Re: [PATCH v3 0/7] sched: Implement shared runqueue in CFS
From: David Vernet
Date: Thu Aug 24 2023 - 18:52:56 EST
On Thu, Aug 24, 2023 at 04:44:19PM +0530, Gautham R. Shenoy wrote:
> Hello David,
>
> On Fri, Aug 18, 2023 at 02:19:03PM +0530, Gautham R. Shenoy wrote:
> > Hello David,
> >
> > On Fri, Aug 18, 2023 at 12:03:55AM -0500, David Vernet wrote:
> > > On Thu, Aug 17, 2023 at 02:12:03PM +0530, Gautham R. Shenoy wrote:
> > > > Hello David,
> > >
> > > Hello Gautham,
> > >
> > > Thanks a lot as always for running some benchmarks and analyzing these
> > > changes.
> > >
> > > > On Wed, Aug 09, 2023 at 05:12:11PM -0500, David Vernet wrote:
> > > > > Changes
> > > > > -------
> > > > >
> > > > > This is v3 of the shared runqueue patchset. This patch set is based off
> > > > > of commit 88c56cfeaec4 ("sched/fair: Block nohz tick_stop when cfs
> > > > > bandwidth in use") on the sched/core branch of tip.git.
> > > >
> > > >
> > > > I tested the patches on Zen3 and Zen4 EPYC Servers like last time. I
> > > > notice that apart from hackbench, every other bechmark is showing
> > > > regressions with this patch series. Quick summary of my observations:
> > >
> > > Just to verify per our prior conversation [0], was this latest set of
> > > benchmarks run with boost disabled?
> >
> > Boost is enabled by default. I will queue a run tonight with boost
> > disabled.
>
> Apologies for the delay. I didn't see any changes with boost-disabled
> and with reverting the optimization to bail out of the
> newidle_balance() for SMT and MC domains when there was no task to be
> pulled from the shared-runq. I reran the whole thing once again, just
> to rule out any possible variance. The results came out the same.
Thanks a lot for taking the time to run more benchmarks.
> With the boost disabled, and the optimization reverted, the results
> don't change much.
Hmmm, I see. So, that was the only real substantive "change" between v2
-> v3. The other changes were supporting hotplug / domain recreation,
optimizing locking a bit, and fixing small bugs like the return value
from shared_runq_pick_next_task(), draining the queue when the feature
is disabled, and fixing the lkp errors.
With all that said, it seems very possible that the regression is due to
changes in sched/core between commit ebb83d84e49b ("sched/core: Avoid
multiple calling update_rq_clock() in __cfsb_csd_unthrottle()") in v2,
and commit 88c56cfeaec4 ("sched/fair: Block nohz tick_stop when cfs
bandwidth in use") in v3. EEVDF was merged in that window, so that could
be one explanation for the context switch rate being so much higher.
> It doesn't appear that the optimization is the cause for increase in
> the number of load-balancing attempts at the DIE and the NUMA
> domains. I have shared the counts of the newidle_balance with and
> without SHARED_RUNQ below for tbench and it can be noticed that the
> counts are significantly higher for the 64 clients and 128 clients. I
> also captured the counts/s of find_busiest_group() using funccount.py
> which tells the same story. So the drop in the performance for tbench
> with your patches strongly correlates with the increase in
> load-balancing attempts.
>
> newidle balance is undertaken only if the overload flag is set and the
> expected idle duration is greater than the avg load balancing cost. It
> is hard to imagine why should the shared runq cause the overload flag
> to be set!
Yeah, I'm not sure either about how or why shared_runq would cause this
This is purely hypothetical, but is it possible that shared_runq causes
idle cores to on average _stay_ idle longer due to other cores pulling
tasks that would have otherwise been load balanced to those cores?
Meaning -- say CPU0 is idle, and there are tasks on other rqs which
could be load balanced. Without shared_runq, CPU0 might be woken up to
run a task from a periodic load balance. With shared_runq, any active
core that would otherwise have gone idle could pull the task, keeping
CPU0 idle.
What do you think? I could be totally off here.
>From my perspective, I'm not too worried about this given that we're
seeing gains in other areas such as kernel compile as I showed in [0],
though I definitely would like to better understand it.
