Re: [PATCH v5 4/5] remoteproc: k3: Split out functions common with M4 driver
From: Mathieu Poirier
Date: Tue Aug 29 2023 - 15:48:52 EST
On Mon, Aug 07, 2023 at 11:45:28PM -0500, Hari Nagalla wrote:
> From: Martyn Welch <martyn.welch@xxxxxxxxxxxxx>
>
> In the next commit we will be adding the M4F driver which shares a lot of
> commonality with the DSP driver. Split this shared functionality out so
> that it can be used by both drivers.
>
> Signed-off-by: Martyn Welch <martyn.welch@xxxxxxxxxxxxx>
> Signed-off-by: Hari Nagalla <hnagalla@xxxxxx>
> ---
> Changes since v2:
> - New patch (reordered refactored from v2)
>
> Changes since v3:
> - Removed "ipc_only" element from k3_rproc structure
> - Refactored to bring 3 more common functions
>
> Changes since v4:
> - None
>
> drivers/remoteproc/Makefile | 2 +-
> drivers/remoteproc/ti_k3_common.c | 513 +++++++++++++++++++
> drivers/remoteproc/ti_k3_common.h | 103 ++++
> drivers/remoteproc/ti_k3_dsp_remoteproc.c | 598 ++--------------------
> 4 files changed, 646 insertions(+), 570 deletions(-)
> create mode 100644 drivers/remoteproc/ti_k3_common.c
> create mode 100644 drivers/remoteproc/ti_k3_common.h
This patch is hard to follow because of all the things it does. Please do the
structures in one patch and the functions in another.
>
> diff --git a/drivers/remoteproc/Makefile b/drivers/remoteproc/Makefile
> index 91314a9b43ce..55c552e27a45 100644
> --- a/drivers/remoteproc/Makefile
> +++ b/drivers/remoteproc/Makefile
> @@ -36,6 +36,6 @@ obj-$(CONFIG_RCAR_REMOTEPROC) += rcar_rproc.o
> obj-$(CONFIG_ST_REMOTEPROC) += st_remoteproc.o
> obj-$(CONFIG_ST_SLIM_REMOTEPROC) += st_slim_rproc.o
> obj-$(CONFIG_STM32_RPROC) += stm32_rproc.o
> -obj-$(CONFIG_TI_K3_DSP_REMOTEPROC) += ti_k3_dsp_remoteproc.o
> +obj-$(CONFIG_TI_K3_DSP_REMOTEPROC) += ti_k3_dsp_remoteproc.o ti_k3_common.o
> obj-$(CONFIG_TI_K3_R5_REMOTEPROC) += ti_k3_r5_remoteproc.o
> obj-$(CONFIG_XLNX_R5_REMOTEPROC) += xlnx_r5_remoteproc.o
> diff --git a/drivers/remoteproc/ti_k3_common.c b/drivers/remoteproc/ti_k3_common.c
> new file mode 100644
> index 000000000000..3dbf71296950
> --- /dev/null
> +++ b/drivers/remoteproc/ti_k3_common.c
> @@ -0,0 +1,513 @@
> +// SPDX-License-Identifier: GPL-2.0-only
> +/*
> + * TI K3 Remote Processor(s) driver common code
> + *
> + * Refactored from ti_k3_dsp_remoteproc.c.
> + *
> + * ti_k3_dsp_remoteproc.c:
> + * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/
> + * Suman Anna <s-anna@xxxxxx>
> + */
> +
> +#include <linux/io.h>
> +#include <linux/mailbox_client.h>
> +#include <linux/module.h>
> +#include <linux/of_device.h>
> +#include <linux/of_reserved_mem.h>
> +#include <linux/omap-mailbox.h>
> +#include <linux/platform_device.h>
> +#include <linux/remoteproc.h>
> +#include <linux/reset.h>
> +#include <linux/slab.h>
> +
> +#include "omap_remoteproc.h"
> +#include "remoteproc_internal.h"
> +#include "ti_sci_proc.h"
> +#include "ti_k3_common.h"
> +
> +/*
> + * Kick the remote processor to notify about pending unprocessed messages.
> + * The vqid usage is not used and is inconsequential, as the kick is performed
> + * through a simulated GPIO (a bit in an IPC interrupt-triggering register),
> + * the remote processor is expected to process both its Tx and Rx virtqueues.
> + */
> +void k3_rproc_kick(struct rproc *rproc, int vqid)
> +{
> + struct k3_rproc *kproc = rproc->priv;
> + struct device *dev = rproc->dev.parent;
> + mbox_msg_t msg = (mbox_msg_t)vqid;
> + int ret;
> +
> + /* send the index of the triggered virtqueue in the mailbox payload */
> + ret = mbox_send_message(kproc->mbox, (void *)msg);
> + if (ret < 0)
> + dev_err(dev, "failed to send mailbox message, status = %d\n",
> + ret);
> +}
> +EXPORT_SYMBOL_GPL(k3_rproc_kick);
In ti_k3_dsp_remoteproc.c function k3_dsp_rproc_mbox_callback() is the first one
whereas here it is way down in the file. When doing a refactoring such as this
one please keep the function order as close as possible to the original file so
that it is easier to digest the material. Right now I have to fish out each
function from the original file and it is very time consuming.
> +
> +/* Put the remote processor into reset */
> +int k3_rproc_reset(struct k3_rproc *kproc)
> +{
> + struct device *dev = kproc->dev;
> + int ret;
> +
> + ret = reset_control_assert(kproc->reset);
> + if (ret) {
> + dev_err(dev, "local-reset assert failed, ret = %d\n", ret);
> + return ret;
> + }
> +
> + if (kproc->data->uses_lreset)
> + return ret;
> +
> + ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
> + kproc->ti_sci_id);
> + if (ret) {
> + dev_err(dev, "module-reset assert failed, ret = %d\n", ret);
> + if (reset_control_deassert(kproc->reset))
> + dev_warn(dev, "local-reset deassert back failed\n");
> + }
> +
> + return ret;
> +}
> +EXPORT_SYMBOL_GPL(k3_rproc_reset);
> +
> +/* Release the remote processor from reset */
> +int k3_rproc_release(struct k3_rproc *kproc)
> +{
> + struct device *dev = kproc->dev;
> + int ret;
> +
> + if (kproc->data->uses_lreset)
> + goto lreset;
> +
> + ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
> + kproc->ti_sci_id);
> + if (ret) {
> + dev_err(dev, "module-reset deassert failed, ret = %d\n", ret);
> + return ret;
> + }
> +
> +lreset:
> + ret = reset_control_deassert(kproc->reset);
> + if (ret) {
> + dev_err(dev, "local-reset deassert failed, ret = %d\n", ret);
> + if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
> + kproc->ti_sci_id))
> + dev_warn(dev, "module-reset assert back failed\n");
> + }
> +
> + return ret;
> +}
> +EXPORT_SYMBOL_GPL(k3_rproc_release);
> +
> +/*
> + * This function implements the .get_loaded_rsc_table() callback and is used
> + * to provide the resource table for a booted remote processor in IPC-only
> + * mode. The remote processor firmwares follow a design-by-contract approach
> + * and are expected to have the resource table at the base of the DDR region
> + * reserved for firmware usage. This provides flexibility for the remote
> + * processor to be booted by different bootloaders that may or may not have the
> + * ability to publish the resource table address and size through a DT
> + * property.
