Re: [PATCH v2 01/34] drm/amd/display: fix segment distribution for linear LUTs

From: Melissa Wen
Date: Fri Sep 08 2023 - 10:35:48 EST


On 09/06, Harry Wentland wrote:
> On 2023-08-10 12:02, Melissa Wen wrote:
> > From: Harry Wentland <harry.wentland@xxxxxxx>
> >
> > The region and segment calculation was incapable of dealing
> > with regions of more than 16 segments. We first fix this.
> >
> > Now that we can support regions up to 256 elements we can
> > define a better segment distribution for near-linear LUTs
> > for our maximum of 256 HW-supported points.
> >
> > With these changes an "identity" LUT looks visually
> > indistinguishable from bypass and allows us to use
> > our 3DLUT.
> >
>
> Have you had a chance to test whether this patch makes a
> difference? I haven't had the time yet.

Last time I tested there was a banding issue on plane shaper LUT PQ ->
Display Native, but it seems I don't have this use case on tester
anymore, so I wasn't able to double-check if the issue persist. Maybe
Joshua can provide some inputs here.

Something I noticed is that shaper LUTs are the only 1D LUT on DCN30
pipeline that uses cm_helper_translate_curve_to_hw_format(), all others
(dpp-degamma/dpp-blend/mpc-regamma) call cm3_helper_translate_curve_*.

We can drop it from this series until we get the steps to report the
issue properly.

Melissa

>
> Harry
>
> > Signed-off-by: Harry Wentland <harry.wentland@xxxxxxx>
> > Signed-off-by: Melissa Wen <mwen@xxxxxxxxxx>
> > ---
> > .../amd/display/dc/dcn10/dcn10_cm_common.c | 93 +++++++++++++++----
> > 1 file changed, 75 insertions(+), 18 deletions(-)
> >
> > diff --git a/drivers/gpu/drm/amd/display/dc/dcn10/dcn10_cm_common.c b/drivers/gpu/drm/amd/display/dc/dcn10/dcn10_cm_common.c
> > index 3538973bd0c6..04b2e04b68f3 100644
> > --- a/drivers/gpu/drm/amd/display/dc/dcn10/dcn10_cm_common.c
> > +++ b/drivers/gpu/drm/amd/display/dc/dcn10/dcn10_cm_common.c
> > @@ -349,20 +349,37 @@ bool cm_helper_translate_curve_to_hw_format(struct dc_context *ctx,
> > * segment is from 2^-10 to 2^1
> > * There are less than 256 points, for optimization
> > */
> > - seg_distr[0] = 3;
> > - seg_distr[1] = 4;
> > - seg_distr[2] = 4;
> > - seg_distr[3] = 4;
> > - seg_distr[4] = 4;
> > - seg_distr[5] = 4;
> > - seg_distr[6] = 4;
> > - seg_distr[7] = 4;
> > - seg_distr[8] = 4;
> > - seg_distr[9] = 4;
> > - seg_distr[10] = 1;
> > + if (output_tf->tf == TRANSFER_FUNCTION_LINEAR) {
> > + seg_distr[0] = 0; /* 2 */
> > + seg_distr[1] = 1; /* 4 */
> > + seg_distr[2] = 2; /* 4 */
> > + seg_distr[3] = 3; /* 8 */
> > + seg_distr[4] = 4; /* 16 */
> > + seg_distr[5] = 5; /* 32 */
> > + seg_distr[6] = 6; /* 64 */
> > + seg_distr[7] = 7; /* 128 */
> > +
> > + region_start = -8;
> > + region_end = 1;
> > + } else {
> > + seg_distr[0] = 3; /* 8 */
> > + seg_distr[1] = 4; /* 16 */
> > + seg_distr[2] = 4;
> > + seg_distr[3] = 4;
> > + seg_distr[4] = 4;
> > + seg_distr[5] = 4;
> > + seg_distr[6] = 4;
> > + seg_distr[7] = 4;
> > + seg_distr[8] = 4;
> > + seg_distr[9] = 4;
> > + seg_distr[10] = 1; /* 2 */
> > + /* total = 8*16 + 8 + 64 + 2 = */
> > +
> > + region_start = -10;
> > + region_end = 1;
> > + }
> > +
> >
> > - region_start = -10;
> > - region_end = 1;
> > }
> >
> > for (i = region_end - region_start; i < MAX_REGIONS_NUMBER ; i++)
> > @@ -375,16 +392,56 @@ bool cm_helper_translate_curve_to_hw_format(struct dc_context *ctx,
> >
> > j = 0;
> > for (k = 0; k < (region_end - region_start); k++) {
> > - increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
> > + /*
> > + * We're using an ugly-ish hack here. Our HW allows for
> > + * 256 segments per region but SW_SEGMENTS is 16.
> > + * SW_SEGMENTS has some undocumented relationship to
> > + * the number of points in the tf_pts struct, which
> > + * is 512, unlike what's suggested TRANSFER_FUNC_POINTS.
> > + *
> > + * In order to work past this dilemma we'll scale our
> > + * increment by (1 << 4) and then do the inverse (1 >> 4)
> > + * when accessing the elements in tf_pts.
> > + *
> > + * TODO: find a better way using SW_SEGMENTS and
> > + * TRANSFER_FUNC_POINTS definitions
> > + */
> > + increment = (NUMBER_SW_SEGMENTS << 4) / (1 << seg_distr[k]);
> > start_index = (region_start + k + MAX_LOW_POINT) *
> > NUMBER_SW_SEGMENTS;
> > - for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
> > + for (i = (start_index << 4); i < (start_index << 4) + (NUMBER_SW_SEGMENTS << 4);
> > i += increment) {
> > + struct fixed31_32 in_plus_one, in;
> > + struct fixed31_32 value, red_value, green_value, blue_value;
> > + uint32_t t = i & 0xf;
> > +
> > if (j == hw_points - 1)
> > break;
> > - rgb_resulted[j].red = output_tf->tf_pts.red[i];
> > - rgb_resulted[j].green = output_tf->tf_pts.green[i];
> > - rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
> > +
> > + in_plus_one = output_tf->tf_pts.red[(i >> 4) + 1];
> > + in = output_tf->tf_pts.red[i >> 4];
> > + value = dc_fixpt_sub(in_plus_one, in);
> > + value = dc_fixpt_shr(dc_fixpt_mul_int(value, t), 4);
> > + value = dc_fixpt_add(in, value);
> > + red_value = value;
> > +
> > + in_plus_one = output_tf->tf_pts.green[(i >> 4) + 1];
> > + in = output_tf->tf_pts.green[i >> 4];
> > + value = dc_fixpt_sub(in_plus_one, in);
> > + value = dc_fixpt_shr(dc_fixpt_mul_int(value, t), 4);
> > + value = dc_fixpt_add(in, value);
> > + green_value = value;
> > +
> > + in_plus_one = output_tf->tf_pts.blue[(i >> 4) + 1];
> > + in = output_tf->tf_pts.blue[i >> 4];
> > + value = dc_fixpt_sub(in_plus_one, in);
> > + value = dc_fixpt_shr(dc_fixpt_mul_int(value, t), 4);
> > + value = dc_fixpt_add(in, value);
> > + blue_value = value;
> > +
> > + rgb_resulted[j].red = red_value;
> > + rgb_resulted[j].green = green_value;
> > + rgb_resulted[j].blue = blue_value;
> > j++;
> > }
> > }
>