Re: [PATCH] cpufreq: CPPC: use 10ms delay instead of 2us to avoid high error

From: Yang Shi
Date: Fri Apr 07 2023 - 18:19:45 EST




On 4/7/23 1:31 AM, Pierre Gondois wrote:
Hello Yang,

On 4/6/23 23:52, Yang Shi wrote:


On 4/5/23 10:57 AM, Pierre Gondois wrote:


On 4/4/23 21:07, Yang Shi wrote:


On 3/29/23 11:43 AM, Rafael J. Wysocki wrote:
On Tue, Mar 28, 2023 at 9:39 PM Yang Shi
<yang@xxxxxxxxxxxxxxxxxxxxxx> wrote:
When testing CPPC cpufreq on our platform, we noticed the error may
be quite
high and the high error may happen quite often.  For example, on a
platform
with a maximum frequency of 2.8GHz when the CPUs were fully loaded
(100% load),
we saw cpuinfo_cur_freq may show 4GHz, it means the error is >
40%.  And the
high error (> 1%) happened 256 times out of 2127 samples (sampled
every 3
seconds) in an approximate 2hrs test.
The description above is a bit cryptic IMV.  For example, it is not
particularly clear what "high error" means.

We tried to enlarge the delay, and tested with 100us, 1ms and
10ms.  The
below is the results.

100us:
The highest error is 4GHz, 22 times out of 3623 samples

1ms:
The highest error is 3.3GHz, 3 times out of 2814 samples

10ms:
No high error anymore

Increase the measurement delay in cppc_cpufreq_get_rate to 10ms to
avoid
high measurement errors.

Signed-off-by: Yang Shi <yang@xxxxxxxxxxxxxxxxxxxxxx>
---
    drivers/cpufreq/cppc_cpufreq.c | 2 +-
    1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/drivers/cpufreq/cppc_cpufreq.c
b/drivers/cpufreq/cppc_cpufreq.c
index 022e3555407c..c2bf65448d3d 100644
--- a/drivers/cpufreq/cppc_cpufreq.c
+++ b/drivers/cpufreq/cppc_cpufreq.c
@@ -851,7 +851,7 @@ static unsigned int
cppc_cpufreq_get_rate(unsigned int cpu)
           if (ret)
                   return ret;

-       udelay(2); /* 2usec delay between sampling */
+       mdelay(10); /* 10msec delay between sampling */
This function can be called with interrupts off, so it cannot spin
for 10 ms.

Per Pierre's comment, the delay may still be ms. Is it still too long? A
quick look at the code shows cpufreq_quick_get() is the only caller with
irq off IIRC. So can we have another callback for it, for example,
get_quick() which does spin for shorter time (for example, keep 2us
delay). Then have ->get() callback use longer delay?

-
According to the same ACPI 6.5 s8.4.6.1.2.5 "Time Window Register"
paragraph,
and assuming we are in the 'Autonomous Selection is not enabled' case,
the OS is supposed to write (not read) the delta between successive
reads of the
counter, so using this field as is would be bending the definition I
think.

-
It is correct that the "Time Window Register" field specifies a value
in ms,
but it seems a long time to wait for with irqs off.

AFAIK, our platforms don't support "Time Window Register".


-
Theoretically, the perf/ref counters should accumulate to allow computing
a correct frequency. Is it possible to know how these counters are
accessed ?
Is it through PCC channels and there is some undesired delay between the
reads of the perf/ref counters ?

The counters are implemented via mmio instead of PCC channels. So the
cpc_read() calls should go to ACPI_ADR_SPACE_SYSTEM_MEMORY IIRC.


-
About making the delay:
     max(cppc_cpufreq_get_transition_delay_us(), Time Winder Register)
I think it would be good to know why the values of the counters
don't accumulate correctly, ideally by getting a trace where a frequency
above the maximum frequency is computed, and with the timestamps at which
the counters are read.
If the values are coming from PCC channels / the firmware, it might be
difficult
to get.

I wrote a bpftrace script to trace the below data:
      - The CPU number
      - The frequency
      - The start and end timestamp of the first cppc_get_perf_ctrs() call
      - The duration/latency of the first cppc_get_perf_ctrs() call
      - The start and end timestamp of the second cppc_get_perf_ctrs() call
      - The duration/latency of the second cppc_get_perf_ctrs() call

The typical logs look like below.
Good
CPU: 1
Freq: 2801485KHz
First:  2489382384  2489387084 4700ns
Second: 2489390824  2489394024  3200ns
--------------------------------------------------
CPU:    2
Freq:   2797956KHz
First:  2490406524  2490411204  4680ns
Second: 2490414764  2490417684  2920ns

Bad:
CPU:    55
Freq:   3969372KHz
First:  875659868  875721568  61700ns
Second: 875725148  875727708  2560ns
--------------------------------------------------
CPU: 65
Freq: 3829744KHz
First:  3854951136  3854995896 44760ns
Second: 3854999416  3855002696 3280ns
--------------------------------------------------
CPU: 21
Freq: 4279242KHz
First:  240834204  240910484 76280ns
Second: 240914264  240916944  2680ns


The first line is cpu number, the second line is frequency returned by
cppc_cpufreq_get_rate(), the third line is the start and end timestamps
and duration of the first cppc_get_perf_ctrs(), the fourth line is the
start and end timestamps and duration of the second cppc_get_perf_ctrs().

So per the log I think we can tell basically the longer the duration the
higher the error. The 2us delay is not long enough to offset the impact
from unexpected latency of reading the counters.

In the worst case the frequency is 4279242KHz, comparing 2800000KHz the
error is over 50%. So the delay should be 4ms ~ 5ms in order to offset
the impact from reading the counters if I do the math correctly.

Hope the trace data is helpful to diagnose the problem.


Thanks for the data. I was thinking the following was happening:

 cppc_get_perf_ctrs()[0] cppc_get_perf_ctrs()[1]
/                    \ /                         \
ref[0]    delivered[0]                    ref[1] delivered[1]
  |            |                              |                  |
  v            v                              v                  v
----------------------------------------------------------------------> time
   <-delta[0]-> <-------------2us------------> <----delta[1]---->

If delta[0] is really different from delta[1] like above, then the
reference and delivered counters would have accumulated during different
intervals, resulting in a wrong frequency.

Yeah, it looks like so.

If more/less than 2us elapse between the two cppc_get_perf_ctrs() calls,
then it shouldn't have any impact. So waiting ~10ms should theoretically
not solve the issue.

I'm not sure whether the 10ms delay really resolved the issue, but it did reduce the magnitude of the error.

BTW, I don't see irq is disabled when reading cpuinfo_cur_freq, so it looks like interrupts could easily result in the difference between delta[0] and delta[1]. And it seems like the difference matters.

And the counters are accessed through an interconnect on our platform, so the interconnect congestion may result in the difference as well.


freq = ref_freq * (delivered[1] - delivered[0]) / (ref[1] - ref[0])

If the counters are accessed through mmio, I don't see anything that would
make delta[x] vary when calling cppc_get_perf_ctrs(), cf. cpc_read().
Do you know if the address represents real counters or a place in memory
representing something else ?

The address does represent real counters.


Would it be possible to try setting the CPU frequency to one unique value
and get a serie of values like:
[timestamp, ref_counter_value, deliverd_counter_value]

Could you please elaborate regarding "setting the CPU frequency to one unique value"? What value is unique?


This would allow to check that the counters are accumulating at a valid
pace. Also you said there were frequencies above the maximum value, but
are there also frequencies below the minimum value ?

I've never seen the frequency below the minimum value.


Regards,
Pierre