[RFC PATCH v5 01/29] KVM: selftests: Add function to allow one-to-one GVA to GPA mappings

From: Sagi Shahar
Date: Tue Dec 12 2023 - 15:47:05 EST


From: Ackerley Tng <ackerleytng@xxxxxxxxxx>

One-to-one GVA to GPA mappings can be used in the guest to set up boot
sequences during which paging is enabled, hence requiring a transition
from using physical to virtual addresses in consecutive instructions.

Signed-off-by: Ackerley Tng <ackerleytng@xxxxxxxxxx>
Signed-off-by: Ryan Afranji <afranji@xxxxxxxxxx>
Signed-off-by: Sagi Shahar <sagis@xxxxxxxxxx>
---
.../selftests/kvm/include/kvm_util_base.h | 2 +
tools/testing/selftests/kvm/lib/kvm_util.c | 63 ++++++++++++++++---
2 files changed, 55 insertions(+), 10 deletions(-)

diff --git a/tools/testing/selftests/kvm/include/kvm_util_base.h b/tools/testing/selftests/kvm/include/kvm_util_base.h
index 1426e88ebdc7..c2e5c5f25dfc 100644
--- a/tools/testing/selftests/kvm/include/kvm_util_base.h
+++ b/tools/testing/selftests/kvm/include/kvm_util_base.h
@@ -564,6 +564,8 @@ vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
enum kvm_mem_region_type type);
vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
+vm_vaddr_t vm_vaddr_alloc_1to1(struct kvm_vm *vm, size_t sz,
+ vm_vaddr_t vaddr_min, uint32_t data_memslot);
vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages);
vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm,
enum kvm_mem_region_type type);
diff --git a/tools/testing/selftests/kvm/lib/kvm_util.c b/tools/testing/selftests/kvm/lib/kvm_util.c
index febc63d7a46b..4f1ae0f1eef0 100644
--- a/tools/testing/selftests/kvm/lib/kvm_util.c
+++ b/tools/testing/selftests/kvm/lib/kvm_util.c
@@ -1388,17 +1388,37 @@ vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
return pgidx_start * vm->page_size;
}

+/*
+ * VM Virtual Address Allocate Shared/Encrypted
+ *
+ * Input Args:
+ * vm - Virtual Machine
+ * sz - Size in bytes
+ * vaddr_min - Minimum starting virtual address
+ * paddr_min - Minimum starting physical address
+ * data_memslot - memslot number to allocate in
+ * encrypt - Whether the region should be handled as encrypted
+ *
+ * Output Args: None
+ *
+ * Return:
+ * Starting guest virtual address
+ *
+ * Allocates at least sz bytes within the virtual address space of the vm
+ * given by vm. The allocated bytes are mapped to a virtual address >=
+ * the address given by vaddr_min. Note that each allocation uses a
+ * a unique set of pages, with the minimum real allocation being at least
+ * a page.
+ */
static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
- vm_vaddr_t vaddr_min,
- enum kvm_mem_region_type type,
- bool encrypt)
+ vm_vaddr_t vaddr_min, vm_paddr_t paddr_min,
+ uint32_t data_memslot, bool encrypt)
{
uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);

virt_pgd_alloc(vm);
- vm_paddr_t paddr = _vm_phy_pages_alloc(vm, pages,
- KVM_UTIL_MIN_PFN * vm->page_size,
- vm->memslots[type], encrypt);
+ vm_paddr_t paddr = _vm_phy_pages_alloc(vm, pages, paddr_min,
+ data_memslot, encrypt);

/*
* Find an unused range of virtual page addresses of at least
@@ -1408,8 +1428,7 @@ static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,

/* Map the virtual pages. */
for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
- pages--, vaddr += vm->page_size, paddr += vm->page_size) {
-
+ pages--, vaddr += vm->page_size, paddr += vm->page_size) {
virt_pg_map(vm, vaddr, paddr);

sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
@@ -1421,12 +1440,16 @@ static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
enum kvm_mem_region_type type)
{
- return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, vm->protected);
+ return ____vm_vaddr_alloc(vm, sz, vaddr_min,
+ KVM_UTIL_MIN_PFN * vm->page_size,
+ vm->memslots[type], vm->protected);
}

vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
{
- return ____vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA, false);
+ return ____vm_vaddr_alloc(vm, sz, vaddr_min,
+ KVM_UTIL_MIN_PFN * vm->page_size,
+ vm->memslots[MEM_REGION_TEST_DATA], false);
}

/*
@@ -1453,6 +1476,26 @@ vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
}

+/**
+ * Allocate memory in @vm of size @sz in memslot with id @data_memslot,
+ * beginning with the desired address of @vaddr_min.
+ *
+ * If there isn't enough memory at @vaddr_min, find the next possible address
+ * that can meet the requested size in the given memslot.
+ *
+ * Return the address where the memory is allocated.
+ */
+vm_vaddr_t vm_vaddr_alloc_1to1(struct kvm_vm *vm, size_t sz,
+ vm_vaddr_t vaddr_min, uint32_t data_memslot)
+{
+ vm_vaddr_t gva = ____vm_vaddr_alloc(vm, sz, vaddr_min,
+ (vm_paddr_t)vaddr_min, data_memslot,
+ vm->protected);
+ TEST_ASSERT_EQ(gva, addr_gva2gpa(vm, gva));
+
+ return gva;
+}
+
/*
* VM Virtual Address Allocate Pages
*
--
2.43.0.472.g3155946c3a-goog