Re: [RFC Patch 3/3] mm/slub: setup maxim per-node partial according to cpu numbers

From: Feng Tang
Date: Thu Sep 14 2023 - 03:15:27 EST


Hi Hyeonggon,

On Tue, Sep 12, 2023 at 01:48:23PM +0900, Hyeonggon Yoo wrote:
> On Tue, Sep 5, 2023 at 11:07 PM Feng Tang <feng.tang@xxxxxxxxx> wrote:
> >
> > Currently most of the slab's min_partial is set to 5 (as MIN_PARTIAL
> > is 5). This is fine for older or small systesms, and could be too
> > small for a large system with hundreds of CPUs, when per-node
> > 'list_lock' is contended for allocating from and freeing to per-node
> > partial list.
> >
> > So enlarge it based on the CPU numbers per node.
> >
> > Signed-off-by: Feng Tang <feng.tang@xxxxxxxxx>
> > ---
> > include/linux/nodemask.h | 1 +
> > mm/slub.c | 9 +++++++--
> > 2 files changed, 8 insertions(+), 2 deletions(-)
> >
> > diff --git a/include/linux/nodemask.h b/include/linux/nodemask.h
> > index 8d07116caaf1..6e22caab186d 100644
> > --- a/include/linux/nodemask.h
> > +++ b/include/linux/nodemask.h
> > @@ -530,6 +530,7 @@ static inline int node_random(const nodemask_t *maskp)
> >
> > #define num_online_nodes() num_node_state(N_ONLINE)
> > #define num_possible_nodes() num_node_state(N_POSSIBLE)
> > +#define num_cpu_nodes() num_node_state(N_CPU)
> > #define node_online(node) node_state((node), N_ONLINE)
> > #define node_possible(node) node_state((node), N_POSSIBLE)
> >
> > diff --git a/mm/slub.c b/mm/slub.c
> > index 09ae1ed642b7..984e012d7bbc 100644
> > --- a/mm/slub.c
> > +++ b/mm/slub.c
> > @@ -4533,6 +4533,7 @@ static int calculate_sizes(struct kmem_cache *s)
> >
> > static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
> > {
> > + unsigned long min_partial;
> > s->flags = kmem_cache_flags(s->size, flags, s->name);
> > #ifdef CONFIG_SLAB_FREELIST_HARDENED
> > s->random = get_random_long();
> > @@ -4564,8 +4565,12 @@ static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
> > * The larger the object size is, the more slabs we want on the partial
> > * list to avoid pounding the page allocator excessively.
> > */
> > - s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
> > - s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
> > +
> > + min_partial = rounddown_pow_of_two(num_cpus() / num_cpu_nodes());
> > + min_partial = max_t(unsigned long, MIN_PARTIAL, min_partial);
> > +
> > + s->min_partial = min_t(unsigned long, min_partial * 2, ilog2(s->size) / 2);
> > + s->min_partial = max_t(unsigned long, min_partial, s->min_partial);
>
> Hello Feng,
>
> How much memory is consumed by this change on your machine?

As the code touches mostly the per-node partial, I did some profiling
by checking the 'partial' of each slab in /sys/kernel/slab/, both
after boot and after running will-it-scale/mmap1 case with all cpu.

The HW is a 2S 48C/96T platform, with CentOS 9. The kernel is
6.6-rc1 with and without this patch (effectively the MIN_PARTIL
increasing to 32).

There are 246 slabs in total for the system, and after boot, there
are 27 slabs show difference:

6.6-rc1 | 6.6-rc1 + node_paritl patch
-----------------------------------------------------------------------------

anon_vma_chain/partial:8 N0=5 N1=3 | anon_vma_chain/partial:29 N0=22 N1=7
anon_vma/partial:1 N0=1 | anon_vma/partial:22 N0=22
bio-184/partial:0 | bio-184/partial:6 N0=6
buffer_head/partial:0 | buffer_head/partial:29 N1=29
dentry/partial:2 N0=2 | dentry/partial:3 N1=3
filp/partial:5 N0=5 | filp/partial:44 N0=28 N1=16
ioat/partial:10 N0=5 N1=5 | ioat/partial:62 N0=31 N1=31
kmalloc-128/partial:0 | kmalloc-128/partial:1 N0=1
kmalloc-16/partial:1 N1=1 | kmalloc-16/partial:0
kmalloc-1k/partial:5 N0=5 | kmalloc-1k/partial:12 N0=12
kmalloc-32/partial:2 N0=1 N1=1 | kmalloc-32/partial:0
kmalloc-512/partial:4 N0=4 | kmalloc-512/partial:5 N0=4 N1=1
kmalloc-64/partial:1 N0=1 | kmalloc-64/partial:0
kmalloc-8k/partial:6 N0=6 | kmalloc-8k/partial:28 N0=28
kmalloc-96/partial:24 N0=23 N1=1 | kmalloc-96/partial:44 N0=41 N1=3
kmalloc-cg-32/partial:1 N0=1 | kmalloc-cg-32/partial:0
maple_node/partial:10 N0=6 N1=4 | maple_node/partial:55 N0=27 N1=28
pool_workqueue/partial:1 N0=1 | pool_workqueue/partial:0
radix_tree_node/partial:0 | radix_tree_node/partial:2 N0=1 N1=1
sighand_cache/partial:4 N0=4 | sighand_cache/partial:0
signal_cache/partial:0 | signal_cache/partial:2 N0=2
skbuff_head_cache/partial:4 N0=2 N1=2 | skbuff_head_cache/partial:27 N0=27
skbuff_small_head/partial:5 N0=5 | skbuff_small_head/partial:32 N0=32
task_struct/partial:1 N0=1 | task_struct/partial:17 N0=17
vma_lock/partial:6 N0=4 N1=2 | vma_lock/partial:32 N0=25 N1=7
vmap_area/partial:1 N0=1 | vmap_area/partial:53 N0=32 N1=21
vm_area_struct/partial:14 N0=8 N1=6 | vm_area_struct/partial:38 N0=15 N1=23


