Re: [PATCH -next] docs/zh_CN: add vm transhuge translation
From: Wu XiangCheng
Date: Wed Jun 29 2022 - 22:12:36 EST
于 2022年6月29日 GMT+08:00 上午11:50:11, YanTeng Si <siyanteng@xxxxxxxxxxx> 写到:
>Hi Mengqi
>
>在 2022/6/28 21:37, Guo Mengqi 写道:
>> Translate .../vm/transhuge.rst into Chinese.
>>
>> Signed-off-by: Guo Mengqi <guomengqi3@xxxxxxxxxx>
>> ---
>> Documentation/translations/zh_CN/vm/index.rst | 2 +-
>> .../translations/zh_CN/vm/transhuge.rst | 151 ++++++++++++++++++
>> 2 files changed, 152 insertions(+), 1 deletion(-)
>> create mode 100644 Documentation/translations/zh_CN/vm/transhuge.rst
>
>When I apply your patch(next-tree), git complains:
>
>Applying: docs/zh_CN: add vm transhuge translation
>
>error: Documentation/translations/zh_CN/vm/index.rst: does not exist in index
>.git/rebase-apply/patch:180: new blank line at EOF.
>+
>Patch failed at 0001 docs/zh_CN: add vm transhuge translation
The /vm/ documentations (including translations) have been moved to /mm/ in linux-next tree.
Not sure about docs-next, please check that.
>>
>> diff --git a/Documentation/translations/zh_CN/vm/index.rst b/Documentation/translations/zh_CN/vm/index.rst
>> index c77a56553845..2d82b15b272b 100644
>> --- a/Documentation/translations/zh_CN/vm/index.rst
>> +++ b/Documentation/translations/zh_CN/vm/index.rst
>> @@ -59,11 +59,11 @@ Linux内存管理文档
>> vmalloced-kernel-stacks
>> z3fold
>> zsmalloc
>> + transhuge
>> TODOLIST:
>> * arch_pgtable_helpers
>> * free_page_reporting
>> * hugetlbfs_reserv
>> * slub
>> -* transhuge
>> * unevictable-lru
>> diff --git a/Documentation/translations/zh_CN/vm/transhuge.rst b/Documentation/translations/zh_CN/vm/transhuge.rst
>> new file mode 100644
>> index 000000000000..a7bed8b13a47
>> --- /dev/null
>> +++ b/Documentation/translations/zh_CN/vm/transhuge.rst
>> @@ -0,0 +1,151 @@
>> +.. SPDX-License-Identifier: GPL-2.0
>> +.. include:: ../disclaimer-zh_CN.rst
>> +
>> +:Original: Documentation/vm/transhuge.rst
>> +
>> +:翻译:
>> +
>> + 郭梦琪 Guo Mengqi <guomengqi3@xxxxxxxxxx>
>> +
>> +:校译:
>> +
>> +==============
>> +透明大页机制
>
>huge 巨大
>
>large 大
>
>
>so 大页 -> 巨页
Here I think both is OK, and 大页 seems more common?
