[PATCH V4 16/20] Documentation/rv: Add deterministic automata instrumentation documentation

From: Daniel Bristot de Oliveira
Date: Thu Jun 16 2022 - 04:47:28 EST


Add the da_monitor_instrumentation.rst. It describes the basics
of RV monitor instrumentation.

Cc: Wim Van Sebroeck <wim@xxxxxxxxxxxxxxxxxx>
Cc: Guenter Roeck <linux@xxxxxxxxxxxx>
Cc: Jonathan Corbet <corbet@xxxxxxx>
Cc: Steven Rostedt <rostedt@xxxxxxxxxxx>
Cc: Ingo Molnar <mingo@xxxxxxxxxx>
Cc: Thomas Gleixner <tglx@xxxxxxxxxxxxx>
Cc: Peter Zijlstra <peterz@xxxxxxxxxxxxx>
Cc: Will Deacon <will@xxxxxxxxxx>
Cc: Catalin Marinas <catalin.marinas@xxxxxxx>
Cc: Marco Elver <elver@xxxxxxxxxx>
Cc: Dmitry Vyukov <dvyukov@xxxxxxxxxx>
Cc: "Paul E. McKenney" <paulmck@xxxxxxxxxx>
Cc: Shuah Khan <skhan@xxxxxxxxxxxxxxxxxxx>
Cc: Gabriele Paoloni <gpaoloni@xxxxxxxxxx>
Cc: Juri Lelli <juri.lelli@xxxxxxxxxx>
Cc: Clark Williams <williams@xxxxxxxxxx>
Cc: linux-doc@xxxxxxxxxxxxxxx
Cc: linux-kernel@xxxxxxxxxxxxxxx
Cc: linux-trace-devel@xxxxxxxxxxxxxxx
Signed-off-by: Daniel Bristot de Oliveira <bristot@xxxxxxxxxx>
---
.../trace/rv/da_monitor_instrumentation.rst | 223 ++++++++++++++++++
1 file changed, 223 insertions(+)
create mode 100644 Documentation/trace/rv/da_monitor_instrumentation.rst