After running will-it-scale/mmap1 case with 96 proceses, 30 slab has diffs:

6.6-rc1 | 6.6-rc1 + node_paritl patch
-----------------------------------------------------------------------------

anon_vma_chain/partial:8 N0=5 N1=3 | anon_vma_chain/partial:29 N0=22 N1=7
anon_vma/partial:1 N0=1 | anon_vma/partial:22 N0=22
bio-184/partial:0 | bio-184/partial:6 N0=6
buffer_head/partial:0 | buffer_head/partial:29 N1=29
cred_jar/partial:0 | cred_jar/partial:6 N1=6
dentry/partial:8 N0=3 N1=5 | dentry/partial:22 N0=6 N1=16
filp/partial:6 N0=1 N1=5 | filp/partial:48 N0=28 N1=20
ioat/partial:10 N0=5 N1=5 | ioat/partial:62 N0=31 N1=31
kmalloc-128/partial:0 | kmalloc-128/partial:1 N0=1
kmalloc-16/partial:2 N0=1 N1=1 | kmalloc-16/partial:3 N0=3
kmalloc-1k/partial:94 N0=49 N1=45 | kmalloc-1k/partial:100 N0=58 N1=42
kmalloc-32/partial:2 N0=1 N1=1 | kmalloc-32/partial:0
kmalloc-512/partial:209 N0=120 N1=89 | kmalloc-512/partial:205 N0=156 N1=49
kmalloc-64/partial:1 N0=1 | kmalloc-64/partial:0
kmalloc-8k/partial:6 N0=6 | kmalloc-8k/partial:28 N0=28
kmalloc-8/partial:0 | kmalloc-8/partial:1 N0=1
kmalloc-96/partial:25 N0=23 N1=2 | kmalloc-96/partial:36 N0=33 N1=3
kmalloc-cg-32/partial:1 N0=1 | kmalloc-cg-32/partial:0
lsm_inode_cache/partial:0 | lsm_inode_cache/partial:8 N0=8
maple_node/partial:89 N0=46 N1=43 | maple_node/partial:116 N0=63 N1=53
pool_workqueue/partial:1 N0=1 | pool_workqueue/partial:0
radix_tree_node/partial:0 | radix_tree_node/partial:2 N0=1 N1=1
sighand_cache/partial:4 N0=4 | sighand_cache/partial:0
signal_cache/partial:0 | signal_cache/partial:2 N0=2
skbuff_head_cache/partial:4 N0=2 N1=2 | skbuff_head_cache/partial:27 N0=27
skbuff_small_head/partial:5 N0=5 | skbuff_small_head/partial:32 N0=32
task_struct/partial:1 N0=1 | task_struct/partial:41 N0=32 N1=9
vma_lock/partial:71 N0=40 N1=31 | vma_lock/partial:110 N0=65 N1=45
vmap_area/partial:1 N0=1 | vmap_area/partial:59 N0=38 N1=21
vm_area_struct/partial:106 N0=58 N1=48 | vm_area_struct/partial:151 N0=88 N1=63

There is meansurable increase for some slabs, but not that much.

> I won't argue that it would be huge for large machines but it
> increases the minimum value for every
> cache (even for those that are not contended) and there is no way to
> reclaim this.

For slabs with less contension, the per-node partial list may also
be less likely to grow? From above data, about 10% slabs get affect
by the change. Maybe we can also limit the change to large systems?

One reason I wanted to revisit the MIN_PARTIAL is, it was changed from
2 to 5 in 2007 by Christoph, in commit 76be895001f2 ("SLUB: Improve
hackbench speed"), the system has been much huger since then.
Currently while a per-cpu partial can already have 5 or more slabs,
the limit for a node with possible 100+ CPU could be reconsidered.

> Maybe a way to reclaim a full slab on memory pressure (on buddy side)
> wouldn't hurt?


Sorry, I don't follow. Do you mean to reclaim a slab with 0 'inuse'
objects, like the work done in __kmem_cache_do_shrink()?

Thanks,
Feng

>
> > set_cpu_partial(s);
> >
> > --
> > 2.27.0
> >