> + */
> +struct resource_table *k3_get_loaded_rsc_table(struct rproc *rproc,
> + size_t *rsc_table_sz)
> +{
> + struct k3_rproc *kproc = rproc->priv;
> + struct device *dev = kproc->dev;
> +
> + if (!kproc->rmem[0].cpu_addr) {
> + dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found");
> + return ERR_PTR(-ENOMEM);
> + }
> +
> + /*
> + * NOTE: The resource table size is currently hard-coded to a maximum
> + * of 256 bytes. The most common resource table usage for K3 firmwares
> + * is to only have the vdev resource entry and an optional trace entry.
> + * The exact size could be computed based on resource table address, but
> + * the hard-coded value suffices to support the IPC-only mode.
> + */
> + *rsc_table_sz = 256;
> + return (struct resource_table *)kproc->rmem[0].cpu_addr;
> +}
> +EXPORT_SYMBOL_GPL(k3_get_loaded_rsc_table);
> +
> +/*
> + * Custom function to translate a remote processor device address (internal
> + * RAMs only) to a kernel virtual address. The remote processors can access
> + * their RAMs at either an internal address visible only from a remote
> + * processor, or at the SoC-level bus address. Both these addresses need to be
> + * looked through for translation. The translated addresses can be used either
> + * by the remoteproc core for loading (when using kernel remoteproc loader), or
> + * by any rpmsg bus drivers.
> + */
> +void *k3_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
> +{
> + struct k3_rproc *kproc = rproc->priv;
> + void __iomem *va = NULL;
> + phys_addr_t bus_addr;
> + u32 dev_addr, offset;
> + size_t size;
> + int i;
> +
> + if (len == 0)
> + return NULL;
> +
> + for (i = 0; i < kproc->num_mems; i++) {
> + bus_addr = kproc->mem[i].bus_addr;
> + dev_addr = kproc->mem[i].dev_addr;
> + size = kproc->mem[i].size;
> +
> + if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) {
> + /* handle remote-view addresses */
> + if (da >= dev_addr &&
> + ((da + len) <= (dev_addr + size))) {
> + offset = da - dev_addr;
> + va = kproc->mem[i].cpu_addr + offset;
> + return (__force void *)va;
> + }
> + } else {
> + /* handle SoC-view addresses */
> + if (da >= bus_addr &&
> + (da + len) <= (bus_addr + size)) {
> + offset = da - bus_addr;
> + va = kproc->mem[i].cpu_addr + offset;
> + return (__force void *)va;
> + }
> + }
> + }
> +
> + /* handle static DDR reserved memory regions */
> + for (i = 0; i < kproc->num_rmems; i++) {
> + dev_addr = kproc->rmem[i].dev_addr;
> + size = kproc->rmem[i].size;
> +
> + if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
> + offset = da - dev_addr;
> + va = kproc->rmem[i].cpu_addr + offset;
> + return (__force void *)va;
> + }
> + }
> +
> + return NULL;
> +}
> +EXPORT_SYMBOL_GPL(k3_rproc_da_to_va);
> +
> +int k3_rproc_of_get_memories(struct platform_device *pdev,
> + struct k3_rproc *kproc)
> +{
> + const struct k3_rproc_dev_data *data = kproc->data;
> + struct device *dev = &pdev->dev;
> + struct resource *res;
> + int num_mems = 0;
> + int i;
> +
> + num_mems = kproc->data->num_mems;
> + kproc->mem = devm_kcalloc(kproc->dev, num_mems,
> + sizeof(*kproc->mem), GFP_KERNEL);
> + if (!kproc->mem)
> + return -ENOMEM;
> +
> + for (i = 0; i < num_mems; i++) {
> + res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
> + data->mems[i].name);
> + if (!res) {
> + dev_err(dev, "found no memory resource for %s\n",
> + data->mems[i].name);
> + return -EINVAL;
> + }
> + if (!devm_request_mem_region(dev, res->start,
> + resource_size(res),
> + dev_name(dev))) {
> + dev_err(dev, "could not request %s region for resource\n",
> + data->mems[i].name);
> + return -EBUSY;
> + }
> +
> + kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
> + resource_size(res));
> + if (!kproc->mem[i].cpu_addr) {
> + dev_err(dev, "failed to map %s memory\n",
> + data->mems[i].name);
> + return -ENOMEM;
> + }
> + kproc->mem[i].bus_addr = res->start;
> + kproc->mem[i].dev_addr = data->mems[i].dev_addr;
> + kproc->mem[i].size = resource_size(res);
> +
> + dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
> + data->mems[i].name, &kproc->mem[i].bus_addr,
> + kproc->mem[i].size, kproc->mem[i].cpu_addr,
> + kproc->mem[i].dev_addr);
> + }
> + kproc->num_mems = num_mems;
> +
> + return 0;
> +}
> +EXPORT_SYMBOL_GPL(k3_rproc_of_get_memories);
> +
> +int k3_reserved_mem_init(struct k3_rproc *kproc)
> +{
> + struct device *dev = kproc->dev;
> + struct device_node *np = dev->of_node;
> + struct device_node *rmem_np;
> + struct reserved_mem *rmem;
> + int num_rmems;
> + int ret, i;
> +
> + num_rmems = of_property_count_elems_of_size(np, "memory-region",
> + sizeof(phandle));
> + if (num_rmems <= 0) {
> + dev_err(dev, "device does not reserved memory regions, ret = %d\n",
> + num_rmems);
> + return -EINVAL;
> + }
> + if (num_rmems < 2) {
> + dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
> + num_rmems);
> + return -EINVAL;
> + }
> +
> + /* use reserved memory region 0 for vring DMA allocations */
> + ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
> + if (ret) {
> + dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
> + ret);
> + return ret;
> + }
> +
> + num_rmems--;
> + kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
> + if (!kproc->rmem) {
> + ret = -ENOMEM;
> + goto release_rmem;
> + }
> +
> + /* use remaining reserved memory regions for static carveouts */
> + for (i = 0; i < num_rmems; i++) {
> + rmem_np = of_parse_phandle(np, "memory-region", i + 1);
> + if (!rmem_np) {
> + ret = -EINVAL;
