(sensor, AR0521_REG_TEST_PATTERN_MODE, ctrl->val);
+ break;
+ default:
+ ret = -EINVAL;
+ break;
+ }
+
+ return ret;
+}
+
+static const struct v4l2_ctrl_ops ar0521_ctrl_ops = {
+ .s_ctrl = ar0521_s_ctrl,
+};
+
+static const char * const test_pattern_menu[] = {
+ "Disabled",
+ "Solid color",
+ "Color bars",
+ "Faded color bars"
+};
+
+static int ar0521_init_controls(struct ar0521_dev *sensor)
+{
+ const struct v4l2_ctrl_ops *ops = &ar0521_ctrl_ops;
+ struct ar0521_ctrls *ctrls = &sensor->ctrls;
+ struct v4l2_ctrl_handler *hdl = &ctrls->handler;
+ int ret;
+
+ v4l2_ctrl_handler_init(hdl, 32);
+
+ // we can use our own mutex for the ctrl lock
+ hdl->lock = &sensor->lock;
+
+ // manual gain
+ ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAIN, 0, 511, 1, 0);
+ ctrls->red_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_RED_BALANCE, -512, 511, 1, 0);
+ ctrls->blue_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BLUE_BALANCE, -512, 511, 1, 0);
+
+ // alternate for frame interval
+ ctrls->hblank = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HBLANK, AR0521_WIDTH_BLANKING_MIN, 4094, 1, AR0521_WIDTH_BLANKING_MIN);
+ ctrls->vblank = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VBLANK, AR0521_HEIGHT_BLANKING_MIN, 4094, 2, AR0521_HEIGHT_BLANKING_MIN);
+ // Read-only
+ ctrls->pixrate = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_PIXEL_RATE, AR0521_PIXEL_CLOCK_MIN, AR0521_PIXEL_CLOCK_MAX, 1, AR0521_PIXEL_CLOCK_MIN);
+
+ // manual exposure time
+ ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE, 0, 65535, 1, 0);
+
+ ctrls->test_pattern = v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN,
+ ARRAY_SIZE(test_pattern_menu) - 1,
+ 0, 0, test_pattern_menu);
+
+ if (hdl->error) {
+ ret = hdl->error;
+ goto free_ctrls;
+ }
+
+ sensor->sd.ctrl_handler = hdl;
+ return 0;
+
+free_ctrls:
+ v4l2_ctrl_handler_free(hdl);
+ return ret;
+}
+
+static const struct initial_reg {
+ u16 addr, value;
+} initial_regs[] = {
+ // corrections_recommended_bayer
+ {0x3042, 0x0004}, // RNC:enable b/w rnc mode
+ {0x3044, 0x4580}, // RNC:enable row noise correction
+ {0x30EE, 0x1136}, // RNC:rnc scaling factor-->initial recommended setting
+ {0x3120, 0x0001}, // recommended setting for dither
+ {0x3F2C, 0x442E}, // GTH_THRES_RTN: 7max,7min filtered out of every 46
+ {0x30D2, 0x0000}, // CRM/CC: enable crm on Visible and CC rows
+ {0x30D4, 0x0000}, // CC: CC enabled with 16 samples per column
+ {0x30D6, 0x2FFF}, // CC: bw mode enabled/12 bit data resolution/bw mode
+ {0x30DA, 0x0FFF}, // CC: column correction clip level 2 is 0
+ {0x30DC, 0x0FFF}, // CC: column correction clip level 3 is 0
+ {0x30DE, 0x0000}, // CC: Group FPN correction
+ {0x31E0, 0x0781}, // Fuse/2DDC: enable 2ddc
+ {0x3180, 0x9434}, // FDOC:fdoc settings with fdoc every frame turned of
+ {0x3172, 0x0206}, // txlo clk divider options
+ {0x3F00, 0x0017}, // BM_T0
+ {0x3F02, 0x02DD}, // BM_T1
+ {0x3F04, 0x0020}, // if Ana_gain less than 2, use noise_floor0, multipl
