[PATCH 3/5] sched: Split out kernel/sched/numa_balancing.c from kernel/sched/fair.c
From: Ingo Molnar
Date: Sun Apr 07 2024 - 04:44:41 EST
Much of the NUMA balancing code already lives in a single #ifdef
block - move it over into its own file: kernel/sched/numa_balancing.c.
Expose a handful of methods internally to facilitate this.
This further shrinks the rather large kernel/sched/fair.c file.
Signed-off-by: Ingo Molnar <mingo@xxxxxxxxxx>
---
kernel/sched/Makefile | 1 +
kernel/sched/fair.c | 2307 +------------------------------------------------------------
kernel/sched/numa_balancing.c | 2277 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/sched/sched.h | 40 +-
4 files changed, 2318 insertions(+), 2307 deletions(-)
diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile
index 898f6062a2a7..45ab29e60fc7 100644
--- a/kernel/sched/Makefile
+++ b/kernel/sched/Makefile
@@ -32,5 +32,6 @@ obj-y += core.o
obj-y += syscalls.o
obj-y += fair.o
obj-y += fair_balance.o
+obj-y += numa_balancing.o
obj-y += build_policy.o
obj-y += build_utility.o
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index 9eba1c4e2a00..0197ba78b89c 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -107,7 +107,7 @@ static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#ifdef CONFIG_NUMA_BALANCING
/* Restrict the NUMA promotion throughput (MB/s) for each target node. */
-static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
+unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
#endif
#ifdef CONFIG_SYSCTL
@@ -1256,2271 +1256,6 @@ update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
* Scheduling class queueing methods:
*/
-#ifdef CONFIG_SMP
-bool is_core_idle(int cpu)
-{
-#ifdef CONFIG_SCHED_SMT
- int sibling;
-
- for_each_cpu(sibling, cpu_smt_mask(cpu)) {
- if (cpu == sibling)
- continue;
-
- if (!idle_cpu(sibling))
- return false;
- }
-#endif
-
- return true;
-}
-#endif
-
-#ifdef CONFIG_NUMA
-#define NUMA_IMBALANCE_MIN 2
-
-long adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
-{
- /*
- * Allow a NUMA imbalance if busy CPUs is less than the maximum
- * threshold. Above this threshold, individual tasks may be contending
- * for both memory bandwidth and any shared HT resources. This is an
- * approximation as the number of running tasks may not be related to
- * the number of busy CPUs due to sched_setaffinity.
- */
- if (dst_running > imb_numa_nr)
- return imbalance;
-
- /*
- * Allow a small imbalance based on a simple pair of communicating
- * tasks that remain local when the destination is lightly loaded.
- */
- if (imbalance <= NUMA_IMBALANCE_MIN)
- return 0;
-
- return imbalance;
-}
-#endif /* CONFIG_NUMA */
-
-#ifdef CONFIG_NUMA_BALANCING
-/*
- * Approximate time to scan a full NUMA task in ms. The task scan period is
- * calculated based on the tasks virtual memory size and
- * numa_balancing_scan_size.
- */
-unsigned int sysctl_numa_balancing_scan_period_min = 1000;
-unsigned int sysctl_numa_balancing_scan_period_max = 60000;
-
-/* Portion of address space to scan in MB */
-unsigned int sysctl_numa_balancing_scan_size = 256;
-
-/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
-unsigned int sysctl_numa_balancing_scan_delay = 1000;
-
-/* The page with hint page fault latency < threshold in ms is considered hot */
-unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
-
-struct numa_group {
- refcount_t refcount;
-
- spinlock_t lock; /* nr_tasks, tasks */
- int nr_tasks;
- pid_t gid;
- int active_nodes;
-
- struct rcu_head rcu;
- unsigned long total_faults;
- unsigned long max_faults_cpu;
- /*
- * faults[] array is split into two regions: faults_mem and faults_cpu.
- *
- * Faults_cpu is used to decide whether memory should move
- * towards the CPU. As a consequence, these stats are weighted
- * more by CPU use than by memory faults.
- */
- unsigned long faults[];
-};
-
-/*
- * For functions that can be called in multiple contexts that permit reading
- * ->numa_group (see struct task_struct for locking rules).