> + goto unmap_rmem;
> + }
> +
> + rmem = of_reserved_mem_lookup(rmem_np);
> + if (!rmem) {
> + of_node_put(rmem_np);
> + ret = -EINVAL;
> + goto unmap_rmem;
> + }
> + of_node_put(rmem_np);
> +
> + kproc->rmem[i].bus_addr = rmem->base;
> + /* 64-bit address regions currently not supported */
> + kproc->rmem[i].dev_addr = (u32)rmem->base;
> + kproc->rmem[i].size = rmem->size;
> + kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
> + if (!kproc->rmem[i].cpu_addr) {
> + dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
> + i + 1, &rmem->base, &rmem->size);
> + ret = -ENOMEM;
> + goto unmap_rmem;
> + }
> +
> + dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
> + i + 1, &kproc->rmem[i].bus_addr,
> + kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
> + kproc->rmem[i].dev_addr);
> + }
> + kproc->num_rmems = num_rmems;
> +
> + return 0;
> +
> +unmap_rmem:
> + for (i--; i >= 0; i--)
> + iounmap(kproc->rmem[i].cpu_addr);
> + kfree(kproc->rmem);
> +release_rmem:
> + of_reserved_mem_device_release(kproc->dev);
> + return ret;
> +}
> +EXPORT_SYMBOL_GPL(k3_reserved_mem_init);
> +
> +void k3_reserved_mem_exit(struct k3_rproc *kproc)
> +{
> + int i;
> +
> + for (i = 0; i < kproc->num_rmems; i++)
> + iounmap(kproc->rmem[i].cpu_addr);
> + kfree(kproc->rmem);
> +
> + of_reserved_mem_device_release(kproc->dev);
> +}
> +EXPORT_SYMBOL_GPL(k3_reserved_mem_exit);
> +
> +struct ti_sci_proc *k3_rproc_of_get_tsp(struct device *dev,
> + const struct ti_sci_handle *sci)
> +{
> + struct ti_sci_proc *tsp;
> + u32 temp[2];
> + int ret;
> +
> + ret = of_property_read_u32_array(dev->of_node, "ti,sci-proc-ids",
> + temp, 2);
> + if (ret < 0)
> + return ERR_PTR(ret);
> +
> + tsp = kzalloc(sizeof(*tsp), GFP_KERNEL);
> + if (!tsp)
> + return ERR_PTR(-ENOMEM);
> +
> + tsp->dev = dev;
> + tsp->sci = sci;
> + tsp->ops = &sci->ops.proc_ops;
> + tsp->proc_id = temp[0];
> + tsp->host_id = temp[1];
> +
> + return tsp;
> +}
> +EXPORT_SYMBOL_GPL(k3_rproc_of_get_tsp);
> +
> +/**
> + * k3_rproc_mbox_callback() - inbound mailbox message handler
> + * @client: mailbox client pointer used for requesting the mailbox channel
> + * @data: mailbox payload
> + *
> + * This handler is invoked by the K3 mailbox driver whenever a mailbox
> + * message is received. Usually, the mailbox payload simply contains
> + * the index of the virtqueue that is kicked by the remote processor,
> + * and we let remoteproc core handle it.
> + *
> + * In addition to virtqueue indices, we also have some out-of-band values
> + * that indicate different events. Those values are deliberately very
> + * large so they don't coincide with virtqueue indices.
> + */
> +static void k3_rproc_mbox_callback(struct mbox_client *client, void *data)
> +{
> + struct k3_rproc *kproc = container_of(client, struct k3_rproc,
> + client);
> + struct device *dev = kproc->rproc->dev.parent;
> + const char *name = kproc->rproc->name;
> + u32 msg = omap_mbox_message(data);
> +
> + dev_dbg(dev, "mbox msg: 0x%x\n", msg);
> +
> + switch (msg) {
> + case RP_MBOX_CRASH:
> + /*
> + * remoteproc detected an exception, but error recovery is not
> + * supported. So, just log this for now
> + */
> + dev_err(dev, "K3 rproc %s crashed\n", name);
> + break;
> + case RP_MBOX_ECHO_REPLY:
> + dev_info(dev, "received echo reply from %s\n", name);
> + break;
> + default:
> + /* silently handle all other valid messages */
> + if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
> + return;
> + if (msg > kproc->rproc->max_notifyid) {
> + dev_dbg(dev, "dropping unknown message 0x%x", msg);
> + return;
> + }
> + /* msg contains the index of the triggered vring */
> + if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
> + dev_dbg(dev, "no message was found in vqid %d\n", msg);
> + }
> +}
> +
> +int k3_rproc_request_mbox(struct rproc *rproc)
> +{
> + struct k3_rproc *kproc = rproc->priv;
> + struct mbox_client *client = &kproc->client;
> + struct device *dev = kproc->dev;
> + int ret;
> +
> + client->dev = dev;
> + client->tx_done = NULL;
> + client->rx_callback = k3_rproc_mbox_callback;
> + client->tx_block = false;
> + client->knows_txdone = false;
> +
> + kproc->mbox = mbox_request_channel(client, 0);
> + if (IS_ERR(kproc->mbox)) {
> + ret = -EBUSY;
> + dev_err(dev, "mbox_request_channel failed: %ld\n",
> + PTR_ERR(kproc->mbox));
> + return ret;
> + }
> +
> + /*
> + * Ping the remote processor, this is only for sanity-sake for now;
> + * there is no functional effect whatsoever.
> + *
> + * Note that the reply will _not_ arrive immediately: this message
> + * will wait in the mailbox fifo until the remote processor is booted.
> + */
> + ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
> + if (ret < 0) {
> + dev_err(dev, "mbox_send_message failed: %d\n", ret);
> + mbox_free_channel(kproc->mbox);
> + return ret;
> + }
> +
> + return 0;
> +}
> +EXPORT_SYMBOL_GPL(k3_rproc_request_mbox);
> +
> +/*
> + * The DSP and MCU cores have a local reset that affects only the CPU, and a
> + * generic module reset that powers on the device and allows the internal
> + * memories to be accessed while the local reset is asserted. This function is
> + * used to release the global reset on remote cores to allow loading into the
> + * internal RAMs. The .prepare() ops is invoked by remoteproc core before any
> + * firmware loading, and is followed by the .start() ops after loading to
> + * actually let the remote cores to run. This callback is invoked only in
> + * remoteproc mode.