[0]: https://lore.kernel.org/all/20230809221218.163894-1-void@xxxxxxxxxxxxx/
> Detailed Results are as follows:
> =============================================================
> Test Machine : 2 Socket Zen4 with 128 cores per socket, SMT enabled.
>
> tip : commit 88c56cfeaec4 ("sched/fair: Block nohz tick_stop when cfs
> v3 : v3 of the shared_runq patch
> v3-tgfix : v3+ Aaron's RFC v1 patch to ratelimit the updates to tg->load_avg
> v3-tgfix-no-opt : v3-tgfix + revered the optimization to bail out of
> newidle-balance for SMT and MC domains when there
> are no tasks in the shared-runq
>
> In the results below, I have chosen the first row, first column in the
> table as the baseline so that we get an idea of the scalability issues
> as the number of groups/clients/workers increase.
>
> ==================================================================
> Test : hackbench
> Units : Normalized time in seconds
> Interpretation: Lower is better
> Statistic : AMean
> ==================================================================
> Case: tip[pct imp](CV) v3[pct imp](CV) v3-tgfix[pct imp](CV) v3-tgfix-no-opt[pct imp](CV)
> 1-groups 1.00 [ -0.00]( 4.22) 0.92 [ 7.75]( 9.09) 0.88 [ 11.53](10.61) 0.85 [ 15.31]( 8.20)
> 2-groups 0.88 [ -0.00](11.65) 0.85 [ 2.95](10.77) 0.88 [ -0.91]( 9.69) 0.88 [ -0.23]( 9.20)
> 4-groups 1.08 [ -0.00]( 3.70) 0.93 [ 13.86](11.03) 0.90 [ 16.08]( 9.57) 0.83 [ 22.92]( 6.98)
> 8-groups 1.32 [ -0.00]( 0.63) 1.16 [ 12.33]( 9.05) 1.21 [ 8.72]( 5.54) 1.17 [ 11.13]( 5.29)
> 16-groups 1.71 [ -0.00]( 0.63) 1.93 [-12.65]( 4.68) 1.27 [ 25.87]( 1.31) 1.25 [ 27.15]( 1.10)
Great, looks like Aaron's patch really helps.
> ==================================================================
> Test : tbench
> Units : Normalized throughput
> Interpretation: Higher is better
> Statistic : AMean
> ==================================================================
> Clients: tip[pct imp](CV) v3[pct imp](CV) v3-tgfix[pct imp](CV) v3-tgfix-no-opt[pct imp](CV)
> 1 1.00 [ 0.00]( 0.18) 0.99 [ -0.99]( 0.18) 0.98 [ -2.08]( 0.10) 0.98 [ -2.19]( 0.24)
> 2 1.95 [ 0.00]( 0.65) 1.93 [ -1.04]( 0.72) 1.95 [ -0.37]( 0.31) 1.92 [ -1.73]( 0.39)
> 4 3.80 [ 0.00]( 0.59) 3.78 [ -0.53]( 0.37) 3.73 [ -1.66]( 0.58) 3.77 [ -0.79]( 0.97)
> 8 7.49 [ 0.00]( 0.37) 7.41 [ -1.12]( 0.39) 7.24 [ -3.42]( 1.99) 7.39 [ -1.39]( 1.53)
> 16 14.78 [ 0.00]( 0.84) 14.60 [ -1.24]( 1.51) 14.30 [ -3.28]( 1.28) 14.46 [ -2.18]( 0.78)
> 32 28.18 [ 0.00]( 1.26) 26.59 [ -5.65]( 0.46) 27.70 [ -1.71]( 0.92) 27.08 [ -3.90]( 0.83)
> 64 55.05 [ 0.00]( 1.56) 18.25 [-66.85]( 0.25) 48.07 [-12.68]( 1.51) 47.46 [-13.79]( 2.70)
> 128 102.26 [ 0.00]( 1.03) 21.74 [-78.74]( 0.65) 54.65 [-46.56]( 1.35) 54.69 [-46.52]( 1.16)
> 256 156.69 [ 0.00]( 0.27) 25.47 [-83.74]( 0.07) 130.85 [-16.49]( 0.57) 125.00 [-20.23]( 0.35)
> 512 223.22 [ 0.00]( 8.25) 236.98 [ 6.17](17.10) 274.47 [ 22.96]( 0.44) 276.95 [ 24.07]( 3.37)
> 1024 237.98 [ 0.00]( 1.09) 299.72 [ 25.94]( 0.24) 304.89 [ 28.12]( 0.73) 300.37 [ 26.22]( 1.16)
> 2048 242.13 [ 0.00]( 0.37) 311.38 [ 28.60]( 0.24) 299.82 [ 23.82]( 1.35) 291.32 [ 20.31]( 0.66)
>
>
> I reran tbench for v3-tgfix-no-opt, to collect the newidle balance
> counts via schedstat as well as the find_busiest_group() counts via
> funccount.py.