+ {0x3F06, 0x0040}, // if Ana_gain between 4 and 7, use noise_floor2 and
+ {0x3F08, 0x0070}, // if Ana_gain between 4 and 7, use noise_floor2 and
+ {0x3F0A, 0x0101}, // Define noise_floor0(low address) and noise_floor1
+ {0x3F0C, 0x0302}, // Define noise_floor2 and noise_floor3
+ {0x3F1E, 0x0022},
+ {0x3F1A, 0x01FF}, // cross factor 2
+ {0x3F14, 0x0505}, // single k factor 2
+ {0x3F44, 0x0707}, // couple k factor 2
+ {0x3F18, 0x01FF}, // cross factor 1
+ {0x3F12, 0x0505}, // single k factor 1
+ {0x3F42, 0x1511}, // couple k factor 1
+ {0x3F16, 0x01FF}, // cross factor 0
+ {0x3F10, 0x0505}, // single k factor 0
+ {0x3F40, 0x1511}, // couple k factor 0
+
+ // analog_setup_recommended_12bit
+ {0x3EB6, 0x004C}, // ECL
+ {0x3EBA, 0xAAAA},
+ {0x3EBC, 0x0086}, // Bias currents for FSC/ECL
+ {0x3EC0, 0x1E00}, // SFbin/SH mode settings
+ {0x3EC2, 0x100B}, // CLK divider for ramp for 12 bit 400MHz mode only
+ {0x3EC4, 0x3300}, // FSC clamps for HDR mode and adc comp power down co
+ {0x3EC6, 0xEA44}, // VLN and clk gating controls
+ {0x3EC8, 0x6F6F}, // Txl0 and Txlo1 settings for normal mode
+ {0x3ECA, 0x2F4A}, // CDAC/Txlo2/RSTGHI/RSTGLO settings
+ {0x3ECC, 0x0506}, // RSTDHI/RSTDLO/CDAC/TXHI settings
+ {0x3ECE, 0x203B}, // Ramp buffer settings and Booster enable (bits 0-5)
+ {0x3ED0, 0x13F0}, // TXLO from atest/sf bin settings
+ {0x3ED2, 0x9A3D}, // Booster settings for reference rows/columns
+ {0x3ED4, 0x862F}, // TXLO open loop/row driver settings
+ {0x3ED6, 0x4081}, // Txlatch fr cfpn rows/vln bias
+ {0x3ED8, 0x4003}, // Ramp step setting for 12 bit 400 Mhz mode
+ {0x3EDA, 0x9A80}, // ramp offset for T1/normal and rst under range
+ {0x3EDC, 0xC000}, // over range for rst and under range for sig
+ {0x3EDE, 0xC103}, // over range for sig and col dec clk settings
+ {0x3426, 0x1600}, // ADC offset distribution pulse
+ {0x342A, 0x0038}, // pulse_config
+ {0x3F3E, 0x0001}, // Switch ADC from 10 bit to 12 bit mode
+ {0x341A, 0x6051},
+ {0x3420, 0x6051},
+
+ // analog_setup_recommended_10bit
+ {0x3EC2, 0x100A}, // CLK divider for ramp for 10 bit 400MH
+ {0x3ED8, 0x8003}, // Ramp step setting for 10 bit 400 Mhz
+ {0x341A, 0x4735}, // Samp&Hold pulse in ADC
+ {0x3420, 0x4735}, // Samp&Hold pulse in ADC
+ {0x3426, 0x8A1A}, // ADC offset distribution pulse
+ {0x342A, 0x0018}, // pulse_config
+ {0x3ED2, 0xA53D}, // Ramp offset
+ {0x3EDA, 0xA580}, // Ramp Offset
+ {0x3EBA, 0xAAAD},
+ {0x3EB6, 0x004C},
+ {0x3F3E, 0x0000}, // Switch ADC from 12 bit to 10 bit mode
+
+ // new RNC 10bit
+ {0x30EE, 0x1136}, // RNC:rnc scaling factor=*54/64 (32/38*64=53.9)
+ {0x3F2C, 0x442E}, // GTH_THRES_RTN: 4max,4min filtered out of every 46 samples and
+ // for 10bit mode
+ {0x301E, 0x00AA}, // PEDESTAL+2 :+2 is a workaround for 10bit mode +0.5 Rounding
+ {0x3120, 0x0005}, // p1 dither enabled for 10bit mode
+
+ {0x0112, 0x0808}, // 8-bit/8-bit mode
+ {0x31BC, 0x068C}, // don't use continuous clock mode while shut down
+ {0x30FA, 0xFD00}, // GPIO0 = flash, GPIO1 = shutter
+ {0x31B0, 0x008B}, // frame_preamble - FIXME check WRT lanes#