> + */
> +int k3_rproc_prepare(struct rproc *rproc)
> +{
> + struct k3_rproc *kproc = rproc->priv;
> + struct device *dev = kproc->dev;
> + int ret;
> +
> + ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
> + kproc->ti_sci_id);
> + if (ret)
> + dev_err(dev, "module-reset deassert failed, cannot enable internal RAM loading, ret = %d\n",
> + ret);
> +
> + return ret;
> +}
> +EXPORT_SYMBOL_GPL(k3_rproc_prepare);
> +
> +/*
> + * This function implements the .unprepare() ops and performs the complimentary
> + * operations to that of the .prepare() ops. The function is used to assert the
> + * global reset on applicable DSP, MCU cores. This completes the second portion of
> + * powering down the remote core. The cores themselves are only halted in the
> + * .stop() callback through the local reset, and the .unprepare() ops is invoked
> + * by the remoteproc core after the remoteproc is stopped to balance the global
> + * reset. This callback is invoked only in remoteproc mode.
> + */
> +int k3_rproc_unprepare(struct rproc *rproc)
> +{
> + struct k3_rproc *kproc = rproc->priv;
> + struct device *dev = kproc->dev;
> + int ret;
> +
> + ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
> + kproc->ti_sci_id);
> + if (ret)
> + dev_err(dev, "module-reset assert failed, ret = %d\n", ret);
> +
> + return ret;
> +}
> +EXPORT_SYMBOL_GPL(k3_rproc_unprepare);
> +
> +MODULE_LICENSE("GPL v2");
> +MODULE_DESCRIPTION("TI K3 common Remoteproc support");
> diff --git a/drivers/remoteproc/ti_k3_common.h b/drivers/remoteproc/ti_k3_common.h
> new file mode 100644
> index 000000000000..917a9c82b4cf
> --- /dev/null
> +++ b/drivers/remoteproc/ti_k3_common.h
> @@ -0,0 +1,103 @@
> +/* SPDX-License-Identifier: GPL-2.0-only */
> +/*
> + * TI K3 Remote Processor(s) driver common code
> + *
> + * Refactored from ti_k3_dsp_remoteproc.c.
> + *
> + * ti_k3_dsp_remoteproc.c:
> + * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/
> + * Suman Anna <s-anna@xxxxxx>
> + */
> +
> +#ifndef REMOTEPROC_TI_K3_COMMON_H
> +#define REMOTEPROC_TI_K3_COMMON_H
> +
> +#define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1)
> +
> +/**
> + * struct k3_rproc_mem - internal memory structure
> + * @cpu_addr: MPU virtual address of the memory region
> + * @bus_addr: Bus address used to access the memory region
> + * @dev_addr: Device address of the memory region from DSP view
> + * @size: Size of the memory region
> + */
> +struct k3_rproc_mem {
> + void __iomem *cpu_addr;
> + phys_addr_t bus_addr;
> + u32 dev_addr;
> + size_t size;
> +};
> +
> +/**
> + * struct k3_rproc_mem_data - memory definitions for a DSP
> + * @name: name for this memory entry
> + * @dev_addr: device address for the memory entry
> + */
> +struct k3_rproc_mem_data {
> + const char *name;
> + const u32 dev_addr;
> +};
> +
> +/**
> + * struct k3_rproc_dev_data - device data structure for a DSP
> + * @mems: pointer to memory definitions for a DSP
> + * @num_mems: number of memory regions in @mems
> + * @boot_align_addr: boot vector address alignment granularity
> + * @uses_lreset: flag to denote the need for local reset management
> + */
> +struct k3_rproc_dev_data {
> + const struct k3_rproc_mem_data *mems;
> + u32 num_mems;
> + u32 boot_align_addr;
> + bool uses_lreset;
> +};
> +
> +/**
> + * struct k3_rproc - k3 remote processor driver structure
> + * @dev: cached device pointer
> + * @rproc: remoteproc device handle
> + * @mem: internal memory regions data
> + * @num_mems: number of internal memory regions
> + * @rmem: reserved memory regions data
> + * @num_rmems: number of reserved memory regions
> + * @reset: reset control handle
> + * @data: pointer to device data
> + * @tsp: TI-SCI processor control handle
> + * @ti_sci: TI-SCI handle
> + * @ti_sci_id: TI-SCI device identifier
> + * @mbox: mailbox channel handle
> + * @client: mailbox client to request the mailbox channel
> + */
> +struct k3_rproc {
> + struct device *dev;
> + struct rproc *rproc;
> + struct k3_rproc_mem *mem;
> + int num_mems;
> + struct k3_rproc_mem *rmem;
> + int num_rmems;
> + struct reset_control *reset;
> + const struct k3_rproc_dev_data *data;
> + struct ti_sci_proc *tsp;
> + const struct ti_sci_handle *ti_sci;
> + u32 ti_sci_id;
> + struct mbox_chan *mbox;
> + struct mbox_client client;
> +};
> +
> +void k3_rproc_kick(struct rproc *rproc, int vqid);
> +int k3_rproc_reset(struct k3_rproc *kproc);
> +int k3_rproc_release(struct k3_rproc *kproc);
> +struct resource_table *k3_get_loaded_rsc_table(struct rproc *rproc,
> + size_t *rsc_table_sz);
> +void *k3_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len,
> + bool *is_iomem);
> +int k3_rproc_of_get_memories(struct platform_device *pdev,
> + struct k3_rproc *kproc);
> +int k3_reserved_mem_init(struct k3_rproc *kproc);
> +void k3_reserved_mem_exit(struct k3_rproc *kproc);
> +struct ti_sci_proc *k3_rproc_of_get_tsp(struct device *dev,
> + const struct ti_sci_handle *sci);
> +int k3_rproc_request_mbox(struct rproc *rproc);
> +int k3_rproc_prepare(struct rproc *rproc);
> +int k3_rproc_unprepare(struct rproc *rproc);
> +#endif /* REMOTEPROC_TI_K3_COMMON_H */
> diff --git a/drivers/remoteproc/ti_k3_dsp_remoteproc.c b/drivers/remoteproc/ti_k3_dsp_remoteproc.c
> index ef8415a7cd54..48f9b37a77eb 100644
> --- a/drivers/remoteproc/ti_k3_dsp_remoteproc.c
> +++ b/drivers/remoteproc/ti_k3_dsp_remoteproc.c
> @@ -20,286 +20,8 @@
> #include "omap_remoteproc.h"
> #include "remoteproc_internal.h"
> #include "ti_sci_proc.h"
> +#include "ti_k3_common.h"
>
> -#define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1)
> -
> -/**
> - * struct k3_dsp_mem - internal memory structure
> - * @cpu_addr: MPU virtual address of the memory region
> - * @bus_addr: Bus address used to access the memory region
> - * @dev_addr: Device address of the memory region from DSP view
> - * @size: Size of the memory region
> - */
> -struct k3_dsp_mem {
> - void __iomem *cpu_addr;
> - phys_addr_t bus_addr;
> - u32 dev_addr;
> - size_t size;
> -};
> -
> -/**
> - * struct k3_dsp_mem_data - memory definitions for a DSP
> - * @name: name for this memory entry
> - * @dev_addr: device address for the memory entry
> - */
> -struct k3_dsp_mem_data {
> - const char *name;
> - const u32 dev_addr;