>
> Comparison of the newidle balance counts across different
> sched-domains for "v3-tgfix-no-opt" kernel with NO_SHARED_RUNQ vs
> SHARED_RUNQ. We see a huge blowup for the DIE and the NUMA domains
> when the number of clients are 64 and 128. The value within |xx.yy|
> indicates the percentage increase when the difference is significant.
>
> ============== SMT load_balance with CPU_NEWLY_IDLE ===============================
> 1 clients: count : 1986, 1960
> 2 clients: count : 5777, 6543 | 13.26|
> 4 clients: count : 16775, 15274 | -8.95|
> 8 clients: count : 37086, 32715 | -11.79|
> 16 clients: count : 69627, 65652 | -5.71|
> 32 clients: count : 152288, 42723 | -71.95|
> 64 clients: count : 216396, 169545 | -21.65|
> 128 clients: count : 219570, 649880 | 195.98|
> 256 clients: count : 443595, 951933 | 114.60|
> 512 clients: count : 5498, 1949 | -64.55|
> 1024 clients: count : 60, 3 | -95.00|
> ================ MC load_balance with CPU_NEWLY_IDLE ===============================
> 1 clients: count : 1954, 1943
> 2 clients: count : 5775, 6541 | 13.26|
> 4 clients: count : 15468, 15087
> 8 clients: count : 31941, 32140
> 16 clients: count : 57312, 62553 | 9.14|
> 32 clients: count : 125791, 34386 | -72.66|
> 64 clients: count : 181406, 133978 | -26.14|
> 128 clients: count : 191143, 607594 | 217.87|
> 256 clients: count : 388696, 584568 | 50.39|
> 512 clients: count : 2677, 218 | -91.86|
> 1024 clients: count : 22, 3 | -86.36|
> =============== DIE load_balance with CPU_NEWLY_IDLE ===============================
> 1 clients: count : 10, 15 | 50.00|
> 2 clients: count : 15, 56 | 273.33|
> 4 clients: count : 65, 149 | 129.23|
> 8 clients: count : 242, 412 | 70.25|
> 16 clients: count : 509, 1235 | 142.63|
> 32 clients: count : 909, 1371 | 50.83|
> 64 clients: count : 1288, 59596 | 4527.02| <===
> 128 clients: count : 666, 281426 |42156.16| <===
> 256 clients: count : 213, 1463 | 586.85|
> 512 clients: count : 28, 23 | -17.86|
> 1024 clients: count : 10, 3 | -70.00|
> ============== NUMA load_balance with CPU_NEWLY_IDLE ===============================
> 1 clients: count : 9, 9
> 2 clients: count : 13, 14
> 4 clients: count : 21, 21
> 8 clients: count : 27, 29
> 16 clients: count : 29, 50 | 72.41|
> 32 clients: count : 29, 67 | 131.03|
> 64 clients: count : 28, 9138 |32535.71| <===
> 128 clients: count : 25, 24234 |96836.00| <===
> 256 clients: count : 12, 11
> 512 clients: count : 7, 3
> 1024 clients: count : 4, 3
>
>
> Further, collected the find_busiest_group() count/s using
> funccount.py.
>
> Notice that with 128 clients, most samples with SHARED_RUNQ fall into
> the bucket which is > 2x of the buckets where we have most of the
> samples of NO_SHARED_RUNQ runs.
>
> 128 clients: find_busiest_group() count/s
> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> fbg count bucket NO_SHARED_RUNQ SHARED_RUNQ
> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> [2000000 - 2500000) : 23
> [2500000 - 3000000) : 19
> [3000000 - 3500000) : 19 1
> [3500000 - 4000000) : 3 3
> [7500000 - 8000000) : 5
> [8000000 - 8500000) : 54 <===
>
> With 1024 clients, there is not a whole lot of difference in the
> find_busiest_group() distribution with and without the SHARED_RUNQ.