+ {0x31B2, 0x0050}, // line_preamble - FIXME check WRT lanes#
+};
+
+static __be16 pixel_timing_recommended[] = {
+ be(0x3D00), // first register address
+ /* 3D00 */ be(0x043E), be(0x4760), be(0xFFFF), be(0xFFFF), be(0x8000), be(0x0510), be(0xAF08), be(0x0252),
+ /* 3D10 */ be(0x486F), be(0x5D5D), be(0x8056), be(0x8313), be(0x0087), be(0x6A48), be(0x6982), be(0x0280),
+ /* 3D20 */ be(0x8359), be(0x8D02), be(0x8020), be(0x4882), be(0x4269), be(0x6A95), be(0x5988), be(0x5A83),
+ /* 3D30 */ be(0x5885), be(0x6280), be(0x6289), be(0x6097), be(0x5782), be(0x605C), be(0xBF18), be(0x0961),
+ /* 3D40 */ be(0x5080), be(0x2090), be(0x4390), be(0x4382), be(0x5F8A), be(0x5D5D), be(0x9C63), be(0x8063),
+ /* 3D50 */ be(0xA960), be(0x9757), be(0x8260), be(0x5CFF), be(0xBF10), be(0x1681), be(0x0802), be(0x8000),
+ /* 3D60 */ be(0x141C), be(0x6000), be(0x6022), be(0x4D80), be(0x5C97), be(0x6A69), be(0xAC6F), be(0x4645),
+ /* 3D70 */ be(0x4400), be(0x0513), be(0x8069), be(0x6AC6), be(0x5F95), be(0x5F70), be(0x8040), be(0x4A81),
+ /* 3D80 */ be(0x0300), be(0xE703), be(0x0088), be(0x4A83), be(0x40FF), be(0xFFFF), be(0xFD70), be(0x8040),
+ /* 3D90 */ be(0x4A85), be(0x4FA8), be(0x4F8C), be(0x0070), be(0xBE47), be(0x8847), be(0xBC78), be(0x6B89),
+ /* 3DA0 */ be(0x6A80), be(0x6986), be(0x6B8E), be(0x6B80), be(0x6980), be(0x6A88), be(0x7C9F), be(0x866B),
+ /* 3DB0 */ be(0x8765), be(0x46FF), be(0xE365), be(0xA679), be(0x4A40), be(0x4580), be(0x44BC), be(0x7000),
+ /* 3DC0 */ be(0x8040), be(0x0802), be(0x10EF), be(0x0104), be(0x3860), be(0x5D5D), be(0x5682), be(0x1300),
+ /* 3DD0 */ be(0x8648), be(0x8202), be(0x8082), be(0x598A), be(0x0280), be(0x2048), be(0x3060), be(0x8042),
+ /* 3DE0 */ be(0x9259), be(0x865A), be(0x8258), be(0x8562), be(0x8062), be(0x8560), be(0x9257), be(0x8221),
+ /* 3DF0 */ be(0x10FF), be(0xB757), be(0x9361), be(0x1019), be(0x8020), be(0x9043), be(0x8E43), be(0x845F),
+ /* 3E00 */ be(0x835D), be(0x805D), be(0x8163), be(0x8063), be(0xA060), be(0x9157), be(0x8260), be(0x5CFF),
+ /* 3E10 */ be(0xFFFF), be(0xFFE5), be(0x1016), be(0x2048), be(0x0802), be(0x1C60), be(0x0014), be(0x0060),
+ /* 3E20 */ be(0x2205), be(0x8120), be(0x908F), be(0x6A80), be(0x6982), be(0x5F9F), be(0x6F46), be(0x4544),
+ /* 3E30 */ be(0x0005), be(0x8013), be(0x8069), be(0x6A80), be(0x7000), be(0x0000), be(0x0000), be(0x0000),
+ /* 3E40 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000),
+ /* 3E50 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000),
+ /* 3E60 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000),
+ /* 3E70 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000),
+ /* 3E80 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000),
+ /* 3E90 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000),
+ /* 3EA0 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000), be(0x0000),
+ /* 3EB0 */ be(0x0000), be(0x0000), be(0x0000)};
+
+static void ar0521_power_off(struct ar0521_dev *sensor)
+{
+ int i;
+
+ v4l2_dbg(1, debug, &sensor->sd, "%s()\n", __func__);