> -};
> -
> -/**
> - * struct k3_dsp_dev_data - device data structure for a DSP
> - * @mems: pointer to memory definitions for a DSP
> - * @num_mems: number of memory regions in @mems
> - * @boot_align_addr: boot vector address alignment granularity
> - * @uses_lreset: flag to denote the need for local reset management
> - */
> -struct k3_dsp_dev_data {
> - const struct k3_dsp_mem_data *mems;
> - u32 num_mems;
> - u32 boot_align_addr;
> - bool uses_lreset;
> -};
> -
> -/**
> - * struct k3_dsp_rproc - k3 DSP remote processor driver structure
> - * @dev: cached device pointer
> - * @rproc: remoteproc device handle
> - * @mem: internal memory regions data
> - * @num_mems: number of internal memory regions
> - * @rmem: reserved memory regions data
> - * @num_rmems: number of reserved memory regions
> - * @reset: reset control handle
> - * @data: pointer to DSP-specific device data
> - * @tsp: TI-SCI processor control handle
> - * @ti_sci: TI-SCI handle
> - * @ti_sci_id: TI-SCI device identifier
> - * @mbox: mailbox channel handle
> - * @client: mailbox client to request the mailbox channel
> - */
> -struct k3_dsp_rproc {
> - struct device *dev;
> - struct rproc *rproc;
> - struct k3_dsp_mem *mem;
> - int num_mems;
> - struct k3_dsp_mem *rmem;
> - int num_rmems;
> - struct reset_control *reset;
> - const struct k3_dsp_dev_data *data;
> - struct ti_sci_proc *tsp;
> - const struct ti_sci_handle *ti_sci;
> - u32 ti_sci_id;
> - struct mbox_chan *mbox;
> - struct mbox_client client;
> -};
> -
> -/**
> - * k3_dsp_rproc_mbox_callback() - inbound mailbox message handler
> - * @client: mailbox client pointer used for requesting the mailbox channel
> - * @data: mailbox payload
> - *
> - * This handler is invoked by the OMAP mailbox driver whenever a mailbox
> - * message is received. Usually, the mailbox payload simply contains
> - * the index of the virtqueue that is kicked by the remote processor,
> - * and we let remoteproc core handle it.
> - *
> - * In addition to virtqueue indices, we also have some out-of-band values
> - * that indicate different events. Those values are deliberately very
> - * large so they don't coincide with virtqueue indices.
> - */
> -static void k3_dsp_rproc_mbox_callback(struct mbox_client *client, void *data)
> -{
> - struct k3_dsp_rproc *kproc = container_of(client, struct k3_dsp_rproc,
> - client);
> - struct device *dev = kproc->rproc->dev.parent;
> - const char *name = kproc->rproc->name;
> - u32 msg = omap_mbox_message(data);
> -
> - dev_dbg(dev, "mbox msg: 0x%x\n", msg);
> -
> - switch (msg) {
> - case RP_MBOX_CRASH:
> - /*
> - * remoteproc detected an exception, but error recovery is not
> - * supported. So, just log this for now
> - */
> - dev_err(dev, "K3 DSP rproc %s crashed\n", name);
> - break;
> - case RP_MBOX_ECHO_REPLY:
> - dev_info(dev, "received echo reply from %s\n", name);
> - break;
> - default:
> - /* silently handle all other valid messages */
> - if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
> - return;
> - if (msg > kproc->rproc->max_notifyid) {
> - dev_dbg(dev, "dropping unknown message 0x%x", msg);
> - return;
> - }
> - /* msg contains the index of the triggered vring */
> - if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
> - dev_dbg(dev, "no message was found in vqid %d\n", msg);
> - }
> -}
> -
> -/*
> - * Kick the remote processor to notify about pending unprocessed messages.
> - * The vqid usage is not used and is inconsequential, as the kick is performed
> - * through a simulated GPIO (a bit in an IPC interrupt-triggering register),
> - * the remote processor is expected to process both its Tx and Rx virtqueues.
> - */
> -static void k3_dsp_rproc_kick(struct rproc *rproc, int vqid)
> -{
> - struct k3_dsp_rproc *kproc = rproc->priv;
> - struct device *dev = rproc->dev.parent;
> - mbox_msg_t msg = (mbox_msg_t)vqid;
> - int ret;
> -
> - /* send the index of the triggered virtqueue in the mailbox payload */
> - ret = mbox_send_message(kproc->mbox, (void *)msg);
> - if (ret < 0)
> - dev_err(dev, "failed to send mailbox message, status = %d\n",
> - ret);
> -}
> -
> -/* Put the DSP processor into reset */
> -static int k3_dsp_rproc_reset(struct k3_dsp_rproc *kproc)
> -{
> - struct device *dev = kproc->dev;
> - int ret;
> -
> - ret = reset_control_assert(kproc->reset);
> - if (ret) {
> - dev_err(dev, "local-reset assert failed, ret = %d\n", ret);
> - return ret;
> - }
> -
> - if (kproc->data->uses_lreset)
> - return ret;
> -
> - ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
> - kproc->ti_sci_id);
> - if (ret) {
> - dev_err(dev, "module-reset assert failed, ret = %d\n", ret);
> - if (reset_control_deassert(kproc->reset))
> - dev_warn(dev, "local-reset deassert back failed\n");
> - }
> -
> - return ret;
> -}
> -
> -/* Release the DSP processor from reset */
> -static int k3_dsp_rproc_release(struct k3_dsp_rproc *kproc)
> -{
> - struct device *dev = kproc->dev;
> - int ret;
> -
> - if (kproc->data->uses_lreset)
> - goto lreset;
> -
> - ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
> - kproc->ti_sci_id);
> - if (ret) {
> - dev_err(dev, "module-reset deassert failed, ret = %d\n", ret);
> - return ret;
> - }
> -
> -lreset:
> - ret = reset_control_deassert(kproc->reset);
> - if (ret) {
> - dev_err(dev, "local-reset deassert failed, ret = %d\n", ret);
> - if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
> - kproc->ti_sci_id))
> - dev_warn(dev, "module-reset assert back failed\n");
> - }
> -
> - return ret;
> -}
> -
> -static int k3_dsp_rproc_request_mbox(struct rproc *rproc)
> -{
> - struct k3_dsp_rproc *kproc = rproc->priv;
> - struct mbox_client *client = &kproc->client;
> - struct device *dev = kproc->dev;
> - int ret;
> -
> - client->dev = dev;
> - client->tx_done = NULL;
> - client->rx_callback = k3_dsp_rproc_mbox_callback;
> - client->tx_block = false;
> - client->knows_txdone = false;
> -
> - kproc->mbox = mbox_request_channel(client, 0);
> - if (IS_ERR(kproc->mbox)) {
> - ret = -EBUSY;
> - dev_err(dev, "mbox_request_channel failed: %ld\n",
> - PTR_ERR(kproc->mbox));
> - return ret;
> - }
> -
> - /*
> - * Ping the remote processor, this is only for sanity-sake for now;
> - * there is no functional effect whatsoever.
