[PATCH v2 3/5] rslib: Replace hard-coded 1 with alpha_to[0]

From: Zhang Boyang
Date: Fri Jun 17 2022 - 10:47:25 EST


Currently the rslib allows customizing the finite field by the `gffunc'
parameter of init_rs_non_canonical(). However, there are several places
in rslib use hard-coded 1 instead of alpha_to[0], leading to errors if
gffunc(0) != 1. This patch fixes the problem. One of such `gffunc' might
be gffunc'(x) = swab16(gffunc(swab16(x))), as gffunc'(0) = swab16(1).
This special gffunc'(x) is useful when implementing RS coder for
16 bit foreign-endian symbols.

Signed-off-by: Zhang Boyang <zhangboyang.id@xxxxxxxxx>
---
lib/reed_solomon/decode_rs.c | 4 ++--
lib/reed_solomon/reed_solomon.c | 4 ++--
2 files changed, 4 insertions(+), 4 deletions(-)

diff --git a/lib/reed_solomon/decode_rs.c b/lib/reed_solomon/decode_rs.c
index 805de84ae83d..6c1d53d1b702 100644
--- a/lib/reed_solomon/decode_rs.c
+++ b/lib/reed_solomon/decode_rs.c
@@ -104,7 +104,7 @@

decode:
memset(&lambda[1], 0, nroots * sizeof(lambda[0]));
- lambda[0] = 1;
+ lambda[0] = alpha_to[0];

if (no_eras > 0) {
/* Init lambda to be the erasure locator polynomial */
@@ -198,7 +198,7 @@
memcpy(&reg[1], &lambda[1], nroots * sizeof(reg[0]));
count = 0; /* Number of roots of lambda(x) */
for (i = 1, k = iprim - 1; i <= nn; i++, k = rs_modnn(rs, k + iprim)) {
- q = 1; /* lambda[0] is always 0 */
+ q = alpha_to[0]; /* lambda[0] is always 0 */
for (j = deg_lambda; j > 0; j--) {
if (reg[j] != nn) {
reg[j] = rs_modnn(rs, reg[j] + j);
diff --git a/lib/reed_solomon/reed_solomon.c b/lib/reed_solomon/reed_solomon.c
index 9415899bf27c..da46026a60b8 100644
--- a/lib/reed_solomon/reed_solomon.c
+++ b/lib/reed_solomon/reed_solomon.c
@@ -131,9 +131,9 @@ static struct rs_codec *codec_init(int symsize, int gfpoly, int (*gffunc)(int),
rs->iprim = iprim / prim;

/* Form RS code generator polynomial from its roots */
- rs->genpoly[0] = 1;
+ rs->genpoly[0] = rs->alpha_to[0];
for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) {
- rs->genpoly[i + 1] = 1;
+ rs->genpoly[i + 1] = rs->alpha_to[0];
/* Multiply rs->genpoly[] by @**(root + x) */
for (j = i; j > 0; j--) {
if (rs->genpoly[j] != 0) {
--
2.30.2