Thanks,
Wu
>
>> +==============
>> +
>> +本文档描述透明大页(THP)的设计理念,以及它是如何与内存管理系统其他部分交互的。
>
>以及它是如何与内存管理系统的其他部分交互的
>
>> +
>> +设计原则
>> +========
>> +
>> +- “优雅fallback”:有些mm组件不了解透明大页的存在,它们的回退方法是将PMD页表项
>> + 拆分成PTE页表项。必要时还需要拆分透明大页。这样就可以在常规大小的页或页表项上
>> + 继续工作。
>> +
>> +- 如果内存碎片化导致大页分配失败,则分配常规页作为替代放入原vma中,此期间不应
>> + 产生任何失败或明显延迟,不要引起用户态的注意。
>
>How about
>
>此期间不会产生任何失败或明显延迟,也不会引起用户态的注意。
>
>> +
>> +- 如果一些进程退出后释放了空余的大页(不论在伙伴系统还是在VM),由常规页支持的
>空余 -> 空闲 or 可用
>> + guest物理内存应该自动重新申请为大页。(通过khugepaged进程)
>> +
>> +- 透明大页不需要预留内存,而是尽可能使用已经存在的大页。(唯为避免不可移动的页
>del 唯
>> + 将整个内存碎片化,唯一可能的预留是在kernelcore=的设置中。不过这个调整并不仅
>> + 针对透明大页,而对内核中所有动态的多级页面申请都通用。)
>都适用 or 对xxxxx页面申请通用。
>> +
>> +get_user_pages和follow_page
>> +===========================
>> +
>> +不论对单个大页还是hugetlbfs,使用get_user_pages和follow_page时,返回的会是首页或
>
>使用get_user_pages(GUP)
>
>> +尾页。大多数情况下调用get_user_page功能的人不关心页的大小,只关心页的真实物理
>
>调用GUP功能
>
>> +地址以及暂时的pin页,好在I/O结束后将页释放。但在驱动中,在某些情况下有可能访问
>> +尾页的page_struct(如检查page->mapping字段),这时应该转而检查首页。一旦首页或者
>> +尾页被引用,大页就不能再被拆分了。
>> +
>> +.. note::
>> + 以上限制不是针对GUP API新增,而是为了与在hugetlbfs中保持一致。这样如果驱动
>> + 能在hugetlbfs中使用GUP,就能够切换到透明大页机制支持的GUP。
>> +
>> +优雅fallback
>> +============
>> +
>> +为查页表流程增加大页支持只需添加split_huge_pmd(vma, pmd,
>> +addr)即可。其中pmd为pmd_offset返回值。要为代码添加透明大页支持很简单,搜索
>> +"pmd_offset"并将split_huge_pmd添加到所有返回的pmd后面。这短短一行的fallback函数
>> +很巧妙,为我们省去了额外的适配代码(通常会很长或者很复杂)。
>> +
>> +如果你需要在没有页表的情况下处理一个大页,可以使用split_huge_page(page)把它拆分
>> +成小页。linux VM就是通过这种方式将大页换出。如果页面被pin住了,split_huge_page
>> +就会失败。
>> +
>> +例子:添加一行代码使mremap.c支持透明大页::
>> +
>> + diff --git a/mm/mremap.c b/mm/mremap.c
>> + --- a/mm/mremap.c
>> + +++ b/mm/mremap.c
>> + @@ -41,6 +41,7 @@ static pmd_t *get_old_pmd(struct mm_stru
>> + return NULL;
>> +
>> + pmd = pmd_offset(pud, addr);
>> + + split_huge_pmd(vma, pmd, addr);
>> + if (pmd_none_or_clear_bad(pmd))
>> + return NULL;
>> +
>> +大页支持中的锁使用
>> +==================
>> +
>> +我们希望尽可能多的代码能原生支持透明大页,因为调用split_huge_page()和
>> +split_huge_pmd()还是有开销的。
>> +
>> +要让查页表操作变得能处理huge pmd,只需对pmd_offset返回的pmd调用
>> +pmd_trans_huge()。一定要持有mmap_lock读锁,以避免khugepaged在此期间申请新的
>> +大页pmd(khugepaged collapse_huge_page会持有mmap_lock写锁而非anon_vma lock)。
>> +如果pmd_trans_huge返回false,那就回到原来的流程。如果pmd_trans_huge返回true,
>> +就需要先持有页表锁(pmd_lock()),然后再调一次pmd_trans_huge. 持页表锁是为了防止
>> +大页pmd被转换成小页(split_huge_pmd可以跟查页表操作同时进行)。如果第二次
>> +pmd_trans_huge返回false,那就释放页表锁,依然回到原有流程。如果返回true,就可以
>> +继续处理huge pmd和hugepage了。处理完毕,再释放页表锁。
>> +
>> +引用计数和透明大页
>> +==================
>> +
>> +THP的计数跟其他复合页的计数大致相同:
>> +
>> + - get_page()/put_page()和GUP都在首页上进行计数(修改head page->_refcount)
>> +
>> + - 尾页的_refcount永远是0. get_page_unless_zero()永远无法get到尾页。
>> +
>> + - map/unmap特定PTE entry时,增减的是复合页中相应子页的_mapcount.
