Re: [RFC] shm: extend forced shm destroy to support objects from several IPC nses (simplified)
From: Manfred Spraul
Date: Sat Nov 06 2021 - 10:42:24 EST
Hello together,
On 11/5/21 22:34, Eric W. Biederman wrote:
I have to dash so this is short.
This is what I am thinking this change should look like.
I am not certain this is truly reviewable as a single change, so I will
break it into a couple of smaller ones next time I get the chance.
I think we should concentrate to check the commit from Alexander.
What I did is to write two additional stress test apps - and now I'm
able to trigger the use-after-free bug.
It is much simpler, the exclusion of exit_shm() and IPC_RMID didn't work
- regardless if your approach or the approach from Alexander/myself is used.
+static inline void shm_clist_del(struct shmid_kernel *shp)
+{
+ struct task_struct *creator;
+
+ rcu_read_lock();
+ creator = rcu_dereference(shp->shm_creator);
+ if (creator) {
+ task_lock(creator);
+ list_del(&shp->shm_clist);
+ task_unlock(creator);
+ }
+ rcu_read_unlock();
+}
+
shm_clist_del() only synchronizes against exit_shm() when shm_creator is
not NULL.
+ list_del(&shp->shm_clist);
+ rcu_assign_pointer(shp->shm_creator, NULL);
+
We set shm_creator to NULL -> no more synchronization.
Now IPC_RMID can run in parallel - regardless if we test for
list_empty() or shm_creator.
+
+ /* Guarantee shp lives after task_lock is dropped */
+ ipc_getref(&shp->shm_perm);
+
task_lock() doesn't help: As soon as shm_creator is set to NULL,
IPC_RMID won't acquire task_lock() anymore.
Thus shp can disappear before we arrive at this ipc_getref.
[Yes, I think I have introduced this bug. ]
Corrected version attached.
I'll reboot and retest the patch, then I would send it to akpm as
replacement for current patch in mmotm.
--
Manfred
From df024d627beb3f23f2c5b795e1ae841a2dd6ff49 Mon Sep 17 00:00:00 2001
From: Alexander Mikhalitsyn <alexander.mikhalitsyn@xxxxxxxxxxxxx>
Date: Thu, 28 Oct 2021 01:43:48 +0300
Subject: [PATCH] shm: extend forced shm destroy to support objects from
several IPC nses
Currently, exit_shm function not designed to work properly when
task->sysvshm.shm_clist holds shm objects from different IPC namespaces.
This is a real pain when sysctl kernel.shm_rmid_forced = 1, because
it leads to use-after-free (reproducer exists).
That particular patch is attempt to fix the problem by extending exit_shm
mechanism to handle shm's destroy from several IPC ns'es.
To achieve that we do several things:
1. add namespace (non-refcounted) pointer to the struct shmid_kernel
2. during new shm object creation (newseg()/shmget syscall) we initialize
this pointer by current task IPC ns
3. exit_shm() fully reworked such that it traverses over all
shp's in task->sysvshm.shm_clist and gets IPC namespace not
from current task as it was before but from shp's object itself, then
call shm_destroy(shp, ns).
Note. We need to be really careful here, because as it was said before
(1), our pointer to IPC ns non-refcnt'ed. To be on the safe side we using
special helper get_ipc_ns_not_zero() which allows to get IPC ns refcounter
only if IPC ns not in the "state of destruction".
Q/A
Q: Why we can access shp->ns memory using non-refcounted pointer?
A: Because shp object lifetime is always shorther
than IPC namespace lifetime, so, if we get shp object from the
task->sysvshm.shm_clist while holding task_lock(task) nobody can
steal our namespace.
Q: Does this patch change semantics of unshare/setns/clone syscalls?
A: Not. It's just fixes non-covered case when process may leave
IPC namespace without getting task->sysvshm.shm_clist list cleaned up.