+ clk_disable_unprepare(sensor->extclk);
+
+ if (sensor->reset_gpio)
+ gpiod_set_value(sensor->reset_gpio, 1); // assert RESET signal
+
+ for (i = AR0521_NUM_SUPPLIES - 1; i >= 0; i--) {
+ if (sensor->supplies[i])
+ regulator_disable(sensor->supplies[i]);
+ }
+}
+
+static int ar0521_power_on(struct ar0521_dev *sensor)
+{
+ int i, ret;
+ unsigned int nlanes = lanes(sensor);
+
+ v4l2_dbg(1, debug, &sensor->sd, "%s()\n", __func__);
+ for (i = 0; i < AR0521_NUM_SUPPLIES; i++)
+ if (sensor->supplies[i]) {
+ ret = regulator_enable(sensor->supplies[i]);
+ if (ret < 0)
+ goto off;
+
+ usleep_range(1000, 1500); // min 1 ms
+ }
+
+ ret = clk_prepare_enable(sensor->extclk);
+ if (ret < 0) {
+ v4l2_err(&sensor->sd, "error enabling sensor clock\n");
+ goto off;
+ }
+ usleep_range(1000, 1500); // min 1 ms
+
+ if (sensor->reset_gpio)
+ gpiod_set_value(sensor->reset_gpio, 0); // deassert RESET signal
+ usleep_range(4500, 5000); // min 45000 clocks
+
+ for (i = 0; i < ARRAY_SIZE(initial_regs); i++)
+ if (ar0521_write_reg(sensor, initial_regs[i].addr, initial_regs[i].value))
+ goto off;
+
+ ret = ar0521_write_regs(sensor, pixel_timing_recommended, ARRAY_SIZE(pixel_timing_recommended));
+ if (ret)
+ goto off;
+
+ ret = ar0521_write_reg(sensor, AR0521_REG_SERIAL_FORMAT, AR0521_REG_SERIAL_FORMAT_MIPI | nlanes);
+ if (ret)
+ goto off;
+
+ // set MIPI test mode - disabled for now
+ ret = ar0521_write_reg(sensor, AR0521_REG_HISPI_TEST_MODE,
+ ((0x40 << nlanes) - 0x40) | AR0521_REG_HISPI_TEST_MODE_LP11);
+ if (ret)
+ goto off;
+
+ ret = ar0521_write_reg(sensor, AR0521_REG_ROW_SPEED, 0x110 | 4 / nlanes);
+ if (ret)
+ goto off;
+
+ ar0521_calc_mode(sensor);
+
+ ret = ar0521_set_stream(sensor, 0);
+ if (ret)
+ goto off;
+
+ return 0;
+off:
+ ar0521_power_off(sensor);
+ return ret;
+}
+
+static int ar0521_s_power(struct v4l2_subdev *sd, int on)
+{
+ struct ar0521_dev *sensor = to_ar0521_dev(sd);
+
+ v4l2_dbg(1, debug, &sensor->sd, "%s(%u, %s)\n", __func__, sensor->power_count, on ? "on" : "off");
+
+ if (on) {
+ if (!sensor->power_count++) {
+ int ret = ar0521_power_on(sensor);
+
+ if (ret) {
+ sensor->power_count = 0; // undo
+ return ret;
+ }
+ }
+ } else if (!--sensor->power_count)
+ ar0521_power_off(sensor);
+
+ return 0;
+}
+
+static int ar0521_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state,
+ struct v4l2_subdev_mbus_code_enum *code)
+{
+ struct ar0521_dev *sensor = to_ar0521_dev(sd);
+
+ if (code->pad || code->index)
+ return -EINVAL;
+
+ code->code = sensor->fmt.code;
+ v4l2_dbg(1, debug, &sensor->sd, "%s() = %X\n", __func__, code->code);
+ return 0;
+}
+
+static int ar0521_g_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_frame_interval *fi)
+{
+ struct ar0521_dev *sensor = to_ar0521_dev(sd);
+
+ mutex_lock(&sensor->lock);
+ fi->interval = sensor->current_frame_interval;
+ mutex_unlock(&sensor->lock);
+ v4l2_dbg(1, debug, &sensor->sd, "%s() = %u/%u\n", __func__,
+ fi->interval.numerator, fi->interval.denominator);
+ return 0;
+}
+