>
> 1024 clients: find_busiest_group() count/s
> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> fbg count bucket NO_SHARED_RUNQ SHARED_RUNQ
> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> [ 4000 - 5000) : 1
> [ 7000 - 8000) : 2 2
> [ 8000 - 9000) : 1 2
> [ 9000 - 10000) : 57 44 <===
> [ 10000 - 11000) : 3 13
> [ 18000 - 19000) : 1 1
>
>
>
> ==================================================================
> Test : stream (10 Runs)
> Units : Normalized Bandwidth, MB/s
> Interpretation: Higher is better
> Statistic : HMean
> ==================================================================
> Test: tip[pct imp](CV) v3[pct imp](CV) v3-tgfix[pct imp](CV) v3-tgfix-no-opt[pct imp](CV)
> Copy 1.00 [ 0.00]( 0.53) 1.00 [ 0.01]( 0.77) 1.00 [ -0.22]( 0.55) 1.00 [ 0.12]( 0.71)
> Scale 0.95 [ 0.00]( 0.23) 0.95 [ 0.21]( 0.63) 0.95 [ 0.13]( 0.22) 0.95 [ 0.02]( 0.87)
> Add 0.97 [ 0.00]( 0.27) 0.98 [ 0.40]( 0.59) 0.98 [ 0.52]( 0.31) 0.98 [ 0.16]( 0.85)
> Triad 0.98 [ 0.00]( 0.28) 0.98 [ 0.33]( 0.55) 0.98 [ 0.34]( 0.29) 0.98 [ 0.05]( 0.96)
>
>
> ==================================================================
> Test : stream (100 Runs)
> Units : Normalized Bandwidth, MB/s
> Interpretation: Higher is better
> Statistic : HMean
> ==================================================================
> Test: tip[pct imp](CV) v3[pct imp](CV) v3-tgfix[pct imp](CV) v3-tgfix-no-opt[pct imp](CV)
> Copy 1.00 [ 0.00]( 1.01) 1.00 [ -0.38]( 0.34) 1.00 [ 0.08]( 1.19) 1.00 [ -0.18]( 0.38)
> Scale 0.95 [ 0.00]( 0.46) 0.95 [ -0.39]( 0.52) 0.94 [ -0.72]( 0.34) 0.94 [ -0.66]( 0.40)
> Add 0.98 [ 0.00]( 0.16) 0.98 [ -0.40]( 0.53) 0.97 [ -0.80]( 0.26) 0.97 [ -0.79]( 0.34)
> Triad 0.98 [ 0.00]( 0.14) 0.98 [ -0.35]( 0.54) 0.97 [ -0.79]( 0.17) 0.97 [ -0.79]( 0.28)
>
>
> ==================================================================
> Test : netperf
> Units : Normalized Througput per client
> Interpretation: Higher is better
> Statistic : AMean
> ==================================================================
> Clients: tip[pct imp](CV) v3[pct imp](CV) v3-tgfix[pct imp](CV) v3-tgfix-no-opt[pct imp](CV)
> 1-clients 1.00 [ 0.00]( 0.84) 0.99 [ -0.64]( 0.10) 0.97 [ -2.61]( 0.29) 0.98 [ -2.24]( 0.16)
> 2-clients 1.00 [ 0.00]( 0.47) 0.99 [ -1.07]( 0.42) 0.98 [ -2.27]( 0.33) 0.97 [ -2.75]( 0.24)
> 4-clients 1.01 [ 0.00]( 0.45) 0.99 [ -1.41]( 0.39) 0.98 [ -2.82]( 0.31) 0.97 [ -3.23]( 0.23)
> 8-clients 1.00 [ 0.00]( 0.39) 0.99 [ -1.95]( 0.29) 0.98 [ -2.78]( 0.25) 0.97 [ -3.62]( 0.39)
> 16-clients 1.00 [ 0.00]( 1.81) 0.97 [ -2.77]( 0.41) 0.97 [ -3.26]( 0.35) 0.96 [ -3.99]( 1.45)
> 32-clients 1.00 [ 0.00]( 1.87) 0.39 [-60.63]( 1.29) 0.95 [ -4.68]( 1.45) 0.95 [ -4.89]( 1.41)
