Re: [PATCH] hugetlb: freeze allocated pages before creating hugetlb pages

From: Muchun Song
Date: Wed Aug 10 2022 - 02:21:18 EST




> On Aug 9, 2022, at 05:28, Mike Kravetz <mike.kravetz@xxxxxxxxxx> wrote:
>
> When creating hugetlb pages, the hugetlb code must first allocate
> contiguous pages from a low level allocator such as buddy, cma or
> memblock. The pages returned from these low level allocators are
> ref counted. This creates potential issues with other code taking
> speculative references on these pages before they can be transformed to
> a hugetlb page. This issue has been addressed with methods and code
> such as that provided in [1].
>
> Recent discussions about vmemmap freeing [2] have indicated that it
> would be beneficial to freeze all sub pages, including the head page
> of pages returned from low level allocators before converting to a
> hugetlb page. This helps avoid races if want to replace the page
> containing vmemmap for the head page.
>
> There have been proposals to change at least the buddy allocator to
> return frozen pages as described at [3]. If such a change is made, it
> can be employed by the hugetlb code. However, as mentioned above
> hugetlb uses several low level allocators so each would need to be
> modified to return frozen pages. For now, we can manually freeze the
> returned pages. This is done in two places:
> 1) alloc_buddy_huge_page, only the returned head page is ref counted.
> We freeze the head page, retrying once in the VERY rare case where
> there may be an inflated ref count.
> 2) prep_compound_gigantic_page, for gigantic pages the current code
> freezes all pages except the head page. New code will simply freeze
> the head page as well.
>
> In a few other places, code checks for inflated ref counts on newly
> allocated hugetlb pages. With the modifications to freeze after
> allocating, this code can be removed.
>
> After hugetlb pages are freshly allocated, they are often added to the
> hugetlb free lists. Since these pages were previously ref counted, this
> was done via put_page() which would end up calling the hugetlb
> destructor: free_huge_page. With changes to freeze pages, we simply
> call free_huge_page directly to add the pages to the free list.
>
> In a few other places, freshly allocated hugetlb pages were immediately
> put into use, and the expectation was they were already ref counted. In
> these cases, we must manually ref count the page.
>
> [1] https://lore.kernel.org/linux-mm/20210622021423.154662-3-mike.kravetz@xxxxxxxxxx/
> [2] https://lore.kernel.org/linux-mm/20220802180309.19340-1-joao.m.martins@xxxxxxxxxx/
> [3] https://lore.kernel.org/linux-mm/20220531150611.1303156-1-willy@xxxxxxxxxxxxx/
>
> Signed-off-by: Mike Kravetz <mike.kravetz@xxxxxxxxxx>
> ---
> mm/hugetlb.c | 97 +++++++++++++++++++---------------------------------
> 1 file changed, 35 insertions(+), 62 deletions(-)
>
> diff --git a/mm/hugetlb.c b/mm/hugetlb.c
> index 28516881a1b2..6b90d85d545b 100644
> --- a/mm/hugetlb.c
> +++ b/mm/hugetlb.c
> @@ -1769,13 +1769,12 @@ static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
> {
> int i, j;
> int nr_pages = 1 << order;
> - struct page *p = page + 1;
> + struct page *p = page;
>
> /* we rely on prep_new_huge_page to set the destructor */
> set_compound_order(page, order);
> - __ClearPageReserved(page);
> __SetPageHead(page);
> - for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
> + for (i = 0; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
> /*
> * For gigantic hugepages allocated through bootmem at
> * boot, it's safer to be consistent with the not-gigantic
> @@ -1814,7 +1813,8 @@ static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
> } else {
> VM_BUG_ON_PAGE(page_count(p), p);
> }
> - set_compound_head(p, page);
> + if (i != 0)
> + set_compound_head(p, page);
> }
> atomic_set(compound_mapcount_ptr(page), -1);
> atomic_set(compound_pincount_ptr(page), 0);
> @@ -1918,6 +1918,7 @@ static struct page *alloc_buddy_huge_page(struct hstate *h,
> int order = huge_page_order(h);
> struct page *page;
> bool alloc_try_hard = true;
> + bool retry = true;
>
> /*
> * By default we always try hard to allocate the page with
> @@ -1933,7 +1934,21 @@ static struct page *alloc_buddy_huge_page(struct hstate *h,
> gfp_mask |= __GFP_RETRY_MAYFAIL;
> if (nid == NUMA_NO_NODE)
> nid = numa_mem_id();
> +retry:
> page = __alloc_pages(gfp_mask, order, nid, nmask);
> +
> + /* Freeze head page */
> + if (!page_ref_freeze(page, 1)) {