Fixes: ab602f79915 ("shm: make exit_shm work proportional to task activity")
Cc: "Eric W. Biederman" <ebiederm@xxxxxxxxxxxx>
Cc: Andrew Morton <akpm@xxxxxxxxxxxxxxxxxxxx>
Cc: Davidlohr Bueso <dave@xxxxxxxxxxxx>
Cc: Greg KH <gregkh@xxxxxxxxxxxxxxxxxxx>
Cc: Andrei Vagin <avagin@xxxxxxxxx>
Cc: Pavel Tikhomirov <ptikhomirov@xxxxxxxxxxxxx>
Cc: Vasily Averin <vvs@xxxxxxxxxxxxx>
Cc: Manfred Spraul <manfred@xxxxxxxxxxxxxxxx>
Cc: Alexander Mikhalitsyn <alexander@xxxxxxxxxxxxx>
Cc: stable@xxxxxxxxxxxxxxx
Co-developed-by: Manfred Spraul <manfred@xxxxxxxxxxxxxxxx>
Signed-off-by: Manfred Spraul <manfred@xxxxxxxxxxxxxxxx>
Signed-off-by: Alexander Mikhalitsyn <alexander.mikhalitsyn@xxxxxxxxxxxxx>
- comment corrections, shm_clist_lock was replaced by task_lock()
- if/else exchanged as recommended by Eric
- bugfix for shp refcounting. Actually, this probably the real
use-after-free bug, the current code contains a use-after-free even
without using namespaces.
- add rcu_read_lock() into shm_clist_rm(), to protect against
a use-after-free for shm_creator->alloc_lock.
Signed-off-by: Manfred Spraul <manfred@xxxxxxxxxxxxxxxx>
---
include/linux/ipc_namespace.h | 15 +++
include/linux/sched/task.h | 2 +-
ipc/shm.c | 186 +++++++++++++++++++++++++---------
3 files changed, 156 insertions(+), 47 deletions(-)
diff --git a/include/linux/ipc_namespace.h b/include/linux/ipc_namespace.h
index 05e22770af51..b75395ec8d52 100644
--- a/include/linux/ipc_namespace.h
+++ b/include/linux/ipc_namespace.h
@@ -131,6 +131,16 @@ static inline struct ipc_namespace *get_ipc_ns(struct ipc_namespace *ns)
return ns;
}
+static inline struct ipc_namespace *get_ipc_ns_not_zero(struct ipc_namespace *ns)
+{
+ if (ns) {
+ if (refcount_inc_not_zero(&ns->ns.count))
+ return ns;
+ }
+
+ return NULL;
+}
+
extern void put_ipc_ns(struct ipc_namespace *ns);
#else
static inline struct ipc_namespace *copy_ipcs(unsigned long flags,
@@ -147,6 +157,11 @@ static inline struct ipc_namespace *get_ipc_ns(struct ipc_namespace *ns)
return ns;
}
+static inline struct ipc_namespace *get_ipc_ns_not_zero(struct ipc_namespace *ns)
+{
+ return ns;
+}
+
static inline void put_ipc_ns(struct ipc_namespace *ns)
{
}
diff --git a/include/linux/sched/task.h b/include/linux/sched/task.h
index ba88a6987400..058d7f371e25 100644
--- a/include/linux/sched/task.h
+++ b/include/linux/sched/task.h
@@ -158,7 +158,7 @@ static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
* Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
* subscriptions and synchronises with wait4(). Also used in procfs. Also
* pins the final release of task.io_context. Also protects ->cpuset and
- * ->cgroup.subsys[]. And ->vfork_done.
+ * ->cgroup.subsys[]. And ->vfork_done. And ->sysvshm.shm_clist.
*
* Nests both inside and outside of read_lock(&tasklist_lock).
* It must not be nested with write_lock_irq(&tasklist_lock),
diff --git a/ipc/shm.c b/ipc/shm.c
index ab749be6d8b7..939fa2de4de7 100644
--- a/ipc/shm.c
+++ b/ipc/shm.c
@@ -62,9 +62,18 @@ struct shmid_kernel /* private to the kernel */
struct pid *shm_lprid;
struct ucounts *mlock_ucounts;
- /* The task created the shm object. NULL if the task is dead. */
+ /*
+ * The task created the shm object, for
+ * task_lock(shp->shm_creator)
+ */
struct task_struct *shm_creator;
- struct list_head shm_clist; /* list by creator */
+
+ /*
+ * List by creator. task_lock(->shm_creator) required for read/write.
+ * If list_empty(), then the creator is dead already.
+ */
+ struct list_head shm_clist;
+ struct ipc_namespace *ns;
} __randomize_layout;
/* shm_mode upper byte flags */
@@ -115,6 +124,7 @@ static void do_shm_rmid(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
struct shmid_kernel *shp;
shp = container_of(ipcp, struct shmid_kernel, shm_perm);
+ WARN_ON(ns != shp->ns);
if (shp->shm_nattch) {
shp->shm_perm.mode |= SHM_DEST;
@@ -225,10 +235,43 @@ static void shm_rcu_free(struct rcu_head *head)
kfree(shp);
}
-static inline void shm_rmid(struct ipc_namespace *ns, struct shmid_kernel *s)
+/*
+ * It has to be called with shp locked.