> - *
> - * Note that the reply will _not_ arrive immediately: this message
> - * will wait in the mailbox fifo until the remote processor is booted.
> - */
> - ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
> - if (ret < 0) {
> - dev_err(dev, "mbox_send_message failed: %d\n", ret);
> - mbox_free_channel(kproc->mbox);
> - return ret;
> - }
> -
> - return 0;
> -}
> -/*
> - * The C66x DSP cores have a local reset that affects only the CPU, and a
> - * generic module reset that powers on the device and allows the DSP internal
> - * memories to be accessed while the local reset is asserted. This function is
> - * used to release the global reset on C66x DSPs to allow loading into the DSP
> - * internal RAMs. The .prepare() ops is invoked by remoteproc core before any
> - * firmware loading, and is followed by the .start() ops after loading to
> - * actually let the C66x DSP cores run. This callback is invoked only in
> - * remoteproc mode.
> - */
> -static int k3_dsp_rproc_prepare(struct rproc *rproc)
> -{
> - struct k3_dsp_rproc *kproc = rproc->priv;
> - struct device *dev = kproc->dev;
> - int ret;
> -
> - ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
> - kproc->ti_sci_id);
> - if (ret)
> - dev_err(dev, "module-reset deassert failed, cannot enable internal RAM loading, ret = %d\n",
> - ret);
> -
> - return ret;
> -}
> -
> -/*
> - * This function implements the .unprepare() ops and performs the complimentary
> - * operations to that of the .prepare() ops. The function is used to assert the
> - * global reset on applicable C66x cores. This completes the second portion of
> - * powering down the C66x DSP cores. The cores themselves are only halted in the
> - * .stop() callback through the local reset, and the .unprepare() ops is invoked
> - * by the remoteproc core after the remoteproc is stopped to balance the global
> - * reset. This callback is invoked only in remoteproc mode.
> - */
> -static int k3_dsp_rproc_unprepare(struct rproc *rproc)
> -{
> - struct k3_dsp_rproc *kproc = rproc->priv;
> - struct device *dev = kproc->dev;
> - int ret;
> -
> - ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
> - kproc->ti_sci_id);
> - if (ret)
> - dev_err(dev, "module-reset assert failed, ret = %d\n", ret);
> -
> - return ret;
> -}
>
> /*
> * Power up the DSP remote processor.
> @@ -310,12 +32,12 @@ static int k3_dsp_rproc_unprepare(struct rproc *rproc)
> */
> static int k3_dsp_rproc_start(struct rproc *rproc)
> {
> - struct k3_dsp_rproc *kproc = rproc->priv;
> + struct k3_rproc *kproc = rproc->priv;
> struct device *dev = kproc->dev;
> u32 boot_addr;
> int ret;
>
> - ret = k3_dsp_rproc_request_mbox(rproc);
> + ret = k3_rproc_request_mbox(rproc);
> if (ret)
> return ret;
>
> @@ -332,7 +54,7 @@ static int k3_dsp_rproc_start(struct rproc *rproc)
> if (ret)
> goto put_mbox;
>
> - ret = k3_dsp_rproc_release(kproc);
> + ret = k3_rproc_release(kproc);
> if (ret)
> goto put_mbox;
>
> @@ -351,11 +73,11 @@ static int k3_dsp_rproc_start(struct rproc *rproc)
> */
> static int k3_dsp_rproc_stop(struct rproc *rproc)
> {
> - struct k3_dsp_rproc *kproc = rproc->priv;
> + struct k3_rproc *kproc = rproc->priv;
>
> mbox_free_channel(kproc->mbox);
>
> - k3_dsp_rproc_reset(kproc);
> + k3_rproc_reset(kproc);
>
> return 0;
> }
> @@ -370,11 +92,11 @@ static int k3_dsp_rproc_stop(struct rproc *rproc)
> */
> static int k3_dsp_rproc_attach(struct rproc *rproc)
> {
> - struct k3_dsp_rproc *kproc = rproc->priv;
> + struct k3_rproc *kproc = rproc->priv;
> struct device *dev = kproc->dev;
> int ret;
>
> - ret = k3_dsp_rproc_request_mbox(rproc);
> + ret = k3_rproc_request_mbox(rproc);
> if (ret)
> return ret;
>
> @@ -392,7 +114,7 @@ static int k3_dsp_rproc_attach(struct rproc *rproc)
> */
> static int k3_dsp_rproc_detach(struct rproc *rproc)
> {
> - struct k3_dsp_rproc *kproc = rproc->priv;
> + struct k3_rproc *kproc = rproc->priv;
> struct device *dev = kproc->dev;
>
> mbox_free_channel(kproc->mbox);
> @@ -400,282 +122,20 @@ static int k3_dsp_rproc_detach(struct rproc *rproc)
> return 0;
> }
>
> -/*
> - * This function implements the .get_loaded_rsc_table() callback and is used
> - * to provide the resource table for a booted DSP in IPC-only mode. The K3 DSP
> - * firmwares follow a design-by-contract approach and are expected to have the
> - * resource table at the base of the DDR region reserved for firmware usage.
> - * This provides flexibility for the remote processor to be booted by different
> - * bootloaders that may or may not have the ability to publish the resource table
> - * address and size through a DT property. This callback is invoked only in
> - * IPC-only mode.
> - */
> -static struct resource_table *k3_dsp_get_loaded_rsc_table(struct rproc *rproc,
> - size_t *rsc_table_sz)
> -{
> - struct k3_dsp_rproc *kproc = rproc->priv;
> - struct device *dev = kproc->dev;
> -
> - if (!kproc->rmem[0].cpu_addr) {
> - dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found");
> - return ERR_PTR(-ENOMEM);
> - }
> -
> - /*
> - * NOTE: The resource table size is currently hard-coded to a maximum
> - * of 256 bytes. The most common resource table usage for K3 firmwares
> - * is to only have the vdev resource entry and an optional trace entry.
> - * The exact size could be computed based on resource table address, but
> - * the hard-coded value suffices to support the IPC-only mode.
> - */
> - *rsc_table_sz = 256;
> - return (struct resource_table *)kproc->rmem[0].cpu_addr;
> -}
> -
> -/*
> - * Custom function to translate a DSP device address (internal RAMs only) to a
> - * kernel virtual address. The DSPs can access their RAMs at either an internal
> - * address visible only from a DSP, or at the SoC-level bus address. Both these
> - * addresses need to be looked through for translation. The translated addresses
> - * can be used either by the remoteproc core for loading (when using kernel
> - * remoteproc loader), or by any rpmsg bus drivers.