Hi Mike,

I saw Mattew has introduced a new helper alloc_frozen_pages() in thread [1] to allocate a
frozen page. Then we do not need to handle an unexpected refcount case, which
should be easy. Is there any consideration why we do not choose alloc_frozen_pages()?

[1] https://lore.kernel.org/linux-mm/20220809171854.3725722-15-willy@xxxxxxxxxxxxx/T/#u

Muchun,
Thanks.

> + __free_pages(page, order);
> + if (retry) { /* retry once */
> + retry = false;
> + goto retry;
> + }
> + /* WOW! twice in a row. */
> + pr_warn("HugeTLB head page unexpected inflated ref count\n");
> + page = NULL;
> + }
> +
> if (page)
> __count_vm_event(HTLB_BUDDY_PGALLOC);
> else
> @@ -1961,6 +1976,9 @@ static struct page *alloc_buddy_huge_page(struct hstate *h,
> /*
> * Common helper to allocate a fresh hugetlb page. All specific allocators
> * should use this function to get new hugetlb pages
> + *
> + * Note that returned page is 'frozen': ref count of head page and all tail
> + * pages is zero.
> */
> static struct page *alloc_fresh_huge_page(struct hstate *h,
> gfp_t gfp_mask, int nid, nodemask_t *nmask,
> @@ -2018,7 +2036,7 @@ static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
> if (!page)
> return 0;
>
> - put_page(page); /* free it into the hugepage allocator */
> + free_huge_page(page); /* free it into the hugepage allocator */
>
> return 1;
> }
> @@ -2175,10 +2193,9 @@ int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
> * Allocates a fresh surplus page from the page allocator.
> */
> static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
> - int nid, nodemask_t *nmask, bool zero_ref)
> + int nid, nodemask_t *nmask)
> {
> struct page *page = NULL;
> - bool retry = false;
>
> if (hstate_is_gigantic(h))
> return NULL;
> @@ -2188,7 +2205,6 @@ static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
> goto out_unlock;
> spin_unlock_irq(&hugetlb_lock);
>
> -retry:
> page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
> if (!page)
> return NULL;
> @@ -2204,34 +2220,10 @@ static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
> if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
> SetHPageTemporary(page);
> spin_unlock_irq(&hugetlb_lock);
> - put_page(page);
> + free_huge_page(page);
> return NULL;
> }
>
> - if (zero_ref) {
> - /*
> - * Caller requires a page with zero ref count.
> - * We will drop ref count here. If someone else is holding
> - * a ref, the page will be freed when they drop it. Abuse
> - * temporary page flag to accomplish this.
> - */
> - SetHPageTemporary(page);
> - if (!put_page_testzero(page)) {
> - /*
> - * Unexpected inflated ref count on freshly allocated
> - * huge. Retry once.
> - */
> - pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
> - spin_unlock_irq(&hugetlb_lock);
> - if (retry)
> - return NULL;
> -
> - retry = true;
> - goto retry;
> - }
> - ClearHPageTemporary(page);
> - }
> -
> h->surplus_huge_pages++;
> h->surplus_huge_pages_node[page_to_nid(page)]++;
>
> @@ -2253,6 +2245,9 @@ static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
> if (!page)
> return NULL;
>
> + /* fresh huge pages are frozen */
> + set_page_refcounted(page);
> +
> /*
> * We do not account these pages as surplus because they are only
> * temporary and will be released properly on the last reference
> @@ -2280,14 +2275,14 @@ struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
> gfp_t gfp = gfp_mask | __GFP_NOWARN;
>
> gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
> - page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
> + page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
>
> /* Fallback to all nodes if page==NULL */
> nodemask = NULL;
> }
>
> if (!page)
> - page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
> + page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
> mpol_cond_put(mpol);
> return page;
> }
> @@ -2358,7 +2353,7 @@ static int gather_surplus_pages(struct hstate *h, long delta)
> spin_unlock_irq(&hugetlb_lock);
> for (i = 0; i < needed; i++) {
> page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
> - NUMA_NO_NODE, NULL, true);
> + NUMA_NO_NODE, NULL);
> if (!page) {
> alloc_ok = false;
> break;
> @@ -2720,7 +2715,6 @@ static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
> {
> gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
> int nid = page_to_nid(old_page);
> - bool alloc_retry = false;
> struct page *new_page;
> int ret = 0;
>
> @@ -2731,30 +2725,9 @@ static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
> * the pool. This simplifies and let us do most of the processing
> * under the lock.
> */
> -alloc_retry:
> new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
> if (!new_page)
> return -ENOMEM;
> - /*
> - * If all goes well, this page will be directly added to the free
> - * list in the pool. For this the ref count needs to be zero.
> - * Attempt to drop now, and retry once if needed. It is VERY
> - * unlikely there is another ref on the page.
> - *
> - * If someone else has a reference to the page, it will be freed
> - * when they drop their ref. Abuse temporary page flag to accomplish
> - * this. Retry once if there is an inflated ref count.
> - */
> - SetHPageTemporary(new_page);
> - if (!put_page_testzero(new_page)) {
> - if (alloc_retry)
> - return -EBUSY;
> -
> - alloc_retry = true;
> - goto alloc_retry;
> - }
> - ClearHPageTemporary(new_page);
> -
> __prep_new_huge_page(h, new_page);
>
> retry:
> @@ -2934,6 +2907,7 @@ struct page *alloc_huge_page(struct vm_area_struct *vma,
> }
> spin_lock_irq(&hugetlb_lock);
> list_add(&page->lru, &h->hugepage_activelist);
> + set_page_refcounted(page);
> /* Fall through */
> }
> hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
> @@ -3038,7 +3012,7 @@ static void __init gather_bootmem_prealloc(void)
> if (prep_compound_gigantic_page(page, huge_page_order(h))) {
> WARN_ON(PageReserved(page));
> prep_new_huge_page(h, page, page_to_nid(page));
> - put_page(page); /* add to the hugepage allocator */
> + free_huge_page(page); /* add to the hugepage allocator */
> } else {
> /* VERY unlikely inflated ref count on a tail page */
> free_gigantic_page(page, huge_page_order(h));
> @@ -3070,7 +3044,7 @@ static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
> &node_states[N_MEMORY], NULL);
> if (!page)
> break;
> - put_page(page); /* free it into the hugepage allocator */
> + free_huge_page(page); /* free it into the hugepage allocator */
> }
> cond_resched();
> }
> @@ -3459,9 +3433,8 @@ static int demote_free_huge_page(struct hstate *h, struct page *page)
> else
> prep_compound_page(page + i, target_hstate->order);
> set_page_private(page + i, 0);
> - set_page_refcounted(page + i);
> prep_new_huge_page(target_hstate, page + i, nid);
> - put_page(page + i);
> + free_huge_page(page + i);
> }
> mutex_unlock(&target_hstate->resize_lock);
>
> --
> 2.37.1
>
>