+ * It must be called before ipc_rmid()
+ */
+static inline void shm_clist_rm(struct shmid_kernel *shp)
+{
+ struct task_struct *creator;
+
+ /* ensure that shm_creator does not disappear */
+ rcu_read_lock();
+
+ /*
+ * A concurrent exit_shm may do a list_del_init() as well.
+ * Just do nothing if exit_shm already did the work
+ */
+ if (!list_empty(&shp->shm_clist)) {
+ /*
+ * shp->shm_creator is guaranteed to be valid *only*
+ * if shp->shm_clist is not empty.
+ */
+ creator = shp->shm_creator;
+
+ task_lock(creator);
+ /*
+ * list_del_init() is a nop if the entry was already removed
+ * from the list.
+ */
+ list_del_init(&shp->shm_clist);
+ task_unlock(creator);
+ }
+ rcu_read_unlock();
+}
+
+static inline void shm_rmid(struct shmid_kernel *s)
{
- list_del(&s->shm_clist);
- ipc_rmid(&shm_ids(ns), &s->shm_perm);
+ shm_clist_rm(s);
+ ipc_rmid(&shm_ids(s->ns), &s->shm_perm);
}
@@ -283,7 +326,7 @@ static void shm_destroy(struct ipc_namespace *ns, struct shmid_kernel *shp)
shm_file = shp->shm_file;
shp->shm_file = NULL;
ns->shm_tot -= (shp->shm_segsz + PAGE_SIZE - 1) >> PAGE_SHIFT;
- shm_rmid(ns, shp);
+ shm_rmid(shp);
shm_unlock(shp);
if (!is_file_hugepages(shm_file))
shmem_lock(shm_file, 0, shp->mlock_ucounts);
@@ -306,10 +349,10 @@ static void shm_destroy(struct ipc_namespace *ns, struct shmid_kernel *shp)
*
* 2) sysctl kernel.shm_rmid_forced is set to 1.
*/
-static bool shm_may_destroy(struct ipc_namespace *ns, struct shmid_kernel *shp)
+static bool shm_may_destroy(struct shmid_kernel *shp)
{
return (shp->shm_nattch == 0) &&
- (ns->shm_rmid_forced ||
+ (shp->ns->shm_rmid_forced ||
(shp->shm_perm.mode & SHM_DEST));
}
@@ -340,7 +383,7 @@ static void shm_close(struct vm_area_struct *vma)
ipc_update_pid(&shp->shm_lprid, task_tgid(current));
shp->shm_dtim = ktime_get_real_seconds();
shp->shm_nattch--;
- if (shm_may_destroy(ns, shp))
+ if (shm_may_destroy(shp))
shm_destroy(ns, shp);
else
shm_unlock(shp);
@@ -361,10 +404,10 @@ static int shm_try_destroy_orphaned(int id, void *p, void *data)
*
* As shp->* are changed under rwsem, it's safe to skip shp locking.
*/
- if (shp->shm_creator != NULL)
+ if (!list_empty(&shp->shm_clist))
return 0;
- if (shm_may_destroy(ns, shp)) {
+ if (shm_may_destroy(shp)) {
shm_lock_by_ptr(shp);
shm_destroy(ns, shp);
}
@@ -382,48 +425,94 @@ void shm_destroy_orphaned(struct ipc_namespace *ns)
/* Locking assumes this will only be called with task == current */
void exit_shm(struct task_struct *task)
{
- struct ipc_namespace *ns = task->nsproxy->ipc_ns;
- struct shmid_kernel *shp, *n;
+ for (;;) {
+ struct shmid_kernel *shp;
+ struct ipc_namespace *ns;
- if (list_empty(&task->sysvshm.shm_clist))
- return;
+ task_lock(task);
+
+ if (list_empty(&task->sysvshm.shm_clist)) {
+ task_unlock(task);
+ break;
+ }
+
+ shp = list_first_entry(&task->sysvshm.shm_clist, struct shmid_kernel,
+ shm_clist);
- /*
- * If kernel.shm_rmid_forced is not set then only keep track of
- * which shmids are orphaned, so that a later set of the sysctl
- * can clean them up.