+static int ar0521_s_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_frame_interval *fi)
+{
+ struct ar0521_dev *sensor = to_ar0521_dev(sd);
+ int ret;
+
+ if (fi->pad)
+ return -EINVAL;
+
+ v4l2_dbg(1, debug, &sensor->sd, "%s(%u/%u)\n", __func__,
+ fi->interval.numerator, fi->interval.denominator);
+ mutex_lock(&sensor->lock);
+
+ if (sensor->streaming) {
+ ret = -EBUSY;
+ goto out;
+ }
+
+ sensor->frame_interval = fi->interval;
+ ar0521_calc_mode(sensor);
+ ret = ar0521_write_mode(sensor);
+out:
+ mutex_unlock(&sensor->lock);
+ return ret;
+}
+
+static int ar0521_s_stream(struct v4l2_subdev *sd, int enable)
+{
+ struct ar0521_dev *sensor = to_ar0521_dev(sd);
+ int ret;
+
+ v4l2_dbg(1, debug, &sensor->sd, "%s(%i)\n", __func__, enable);
+ mutex_lock(&sensor->lock);
+
+ ret = ar0521_set_stream(sensor, enable);
+ sensor->streaming = enable;
+
+ mutex_unlock(&sensor->lock);
+ return ret;
+}
+
+static const struct v4l2_subdev_core_ops ar0521_core_ops = {
+ .log_status = v4l2_ctrl_subdev_log_status,
+ .s_power = ar0521_s_power,
+ .subscribe_event = v4l2_ctrl_subdev_subscribe_event,
+ .unsubscribe_event = v4l2_event_subdev_unsubscribe,
+};
+
+static const struct v4l2_subdev_video_ops ar0521_video_ops = {
+ .g_frame_interval = ar0521_g_frame_interval,
+ .s_frame_interval = ar0521_s_frame_interval,
+ .s_stream = ar0521_s_stream,
+};
+
+static const struct v4l2_subdev_pad_ops ar0521_pad_ops = {
+ .enum_mbus_code = ar0521_enum_mbus_code,
+ .get_fmt = ar0521_get_fmt,
+ .set_fmt = ar0521_set_fmt,
+};
+
+static const struct v4l2_subdev_ops ar0521_subdev_ops = {
+ .core = &ar0521_core_ops,
+ .video = &ar0521_video_ops,
+ .pad = &ar0521_pad_ops,
+};
+
+static int ar0521_probe(struct i2c_client *client, const struct i2c_device_id *id)
+{
+ struct device *dev = &client->dev;
+ struct fwnode_handle *endpoint;
+ struct ar0521_dev *sensor;
+ unsigned int cnt, nlanes;
+ int ret;
+
+ v4l2_dbg(1, debug, client, "%s()\n", __func__);
+ sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL);
+ if (!sensor)
+ return -ENOMEM;
+
+ sensor->i2c_client = client;
+ sensor->fmt.code = MEDIA_BUS_FMT_SGRBG8_1X8;
+ sensor->fmt.width = AR0521_WIDTH_MAX;
+ sensor->fmt.height = AR0521_HEIGHT_MAX;
+ sensor->fmt.field = V4L2_FIELD_NONE;
+ sensor->frame_interval.numerator = 30;
+ sensor->frame_interval.denominator = 1;
+
+ endpoint = fwnode_graph_get_next_endpoint(of_fwnode_handle(dev->of_node), NULL);
+ if (!endpoint) {
+ dev_err(dev, "endpoint node not found\n");
+ return -EINVAL;
+ }
+
+ ret = v4l2_fwnode_endpoint_parse(endpoint, &sensor->ep);
+ fwnode_handle_put(endpoint);
+ if (ret) {
+ dev_err(dev, "could not parse endpoint\n");
+ return ret;
+ }
+
+ if (sensor->ep.bus_type != V4L2_MBUS_CSI2_DPHY) {
+ dev_err(dev, "invalid bus type, must be MIPI CSI2\n");
+ return -EINVAL;
+ }
+
+ nlanes = lanes(sensor);
+ switch (nlanes) {
+ case 1:
+ case 2:
+ case 4:
+ break;
+ default:
+ dev_err(dev, "invalid number of MIPI data lane%s\n", nlanes > 1 ? "s" : "");
+ return -EINVAL;
+ }
+
+ // get master clock (extclk)