> 64-clients 0.98 [ 0.00]( 2.70) 0.24 [-75.29]( 1.26) 0.66 [-33.23]( 0.99) 0.65 [-34.05]( 2.39)
> 128-clients 0.90 [ 0.00]( 2.48) 0.14 [-84.47]( 3.63) 0.36 [-60.00]( 1.37) 0.36 [-60.36]( 1.54)
> 256-clients 0.67 [ 0.00]( 2.91) 0.08 [-87.79]( 9.27) 0.54 [-20.38]( 3.69) 0.52 [-22.94]( 3.81)
> 512-clients 0.36 [ 0.00]( 8.11) 0.51 [ 39.96]( 4.92) 0.38 [ 5.12]( 6.24) 0.39 [ 5.88]( 6.13)
>
>
> ==================================================================
> Test : schbench throughput
> Units : Normalized Requests per second
> Interpretation: Higher is better
> Statistic : Median
> ==================================================================
> #workers: tip[pct imp](CV) v3[pct imp](CV) v3-tgfix[pct imp](CV) v3-tgfix-no-opt[pct imp](CV)
> 1 1.00 [ 0.00]( 0.24) 1.01 [ 0.93]( 0.00) 1.01 [ 0.93]( 0.24) 1.00 [ 0.47]( 0.24)
> 2 2.01 [ 0.00]( 0.12) 2.03 [ 0.93]( 0.00) 2.03 [ 1.16]( 0.00) 2.01 [ 0.00]( 0.12)
> 4 4.03 [ 0.00]( 0.12) 4.06 [ 0.70]( 0.00) 4.07 [ 0.93]( 0.00) 4.02 [ -0.23]( 0.24)
> 8 8.05 [ 0.00]( 0.00) 8.12 [ 0.93]( 0.00) 8.14 [ 1.16]( 0.00) 8.07 [ 0.23]( 0.00)
> 16 16.17 [ 0.00]( 0.12) 16.24 [ 0.46]( 0.12) 16.28 [ 0.69]( 0.00) 16.17 [ 0.00]( 0.12)
> 32 32.34 [ 0.00]( 0.12) 32.49 [ 0.46]( 0.00) 32.56 [ 0.69]( 0.00) 32.34 [ 0.00]( 0.00)
> 64 64.52 [ 0.00]( 0.12) 64.82 [ 0.46]( 0.00) 64.97 [ 0.70]( 0.00) 64.52 [ 0.00]( 0.00)
> 128 127.25 [ 0.00]( 1.48) 121.57 [ -4.47]( 0.38) 120.37 [ -5.41]( 0.13) 120.07 [ -5.64]( 0.34)
> 256 135.33 [ 0.00]( 0.11) 136.52 [ 0.88]( 0.11) 136.22 [ 0.66]( 0.11) 136.52 [ 0.88]( 0.11)
> 512 107.81 [ 0.00]( 0.29) 109.91 [ 1.94]( 0.92) 109.91 [ 1.94]( 0.14) 109.91 [ 1.94]( 0.14)
>
>
> ==================================================================
> Test : schbench wakeup-latency
> Units : Normalized 99th percentile latency in us
> Interpretation: Lower is better
> Statistic : Median
> ==================================================================
>
> #workers: tip[pct imp](CV) v3[pct imp](CV) v3-tgfix[pct imp](CV) v3-tgfix-no-opt[pct imp](CV)
> 1 1.00 [ -0.00](14.08) 0.80 [ 20.00](11.92) 1.00 [ -0.00]( 9.68) 1.40 [-40.00](18.75)
> 2 1.20 [ -0.00]( 4.43) 1.10 [ 8.33]( 4.84) 1.10 [ 8.33]( 0.00) 1.10 [ 8.33]( 4.56)
> 4 1.10 [ -0.00]( 0.00) 1.10 [ -0.00]( 4.56) 1.10 [ -0.00]( 0.00) 1.10 [ -0.00]( 0.00)
> 8 1.10 [ -0.00]( 0.00) 1.10 [ -0.00]( 4.56) 1.10 [ -0.00]( 0.00) 1.10 [ -0.00]( 0.00)
> 16 1.10 [ -0.00]( 4.84) 1.20 [ -9.09]( 0.00) 1.10 [ -0.00]( 0.00) 1.10 [ -0.00]( 0.00)
> 32 1.00 [ -0.00]( 0.00) 1.10 [-10.00]( 0.00) 1.10 [-10.00]( 0.00) 1.00 [ -0.00]( 0.00)
> 64 1.00 [ -0.00]( 5.34) 1.10 [-10.00]( 0.00) 1.10 [-10.00]( 0.00) 1.10 [-10.00]( 0.00)