- */
- if (!ns->shm_rmid_forced) {
- down_read(&shm_ids(ns).rwsem);
- list_for_each_entry(shp, &task->sysvshm.shm_clist, shm_clist)
- shp->shm_creator = NULL;
/*
- * Only under read lock but we are only called on current
- * so no entry on the list will be shared.
+ * 1) get a reference to shp.
+ * This must be done first: Right now, task_lock() prevents
+ * any concurrent IPC_RMID calls. After the list_del_init(),
+ * IPC_RMID will not acquire task_lock(->shm_creator)
+ * anymore.
*/
- list_del(&task->sysvshm.shm_clist);
- up_read(&shm_ids(ns).rwsem);
- return;
- }
+ WARN_ON(!ipc_rcu_getref(&shp->shm_perm));
- /*
- * Destroy all already created segments, that were not yet mapped,
- * and mark any mapped as orphan to cover the sysctl toggling.
- * Destroy is skipped if shm_may_destroy() returns false.
- */
- down_write(&shm_ids(ns).rwsem);
- list_for_each_entry_safe(shp, n, &task->sysvshm.shm_clist, shm_clist) {
- shp->shm_creator = NULL;
+ /* 2) unlink */
+ list_del_init(&shp->shm_clist);
+
+ /*
+ * 3) Get pointer to the ipc namespace. It is worth to say
+ * that this pointer is guaranteed to be valid because
+ * shp lifetime is always shorter than namespace lifetime
+ * in which shp lives.
+ * We taken task_lock it means that shp won't be freed.
+ */
+ ns = shp->ns;
- if (shm_may_destroy(ns, shp)) {
- shm_lock_by_ptr(shp);
- shm_destroy(ns, shp);
+ /*
+ * 4) If kernel.shm_rmid_forced is not set then only keep track of
+ * which shmids are orphaned, so that a later set of the sysctl
+ * can clean them up.
+ */
+ if (!ns->shm_rmid_forced) {
+ ipc_rcu_putref(&shp->shm_perm, shm_rcu_free);
+ task_unlock(task);
+ continue;
}
- }
- /* Remove the list head from any segments still attached. */
- list_del(&task->sysvshm.shm_clist);
- up_write(&shm_ids(ns).rwsem);
+ /*
+ * 5) get a reference to the namespace.
+ * The refcount could be already 0. If it is 0, then
+ * the shm objects will be free by free_ipc_work().
+ */
+ ns = get_ipc_ns_not_zero(ns);
+ if (!ns) {
+ ipc_rcu_putref(&shp->shm_perm, shm_rcu_free);
+ task_unlock(task);
+ continue;
+ }
+ task_unlock(task);
+
+ /*
+ * 6) we have all references
+ * Thus lock & if needed destroy shp.
+ */
+ down_write(&shm_ids(ns).rwsem);
+ shm_lock_by_ptr(shp);
+ /*
+ * rcu_read_lock was implicitly taken in shm_lock_by_ptr, it's
+ * safe to call ipc_rcu_putref here
+ */
+ ipc_rcu_putref(&shp->shm_perm, shm_rcu_free);
+
+ if (ipc_valid_object(&shp->shm_perm)) {
+ if (shm_may_destroy(shp))
+ shm_destroy(ns, shp);
+ else
+ shm_unlock(shp);
+ } else {
+ /*
+ * Someone else deleted the shp from namespace
+ * idr/kht while we have waited.
+ * Just unlock and continue.
+ */
+ shm_unlock(shp);
+ }
+
+ up_write(&shm_ids(ns).rwsem);
+ put_ipc_ns(ns); /* paired with get_ipc_ns_not_zero */
+ }
}
static vm_fault_t shm_fault(struct vm_fault *vmf)
@@ -680,7 +769,11 @@ static int newseg(struct ipc_namespace *ns, struct ipc_params *params)
if (error < 0)
goto no_id;
+ shp->ns = ns;
+
+ task_lock(current);
list_add(&shp->shm_clist, ¤t->sysvshm.shm_clist);
+ task_unlock(current);
/*
* shmid gets reported as "inode#" in /proc/pid/maps.
@@ -1573,7 +1666,8 @@ long do_shmat(int shmid, char __user *shmaddr, int shmflg,
down_write(&shm_ids(ns).rwsem);
shp = shm_lock(ns, shmid);
shp->shm_nattch--;
- if (shm_may_destroy(ns, shp))
+
+ if (shm_may_destroy(shp))
shm_destroy(ns, shp);
else
shm_unlock(shp);
--
2.31.1