Re: [PATCH V2] mm: fix use-after free of page_ext after race with memory-offline

From: David Hildenbrand
Date: Wed Jul 27 2022 - 14:31:55 EST


On 27.07.22 16:15, Charan Teja Kalla wrote:
> The below is one path where race between page_ext and offline of the
> respective memory blocks will cause use-after-free on the access of
> page_ext structure.
>
> process1 process2
> --------- ---------
> a)doing /proc/page_owner doing memory offline
> through offline_pages.
>
> b)PageBuddy check is failed
> thus proceed to get the
> page_owner information
> through page_ext access.
> page_ext = lookup_page_ext(page);
>
> migrate_pages();
> .................
> Since all pages are successfully
> migrated as part of the offline
> operation,send MEM_OFFLINE notification
> where for page_ext it calls:
> offline_page_ext()-->
> __free_page_ext()-->
> free_page_ext()-->
> vfree(ms->page_ext)
> mem_section->page_ext = NULL
>
> c) Check for the PAGE_EXT flags
> in the page_ext->flags access
> results into the use-after-free(leading
> to the translation faults).
>
> As mentioned above, there is really no synchronization between page_ext
> access and its freeing in the memory_offline.
>
> The memory offline steps(roughly) on a memory block is as below:
> 1) Isolate all the pages
> 2) while(1)
> try free the pages to buddy.(->free_list[MIGRATE_ISOLATE])
> 3) delete the pages from this buddy list.
> 4) Then free page_ext.(Note: The struct page is still alive as it is
> freed only during hot remove of the memory which frees the memmap, which
> steps the user might not perform).
>
> This design leads to the state where struct page is alive but the struct
> page_ext is freed, where the later is ideally part of the former which
> just representing the page_flags.
>
> The above mentioned race is just one example __but the problem persists
> in the other paths too involving page_ext->flags access(eg:
> page_is_idle())__. Since offline waits till the last reference on the
> page goes down i.e. any path that took the refcount on the page can make
> the memory offline operation to wait. Eg: In the migrate_pages()
> operation, we do take the extra refcount on the pages that are under
> migration and then we do copy page_owner by accessing page_ext. For
>
> Fix those paths where offline races with page_ext access by maintaining
> synchronization with rcu lock and is achieved in 3 steps:
> 1) Invalidate all the page_ext's of the sections of a memory block by
> storing a flag in the LSB of mem_section->page_ext.
>
> 2) Wait till all the existing readers to finish working with the
> ->page_ext's with synchronize_rcu(). Any parallel process that starts
> after this call will not get page_ext, through lookup_page_ext(), for
> the block parallel offline operation is being performed.
>
> 3) Now safely free all sections ->page_ext's of the block on which
> offline operation is being performed.
>
> Thanks to David Hildenbrand for his views/suggestions on the initial
> discussion[1] and Pavan kondeti for various inputs on this patch.
>
> FAQ's:
> Q) Should page_ext_[get|put]() needs to be used for every page_ext
> access?
> A) NO, the synchronization is really not needed in all the paths of
> accessing page_ext. One case is where extra refcount is taken on a
> page for which memory block, this pages falls into, offline operation is
> being performed. This extra refcount makes the offline operation not to
> succeed hence the freeing of page_ext. Another case is where the page
> is already being freed and we do reset its page_owner.
>
> Some examples where the rcu_lock is not taken while accessing the
> page_ext are:
> 1) In migration (where we also migrate the page_owner information), we
> take the extra refcount on the source and destination pages and then
> start the migration. This extra refcount makes the test_pages_isolated()
> function to fail thus retry the offline operation.
>
> 2) In free_pages_prepare(), we do reset the page_owner(through page_ext)
> which again doesn't need the protection to access because the page is
> already freeing (through only one path).
>
> So, users need not to use page_ext_[get|put]() when they are sure that
> extra refcount is taken on a page preventing the offline operation.
>
> Q) Why can't the page_ext is freed in the hot_remove path, where memmap
> is also freed ?
>
> A) As per David's answers, there are many reasons and a few are:
> 1) Discussions had happened in the past to eventually also use rcu
> protection for handling pfn_to_online_page(). So doing it cleanly here
> is certainly an improvement.
>
> 2) It's not good having to scatter section online checks all over the
> place in page ext code. Once there is a difference between active vs.
> stale page ext data things get a bit messy and error prone. This is
> already ugly enough in our generic memmap handling code.
>
> 3) Having on-demand allocations, such as KASAN or page ext from the
> memory online notifier is at least currently cleaner, because we don't
> have to handle each and every subsystem that hooks into that during the
> core memory hotadd/remove phase, which primarily only setups the
> vmemmap, direct map and memory block devices.
>
> [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@xxxxxxxxxxx/
>

I guess if we care about the synchronize_rcu() we could go crazy with
temporary allocations for data-to-free + call_rcu().

--
Thanks,

David / dhildenb