+ sensor->extclk = devm_clk_get(dev, "extclk");
+ if (IS_ERR(sensor->extclk)) {
+ dev_err(dev, "failed to get extclk\n");
+ return PTR_ERR(sensor->extclk);
+ }
+
+ ret = clk_set_rate(sensor->extclk, AR0521_EXTCLK_RATE);
+ if (ret < 0) {
+ dev_err(dev, "error setting clock rate\n");
+ return ret;
+ }
+
+ sensor->extclk_freq = clk_get_rate(sensor->extclk);
+
+ if (sensor->extclk_freq < AR0521_EXTCLK_MIN ||
+ sensor->extclk_freq > AR0521_EXTCLK_MAX) {
+ dev_err(dev, "extclk frequency out of range: %u Hz\n", sensor->extclk_freq);
+ return -EINVAL;
+ }
+
+ // request optional reset pin (usually active low) and assert it
+ sensor->reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
+
+ v4l2_i2c_subdev_init(&sensor->sd, client, &ar0521_subdev_ops);
+
+ sensor->sd.flags = V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
+ sensor->pad.flags = MEDIA_PAD_FL_SOURCE;
+ sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
+ ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad);
+ if (ret)
+ return ret;
+
+ for (cnt = 0; cnt < AR0521_NUM_SUPPLIES; cnt++) {
+ struct regulator *supply = devm_regulator_get(dev, ar0521_supply_names[cnt]);
+
+ if (IS_ERR(supply)) {
+ dev_info(dev, "no %s regulator found: %li\n", ar0521_supply_names[cnt], PTR_ERR(supply));
+ return PTR_ERR(supply);
+ }
+ sensor->supplies[cnt] = supply;
+ }
+
+ mutex_init(&sensor->lock);
+
+ ret = ar0521_init_controls(sensor);
+ if (ret)
+ goto entity_cleanup;
+
+ ret = v4l2_async_register_subdev(&sensor->sd);
+ if (ret)
+ goto free_ctrls;
+
+ ar0521_adj_fmt(&sensor->fmt);
+
+ dev_info(dev, "AR0521 driver initialized, master clock frequency: %s MHz, %u MIPI data lanes\n",
+ mhz(sensor->extclk_freq), nlanes);
+ return 0;
+
+free_ctrls:
+ v4l2_ctrl_handler_free(&sensor->ctrls.handler);
+entity_cleanup:
+ media_entity_cleanup(&sensor->sd.entity);
+ mutex_destroy(&sensor->lock);
+ return ret;
+}
+
+static int ar0521_remove(struct i2c_client *client)
+{
+ struct v4l2_subdev *sd = i2c_get_clientdata(client);
+ struct ar0521_dev *sensor = to_ar0521_dev(sd);
+
+ v4l2_async_unregister_subdev(&sensor->sd);
+ media_entity_cleanup(&sensor->sd.entity);
+ v4l2_ctrl_handler_free(&sensor->ctrls.handler);
+ mutex_destroy(&sensor->lock);
+ return 0;
+}
+
+static const struct i2c_device_id ar0521_id[] = {
+ {"ar0521", 0},
+ {},
+};
+MODULE_DEVICE_TABLE(i2c, ar0521_id);
+
+static const struct of_device_id ar0521_dt_ids[] = {
+ {.compatible = "onnn,ar0521"},
+ {}
+};
+MODULE_DEVICE_TABLE(of, ar0521_dt_ids);
+
+static struct i2c_driver ar0521_i2c_driver = {
+ .driver = {
+ .name = "ar0521",
+ .of_match_table = ar0521_dt_ids,
+ },
+ .id_table = ar0521_id,
+ .probe = ar0521_probe,
+ .remove = ar0521_remove,
+};
+
+module_i2c_driver(ar0521_i2c_driver);
+
+MODULE_DESCRIPTION("AR0521 MIPI Camera subdev driver");
+MODULE_AUTHOR("Krzysztof Hałasa <khalasa@xxxxxxx>");
+MODULE_LICENSE("GPL v2");

--
Krzysztof "Chris" Hałasa

Sieć Badawcza Łukasiewicz
Przemysłowy Instytut Automatyki i Pomiarów PIAP
Al. Jerozolimskie 202, 02-486 Warszawa