> 128 1.20 [ -0.00]( 4.19) 2.10 [-75.00]( 2.50) 2.10 [-75.00]( 2.50) 2.10 [-75.00]( 0.00)
> 256 5.90 [ -0.00]( 0.00) 12.10 [-105.08](14.03) 11.10 [-88.14]( 4.53) 12.70 [-115.25]( 5.17)
> 512 2627.20 [ -0.00]( 1.21) 2288.00 [ 12.91]( 9.76) 2377.60 [ 9.50]( 2.40) 2281.60 [ 13.15]( 0.77)
>
>
> ==================================================================
> Test : schbench request-latency
> Units : Normalized 99th percentile latency in us
> Interpretation: Lower is better
> Statistic : Median
> ==================================================================
> #workers: tip[pct imp](CV) v3[pct imp](CV) v3-tgfix[pct imp](CV) v3-tgfix-no-opt[pct imp](CV)
> 1 1.00 [ -0.00]( 0.35) 1.00 [ 0.34]( 0.17) 0.99 [ 0.67]( 0.30) 1.00 [ -0.34]( 0.00)
> 2 1.00 [ -0.00]( 0.17) 1.00 [ 0.34]( 0.00) 0.99 [ 1.01]( 0.00) 1.00 [ -0.34]( 0.17)
> 4 1.00 [ -0.00]( 0.00) 1.00 [ 0.34]( 0.00) 0.99 [ 1.01]( 0.00) 1.00 [ -0.00]( 0.17)
> 8 1.00 [ -0.00]( 0.17) 1.00 [ 0.34]( 0.17) 0.99 [ 1.34]( 0.18) 1.00 [ 0.34]( 0.17)
> 16 1.00 [ -0.00]( 0.00) 1.00 [ 0.67]( 0.17) 0.99 [ 1.34]( 0.35) 1.00 [ -0.00]( 0.00)
> 32 1.00 [ -0.00]( 0.00) 1.00 [ 0.67]( 0.00) 0.99 [ 1.34]( 0.00) 1.00 [ -0.00]( 0.00)
> 64 1.00 [ -0.00]( 0.00) 1.00 [ 0.34]( 0.17) 1.00 [ 0.67]( 0.00) 1.00 [ -0.00]( 0.17)
> 128 1.82 [ -0.00]( 0.83) 1.85 [ -1.48]( 0.00) 1.85 [ -1.85]( 0.37) 1.85 [ -1.85]( 0.19)
> 256 1.94 [ -0.00]( 0.18) 1.96 [ -1.04]( 0.36) 1.95 [ -0.69]( 0.18) 1.95 [ -0.35]( 0.18)
> 512 13.27 [ -0.00]( 5.00) 16.32 [-23.00]( 8.33) 16.16 [-21.78]( 1.05) 15.46 [-16.51]( 0.89)
So as I said above, I definitely would like to better understand why
we're hammering load_balance() so hard in a few different contexts. I'll
try to repro the issue with tbench on a few different configurations. If
I'm able to, the next step would be for me to investigate my theory,
likely by doing something like measuring rq->avg_idle at wakeup time and
in newidle_balance() using bpftrace. If avg_idle is a lot higher for
waking cores, maybe my theory isn't too far fetched?
With all that said, it's been pretty clear from early on in the patch
set that there were going to be tradeoffs to enabling SHARED_RUNQ. It's
not surprising to me that there are some configurations that really
don't tolerate it well, and others that benefit from it a lot. Hackbench
and kernel compile seem to be two such examples; hackbench especially.
At Meta, we get really nice gains from it on a few of our biggest
services. So my hope is that we don't have to tweak every possible use
case in order for the patch set to be merged, as we've already done a
lot of due diligence relative to other sched features.
I would appreciate hearing what others think as well.
Thanks,
David