diff --git a/Documentation/trace/rv/da_monitor_instrumentation.rst b/Documentation/trace/rv/da_monitor_instrumentation.rst
new file mode 100644
index 000000000000..994110050d93
--- /dev/null
+++ b/Documentation/trace/rv/da_monitor_instrumentation.rst
@@ -0,0 +1,223 @@
+Deterministic Automata Instrumentation
+========================================
+
+This document introduces some concepts behind the **Deterministic Automata
+(DA)** monitor instrumentation.
+
+The synthesis of automata-based models into the Linux *RV monitor* abstraction
+is automated by a tool named dot2k, and the "rv/da_monitor.h" provided
+by the RV interface.
+
+For example, given a file "wip.dot", representing a per-cpu monitor, with
+this content::
+
+ digraph state_automaton {
+ center = true;
+ size = "7,11";
+ rankdir = LR;
+ {node [shape = circle] "non_preemptive"};
+ {node [shape = plaintext, style=invis, label=""] "__init_preemptive"};
+ {node [shape = doublecircle] "preemptive"};
+ {node [shape = circle] "preemptive"};
+ "__init_preemptive" -> "preemptive";
+ "non_preemptive" [label = "non_preemptive"];
+ "non_preemptive" -> "non_preemptive" [ label = "sched_waking" ];
+ "non_preemptive" -> "preemptive" [ label = "preempt_enable" ];
+ "preemptive" [label = "preemptive"];
+ "preemptive" -> "non_preemptive" [ label = "preempt_disable" ];
+ { rank = min ;
+ "__init_preemptive";
+ "preemptive";
+ }
+ }
+
+That is the "DOT" representation of this automata model::
+
+ preempt_enable
+ +---------------------------------+
+ v |
+ #============# preempt_disable +------------------+
+ --> H preemptive H -----------------> | non_preemptive |
+ #============# +------------------+
+ ^ sched_waking |
+ +--------------+
+
+
+Run the dot2k tool with the model, specifying that it is a "per-cpu"
+model::
+
+ $ dot2k -d ~/wip.dot -t per_cpu
+
+This will create a directory named "wip/" with the following files:
+
+- model.h: the wip in C
+- wip.h: tracepoints that report the execution of the events by the
+ monitor
+- wip.c: the RV monitor
+
+The monitor instrumentation should be done entirely in the RV monitor,
+in the example above, in the wip.c file.
+
+The RV monitor instrumentation section
+--------------------------------------
+
+The RV monitor file created by dot2k, with the name "$MODEL_NAME.c"
+will include a section dedicated to instrumentation.
+
+In the example of the wip.dot above, it will look like::
+
+ /*
+ * This is the instrumentation part of the monitor.
+ *
+ * This is the section where manual work is required. Here the kernel events
+ * are translated into model's event.
+ *
+ */
+ static void handle_preempt_disable(void *data, /* XXX: fill header */)
+ {
+ da_handle_event_wip(preempt_disable_wip);
+ }
+
+ static void handle_preempt_enable(void *data, /* XXX: fill header */)
+ {
+ da_handle_event_wip(preempt_enable_wip);
+ }
+
+ static void handle_sched_waking(void *data, /* XXX: fill header */)
+ {
+ da_handle_event_wip(sched_waking_wip);
+ }
+
+ static int start_wip(void)
+ {
+ int retval;
+
+ retval = da_monitor_init_wip();
+ if (retval)
+ return retval;
+
+ rv_attach_trace_probe("wip", /* XXX: tracepoint */, handle_preempt_disable);
+ rv_attach_trace_probe("wip", /* XXX: tracepoint */, handle_preempt_enable);
+ rv_attach_trace_probe("wip", /* XXX: tracepoint */, handle_sched_waking);
+
+ return 0;
+ }
+
+The comment at the top of the section explains the general idea: the
+instrumentation section translates *kernel events* into the *events
+accepted by the model*.
+
+Tracing callback functions
+-----------------------------
+
+The first three functions are skeletons for callback *handler functions* for
+each of the three events from the wip model. The developer does not
+necessarily need to use them: they are just starting points.
+
+Using the example of::
+
+ void handle_preempt_disable(void *data, /* XXX: fill header */)
+ {
+ da_handle_event_wip(preempt_disable_wip);
+ }
+
+The "preempt_disable" event from the model conects directly to the
+"preemptirq:preempt_disable". The "preemptirq:preempt_disable" event
+has the following signature, from "include/trace/events/preemptirq.h"::
+
+ TP_PROTO(unsigned long ip, unsigned long parent_ip)
+
+Hence, the "handle_preempt_disable()" function will look like::
+
+ void handle_preempt_disable(void *data, unsigned long ip, unsigned long parent_ip)
+
+In this case, the kernel even translates one to one with the automata event,
+and indeed, no other change is needed for this function.
+
+The next handler function, "handle_preempt_enable()" has the same argument
+list from the "handle_preempt_disable()". The difference is that the
+"preempt_enable" event will be used to synchronize the system to the model.
+
+Initially, the *model* is placed in the initial state. However, the *system*
+might, or might not be in the initial state. The monitor cannot start
+processing events until it knows that the system reached the initial state.
+Otherwise the monitor and the system could be out-of-sync.
+
+Looking at the automata definition, it is possible to see that the system
+and the model are expected to return to the initial state after the
+"preempt_enable" execution. Hence, it can be used to synchronize the
+system and the model at the initialization of the monitoring section.
+
+The initialization is informed via an special handle function, the
+"da_handle_init_event_$(MONITOR)(event)", in this case::
+
+ da_handle_event_wip(preempt_disable_wip);
+
+So, the callback function will look like::
+
+ void handle_preempt_enable(void *data, unsigned long ip, unsigned long parent_ip)
+ {
+ da_handle_init_event_wip(preempt_enable_wip);
+ }
+
+Finally, the "handle_sched_waking()" will look like::
+
+ void handle_sched_waking(void *data, struct task_struct *task)
+ {
+ da_handle_event_wip(sched_waking_wip);
+ }
+
+And the explanation is left for the reader as an exercise.
+
+Start and Stop functions
+------------------------
+
+dot2k automatically creates two special functions::
+
+ start_$MODELNAME()
+ stop_$MODELNAME()
+
+These functions are called when the monitor is enabled and disabled,
+respectivelly.
+
+They should be used to *attach* and *detach* the instrumentation to the running
+system. The developer must add to the relative function all that is needed to
+*attach* and *detach* its monitor to the system.
+
+For the wip case, these functions were named::
+
+ start_wip()
+ stop_wip()
+
+But no change was required because: by default, these functions *attach* and
+*detach* the tracepoints_to_attach, which was enough for this case.
+
+Instrumentation helpers
+--------------------------
+
+To complete the instrumentation, the *handler functions* need to be attached to a
+kernel event, at the monitoring start phase.
+
+The RV interface also facilitates this step. For example, the macro "rv_attach_trace_probe()"
+is used to connect the wip model events to the relative kernel event. dot2k automatically
+adds "rv_attach_trace_probe()" function call for each model event in the start phase, as
+a suggestion.
+
+For example, from the wip sample model::
+
+ static int start_wip(void)
+ {
+ int retval;
+
+ retval = da_monitor_init_wip();
+ if (retval)
+ return retval;
+
+ rv_attach_trace_probe("wip", /* XXX: tracepoint */, handle_preempt_disable);
+ rv_attach_trace_probe("wip", /* XXX: tracepoint */, handle_preempt_enable);
+ rv_attach_trace_probe("wip", /* XXX: tracepoint */, handle_sched_waking);
+
+ return 0;
+ }
+
+The probes then need to be detached at the stop phase.
--
2.35.1