> - */
> -static void *k3_dsp_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
> -{
> - struct k3_dsp_rproc *kproc = rproc->priv;
> - void __iomem *va = NULL;
> - phys_addr_t bus_addr;
> - u32 dev_addr, offset;
> - size_t size;
> - int i;
> -
> - if (len == 0)
> - return NULL;
> -
> - for (i = 0; i < kproc->num_mems; i++) {
> - bus_addr = kproc->mem[i].bus_addr;
> - dev_addr = kproc->mem[i].dev_addr;
> - size = kproc->mem[i].size;
> -
> - if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) {
> - /* handle DSP-view addresses */
> - if (da >= dev_addr &&
> - ((da + len) <= (dev_addr + size))) {
> - offset = da - dev_addr;
> - va = kproc->mem[i].cpu_addr + offset;
> - return (__force void *)va;
> - }
> - } else {
> - /* handle SoC-view addresses */
> - if (da >= bus_addr &&
> - (da + len) <= (bus_addr + size)) {
> - offset = da - bus_addr;
> - va = kproc->mem[i].cpu_addr + offset;
> - return (__force void *)va;
> - }
> - }
> - }
> -
> - /* handle static DDR reserved memory regions */
> - for (i = 0; i < kproc->num_rmems; i++) {
> - dev_addr = kproc->rmem[i].dev_addr;
> - size = kproc->rmem[i].size;
> -
> - if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
> - offset = da - dev_addr;
> - va = kproc->rmem[i].cpu_addr + offset;
> - return (__force void *)va;
> - }
> - }
> -
> - return NULL;
> -}
>
> static const struct rproc_ops k3_dsp_rproc_ops = {
> .start = k3_dsp_rproc_start,
> .stop = k3_dsp_rproc_stop,
> - .kick = k3_dsp_rproc_kick,
> - .da_to_va = k3_dsp_rproc_da_to_va,
> + .kick = k3_rproc_kick,
> + .da_to_va = k3_rproc_da_to_va,
> };
>
> -static int k3_dsp_rproc_of_get_memories(struct platform_device *pdev,
> - struct k3_dsp_rproc *kproc)
> -{
> - const struct k3_dsp_dev_data *data = kproc->data;
> - struct device *dev = &pdev->dev;
> - struct resource *res;
> - int num_mems = 0;
> - int i;
> -
> - num_mems = kproc->data->num_mems;
> - kproc->mem = devm_kcalloc(kproc->dev, num_mems,
> - sizeof(*kproc->mem), GFP_KERNEL);
> - if (!kproc->mem)
> - return -ENOMEM;
> -
> - for (i = 0; i < num_mems; i++) {
> - res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
> - data->mems[i].name);
> - if (!res) {
> - dev_err(dev, "found no memory resource for %s\n",
> - data->mems[i].name);
> - return -EINVAL;
> - }
> - if (!devm_request_mem_region(dev, res->start,
> - resource_size(res),
> - dev_name(dev))) {
> - dev_err(dev, "could not request %s region for resource\n",
> - data->mems[i].name);
> - return -EBUSY;
> - }
> -
> - kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
> - resource_size(res));
> - if (!kproc->mem[i].cpu_addr) {
> - dev_err(dev, "failed to map %s memory\n",
> - data->mems[i].name);
> - return -ENOMEM;
> - }
> - kproc->mem[i].bus_addr = res->start;
> - kproc->mem[i].dev_addr = data->mems[i].dev_addr;
> - kproc->mem[i].size = resource_size(res);
> -
> - dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
> - data->mems[i].name, &kproc->mem[i].bus_addr,
> - kproc->mem[i].size, kproc->mem[i].cpu_addr,
> - kproc->mem[i].dev_addr);
> - }
> - kproc->num_mems = num_mems;
> -
> - return 0;
> -}
> -
> -static int k3_dsp_reserved_mem_init(struct k3_dsp_rproc *kproc)
> -{
> - struct device *dev = kproc->dev;
> - struct device_node *np = dev->of_node;
> - struct device_node *rmem_np;
> - struct reserved_mem *rmem;
> - int num_rmems;
> - int ret, i;
> -
> - num_rmems = of_property_count_elems_of_size(np, "memory-region",
> - sizeof(phandle));
> - if (num_rmems <= 0) {
> - dev_err(dev, "device does not reserved memory regions, ret = %d\n",
> - num_rmems);
> - return -EINVAL;
> - }
> - if (num_rmems < 2) {
> - dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
> - num_rmems);
> - return -EINVAL;
> - }
> -
> - /* use reserved memory region 0 for vring DMA allocations */
> - ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
> - if (ret) {
> - dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
> - ret);
> - return ret;
> - }
> -
> - num_rmems--;
> - kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
> - if (!kproc->rmem) {
> - ret = -ENOMEM;
> - goto release_rmem;
> - }
> -
> - /* use remaining reserved memory regions for static carveouts */
> - for (i = 0; i < num_rmems; i++) {
> - rmem_np = of_parse_phandle(np, "memory-region", i + 1);
> - if (!rmem_np) {
> - ret = -EINVAL;
> - goto unmap_rmem;
> - }
> -
> - rmem = of_reserved_mem_lookup(rmem_np);
> - if (!rmem) {
> - of_node_put(rmem_np);
> - ret = -EINVAL;
> - goto unmap_rmem;
> - }
> - of_node_put(rmem_np);
> -
> - kproc->rmem[i].bus_addr = rmem->base;
> - /* 64-bit address regions currently not supported */
> - kproc->rmem[i].dev_addr = (u32)rmem->base;
> - kproc->rmem[i].size = rmem->size;
> - kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
> - if (!kproc->rmem[i].cpu_addr) {
> - dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
> - i + 1, &rmem->base, &rmem->size);
> - ret = -ENOMEM;
> - goto unmap_rmem;
> - }
> -
> - dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
> - i + 1, &kproc->rmem[i].bus_addr,
> - kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
> - kproc->rmem[i].dev_addr);
> - }
> - kproc->num_rmems = num_rmems;
> -
> - return 0;
> -
> -unmap_rmem:
> - for (i--; i >= 0; i--)
> - iounmap(kproc->rmem[i].cpu_addr);
> - kfree(kproc->rmem);
> -release_rmem:
> - of_reserved_mem_device_release(kproc->dev);
> - return ret;
> -}
> -
> -static void k3_dsp_reserved_mem_exit(struct k3_dsp_rproc *kproc)
> -{
> - int i;
> -
> - for (i = 0; i < kproc->num_rmems; i++)
> - iounmap(kproc->rmem[i].cpu_addr);
> - kfree(kproc->rmem);
> -
> - of_reserved_mem_device_release(kproc->dev);
> -}
> -
> -static
> -struct ti_sci_proc *k3_dsp_rproc_of_get_tsp(struct device *dev,
> - const struct ti_sci_handle *sci)
> -{
> - struct ti_sci_proc *tsp;
> - u32 temp[2];
> - int ret;
> -
> - ret = of_property_read_u32_array(dev->of_node, "ti,sci-proc-ids",
> - temp, 2);
> - if (ret < 0)
> - return ERR_PTR(ret);
> -
> - tsp = kzalloc(sizeof(*tsp), GFP_KERNEL);
> - if (!tsp)
> - return ERR_PTR(-ENOMEM);
> -
> - tsp->dev = dev;
> - tsp->sci = sci;
> - tsp->ops = &sci->ops.proc_ops;
> - tsp->proc_id = temp[0];
> - tsp->host_id = temp[1];
> -
> - return tsp;
> -}
> -
> static int k3_dsp_rproc_probe(struct platform_device *pdev)
> {
> struct device *dev = &pdev->dev;
> struct device_node *np = dev->of_node;
> - const struct k3_dsp_dev_data *data;
> - struct k3_dsp_rproc *kproc;
> + const struct k3_rproc_dev_data *data;
> + struct k3_rproc *kproc;
> struct rproc *rproc;
> const char *fw_name;
> bool p_state = false;
> @@ -701,8 +161,8 @@ static int k3_dsp_rproc_probe(struct platform_device *pdev)
> rproc->has_iommu = false;
> rproc->recovery_disabled = true;
> if (data->uses_lreset) {
> - rproc->ops->prepare = k3_dsp_rproc_prepare;
> - rproc->ops->unprepare = k3_dsp_rproc_unprepare;
> + rproc->ops->prepare = k3_rproc_prepare;
> + rproc->ops->unprepare = k3_rproc_unprepare;
> }
> kproc = rproc->priv;
> kproc->rproc = rproc;
> @@ -733,7 +193,7 @@ static int k3_dsp_rproc_probe(struct platform_device *pdev)
> goto put_sci;
> }
>
> - kproc->tsp = k3_dsp_rproc_of_get_tsp(dev, kproc->ti_sci);
> + kproc->tsp = k3_rproc_of_get_tsp(dev, kproc->ti_sci);
> if (IS_ERR(kproc->tsp)) {
> dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n",
> ret);
> @@ -747,11 +207,11 @@ static int k3_dsp_rproc_probe(struct platform_device *pdev)
> goto free_tsp;
> }
>
> - ret = k3_dsp_rproc_of_get_memories(pdev, kproc);
> + ret = k3_rproc_of_get_memories(pdev, kproc);
> if (ret)
> goto release_tsp;
>
> - ret = k3_dsp_reserved_mem_init(kproc);
> + ret = k3_reserved_mem_init(kproc);
> if (ret) {
> dev_err(dev, "reserved memory init failed, ret = %d\n", ret);
> goto release_tsp;
> @@ -776,7 +236,7 @@ static int k3_dsp_rproc_probe(struct platform_device *pdev)
> rproc->ops->stop = NULL;
> rproc->ops->attach = k3_dsp_rproc_attach;
> rproc->ops->detach = k3_dsp_rproc_detach;
> - rproc->ops->get_loaded_rsc_table = k3_dsp_get_loaded_rsc_table;
> + rproc->ops->get_loaded_rsc_table = k3_get_loaded_rsc_table;
> } else {
> dev_info(dev, "configured DSP for remoteproc mode\n");
> /*
> @@ -792,7 +252,7 @@ static int k3_dsp_rproc_probe(struct platform_device *pdev)
> goto release_mem;
> } else if (ret == 0) {
> dev_warn(dev, "local reset is deasserted for device\n");
> - k3_dsp_rproc_reset(kproc);
> + k3_rproc_reset(kproc);
> }
> }
> }
> @@ -809,7 +269,7 @@ static int k3_dsp_rproc_probe(struct platform_device *pdev)
> return 0;
>
> release_mem:
> - k3_dsp_reserved_mem_exit(kproc);
> + k3_reserved_mem_exit(kproc);
> release_tsp:
> ret1 = ti_sci_proc_release(kproc->tsp);
> if (ret1)
> @@ -827,7 +287,7 @@ static int k3_dsp_rproc_probe(struct platform_device *pdev)
>
> static int k3_dsp_rproc_remove(struct platform_device *pdev)
> {
> - struct k3_dsp_rproc *kproc = platform_get_drvdata(pdev);
> + struct k3_rproc *kproc = platform_get_drvdata(pdev);
> struct rproc *rproc = kproc->rproc;
> struct device *dev = &pdev->dev;
> int ret;
> @@ -852,43 +312,43 @@ static int k3_dsp_rproc_remove(struct platform_device *pdev)
> if (ret)
> dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret);
>
> - k3_dsp_reserved_mem_exit(kproc);
> + k3_reserved_mem_exit(kproc);
> rproc_free(kproc->rproc);
>
> return 0;
> }
>
> -static const struct k3_dsp_mem_data c66_mems[] = {
> +static const struct k3_rproc_mem_data c66_mems[] = {
> { .name = "l2sram", .dev_addr = 0x800000 },
> { .name = "l1pram", .dev_addr = 0xe00000 },
> { .name = "l1dram", .dev_addr = 0xf00000 },
> };
>
> /* C71x cores only have a L1P Cache, there are no L1P SRAMs */
> -static const struct k3_dsp_mem_data c71_mems[] = {
> +static const struct k3_rproc_mem_data c71_mems[] = {
> { .name = "l2sram", .dev_addr = 0x800000 },
> { .name = "l1dram", .dev_addr = 0xe00000 },
> };
>
> -static const struct k3_dsp_mem_data c7xv_mems[] = {
> +static const struct k3_rproc_mem_data c7xv_mems[] = {
> { .name = "l2sram", .dev_addr = 0x800000 },
> };
>
> -static const struct k3_dsp_dev_data c66_data = {
> +static const struct k3_rproc_dev_data c66_data = {
> .mems = c66_mems,
> .num_mems = ARRAY_SIZE(c66_mems),
> .boot_align_addr = SZ_1K,
> .uses_lreset = true,
> };
>
> -static const struct k3_dsp_dev_data c71_data = {
> +static const struct k3_rproc_dev_data c71_data = {
> .mems = c71_mems,
> .num_mems = ARRAY_SIZE(c71_mems),
> .boot_align_addr = SZ_2M,
> .uses_lreset = false,
> };
>
> -static const struct k3_dsp_dev_data c7xv_data = {
> +static const struct k3_rproc_dev_data c7xv_data = {
> .mems = c7xv_mems,
> .num_mems = ARRAY_SIZE(c7xv_mems),
> .boot_align_addr = SZ_2M,
> --
> 2.34.1
>