>> +
>> + - map/unmap整个复合页时,增减的是compound_mapcount属性。该属性保存在第一个
>> + 尾页中。对于文件中的大页,还要增加所有子页中的_mapcount,这样是为了在检测
>> + 子页的解映射时不需考虑竞争问题。
>map/unmap: Either you don't translate, or you translate them all.
>> +
>> +PageDoubleMap() 表明大页 *可能* 被映射为了PTE.
>> +
>> +对匿名页,PageDoubleMap()也表示所有子页的_mapcount都偏移了1.
>> +在页被同时映射为了PMD和PTE的情况下,这个额外的引用可以避免子页解映射时的竞争。
>> +
>> +这个优化也可以追踪每个子页mapcount所带来的性能开销。另一种解决方法是在每次
>> +map/unmap整个复合页时更改所有子页的_mapcount.
>> +
>> +对于匿名页,如果页面的PMD在首次被拆分时同时还具有PMD映射,则设置PG_double_map;
>> +当compound_mapcount值降为0时,取消设置。
>> +
>> +对于映射到文件的页,在其首次映射PTE时,设置PG_double_map; 在页面从页缓存
>> +page cache中移除时,取消设置。
>页缓存 == page cache
>> +
>> +split_huge_page中,在清除page struct中所有PG_head/tail位之前,需要先将首页中的
>> +引用计数refcount分发到所有其他尾页中。页表项PTE占用的引用计数很好处理,但剩下的
>> +引用计数来源难以确定(如通过get_user_pages的pin页)。如果大页被pin住,
>> +split_huge_page()会失败。页的引用计数必须等于所有子页mapcount之和再加一(因为
>> +split_huge_page的调用者也必须对首页持有一个引用)。
>> +
>> +对匿名页,split_huge_page用页表项迁移(migration
>> +entries)保持来page->_refcount和page->_mapcount稳定。对文件页,直接解映射就好。
>
>保持来 -> 来保持
>
>> +
>> +这套机制对物理内存扫描(physical memory scanners)也安全,scanner唯一合法引用页
>> +的途径就是get_page_unless_zero().
>> +
>> +没调atomic_add()时,所有尾页的_refcount都为0. 这时scanner无法获取尾页的引用。
>> +调了atomic_add()后,我们也不在乎页的_refcount是多少了。只要知道应该从首页的引用
>> +计数减去多少即可。
>> +
>> +对首页进行get_page_unless_zero()是可以成功的。此时引用计数的再分配非常明了:
>> +引用计数将会留在首页中。
>> +
>> +split_huge_pmd()对引用计数没有任何限制,在任何时候都可以拆分PMD,而且永远不会
>> +失败。
>> +
>> +局部unmap和deferred_split_huge_page()函数
>> +==========================================
>> +
>> +透明大页通过munmap()或其他方式解映射时,并不会立即释放内存。在page_remove_rmap()
>> +中检查透明大页的某个子页是否已经还在使用,并将透明大页加入一个预备队列,当内存
>> +使用需求变大时,把透明大页拆分,释放已经不用的子页。
>> +
>> +如果检测到局部unmap,由于处在锁中,无法拆页。而且在很多情况下,透明大页会跨VMA,
>> +这时会在exit(2)中进行局部unmap,这时拆页效果适得其反。
>
>由于xxxxx而且xxxxxx所以xxxxxxx
>
>这时 is used too much
>
>
>> +
>> +deferred_split_huge_page函数就是用来进行上文所说的将页排队以预备后续的拆分。真正
>> +的拆页操作是通过内存压力导致的shrinker函数来触发。
>
>shrinker接口
>
>> +
>
>CC Yizhou
>
>CC Binbin
>
>
>I like your way of translating docs, good job!
>
>
>Thanks,
>Yanteng