- */
-static struct numa_group *deref_task_numa_group(struct task_struct *p)
-{
- return rcu_dereference_check(p->numa_group, p == current ||
- (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
-}
-
-static struct numa_group *deref_curr_numa_group(struct task_struct *p)
-{
- return rcu_dereference_protected(p->numa_group, p == current);
-}
-
-static inline unsigned long group_faults_priv(struct numa_group *ng);
-static inline unsigned long group_faults_shared(struct numa_group *ng);
-
-static unsigned int task_nr_scan_windows(struct task_struct *p)
-{
- unsigned long rss = 0;
- unsigned long nr_scan_pages;
-
- /*
- * Calculations based on RSS as non-present and empty pages are skipped
- * by the PTE scanner and NUMA hinting faults should be trapped based
- * on resident pages
- */
- nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
- rss = get_mm_rss(p->mm);
- if (!rss)
- rss = nr_scan_pages;
-
- rss = round_up(rss, nr_scan_pages);
- return rss / nr_scan_pages;
-}
-
-/* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
-#define MAX_SCAN_WINDOW 2560
-
-static unsigned int task_scan_min(struct task_struct *p)
-{
- unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
- unsigned int scan, floor;
- unsigned int windows = 1;
-
- if (scan_size < MAX_SCAN_WINDOW)
- windows = MAX_SCAN_WINDOW / scan_size;
- floor = 1000 / windows;
-
- scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
- return max_t(unsigned int, floor, scan);
-}
-
-static unsigned int task_scan_start(struct task_struct *p)
-{
- unsigned long smin = task_scan_min(p);
- unsigned long period = smin;
- struct numa_group *ng;
-
- /* Scale the maximum scan period with the amount of shared memory. */
- rcu_read_lock();
- ng = rcu_dereference(p->numa_group);
- if (ng) {
- unsigned long shared = group_faults_shared(ng);
- unsigned long private = group_faults_priv(ng);
-
- period *= refcount_read(&ng->refcount);
- period *= shared + 1;
- period /= private + shared + 1;
- }
- rcu_read_unlock();
-
- return max(smin, period);
-}
-
-static unsigned int task_scan_max(struct task_struct *p)
-{
- unsigned long smin = task_scan_min(p);
- unsigned long smax;
- struct numa_group *ng;
-
- /* Watch for min being lower than max due to floor calculations */
- smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
-
- /* Scale the maximum scan period with the amount of shared memory. */
- ng = deref_curr_numa_group(p);
- if (ng) {
- unsigned long shared = group_faults_shared(ng);
- unsigned long private = group_faults_priv(ng);
- unsigned long period = smax;
-
- period *= refcount_read(&ng->refcount);
- period *= shared + 1;
- period /= private + shared + 1;
-
- smax = max(smax, period);
- }
-
- return max(smin, smax);
-}
-
-static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
-{
- rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
- rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
-}
-
-static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
-{
- rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
- rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
-}
-
-/* Shared or private faults. */
-#define NR_NUMA_HINT_FAULT_TYPES 2
-
-/* Memory and CPU locality */
-#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
-
-/* Averaged statistics, and temporary buffers. */
-#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
-
-pid_t task_numa_group_id(struct task_struct *p)
-{
- struct numa_group *ng;
- pid_t gid = 0;
-
- rcu_read_lock();
- ng = rcu_dereference(p->numa_group);
- if (ng)
- gid = ng->gid;
- rcu_read_unlock();
-
- return gid;
-}
-
-/*
- * The averaged statistics, shared & private, memory & CPU,
- * occupy the first half of the array. The second half of the
- * array is for current counters, which are averaged into the
- * first set by task_numa_placement.
- */
-static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
-{
- return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
-}
-
-static inline unsigned long task_faults(struct task_struct *p, int nid)
-{
- if (!p->numa_faults)
- return 0;
-
- return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
- p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
-}
-
-static inline unsigned long group_faults(struct task_struct *p, int nid)
-{
- struct numa_group *ng = deref_task_numa_group(p);
-
- if (!ng)
- return 0;
-
- return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
- ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
-}
-
-static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
-{
- return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
- group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
-}
-
-static inline unsigned long group_faults_priv(struct numa_group *ng)
-{
- unsigned long faults = 0;
- int node;
-
- for_each_online_node(node) {
- faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
- }
-
- return faults;
-}
-
-static inline unsigned long group_faults_shared(struct numa_group *ng)
-{
- unsigned long faults = 0;
- int node;
-
- for_each_online_node(node) {
- faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
- }
-
- return faults;
-}
-
-/*
- * A node triggering more than 1/3 as many NUMA faults as the maximum is
- * considered part of a numa group's pseudo-interleaving set. Migrations
- * between these nodes are slowed down, to allow things to settle down.
- */
-#define ACTIVE_NODE_FRACTION 3
-
-static bool numa_is_active_node(int nid, struct numa_group *ng)
-{
- return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
-}
-
-/* Handle placement on systems where not all nodes are directly connected. */
-static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
- int lim_dist, bool task)
-{
- unsigned long score = 0;
- int node, max_dist;
-
- /*
- * All nodes are directly connected, and the same distance
- * from each other. No need for fancy placement algorithms.
- */
- if (sched_numa_topology_type == NUMA_DIRECT)
- return 0;
-
- /* sched_max_numa_distance may be changed in parallel. */
- max_dist = READ_ONCE(sched_max_numa_distance);
- /*
- * This code is called for each node, introducing N^2 complexity,
- * which should be OK given the number of nodes rarely exceeds 8.
- */
- for_each_online_node(node) {
- unsigned long faults;
- int dist = node_distance(nid, node);
-
- /*
- * The furthest away nodes in the system are not interesting
- * for placement; nid was already counted.
- */
- if (dist >= max_dist || node == nid)
- continue;
-
- /*
- * On systems with a backplane NUMA topology, compare groups
- * of nodes, and move tasks towards the group with the most
- * memory accesses. When comparing two nodes at distance
- * "hoplimit", only nodes closer by than "hoplimit" are part
- * of each group. Skip other nodes.
- */
- if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
- continue;
-
- /* Add up the faults from nearby nodes. */
- if (task)
- faults = task_faults(p, node);
- else
- faults = group_faults(p, node);
-
- /*
- * On systems with a glueless mesh NUMA topology, there are
- * no fixed "groups of nodes". Instead, nodes that are not
- * directly connected bounce traffic through intermediate
- * nodes; a numa_group can occupy any set of nodes.
- * The further away a node is, the less the faults count.
- * This seems to result in good task placement.
- */
- if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
- faults *= (max_dist - dist);
- faults /= (max_dist - LOCAL_DISTANCE);
- }
-
- score += faults;
- }
-
- return score;
-}
-
-/*
- * These return the fraction of accesses done by a particular task, or
- * task group, on a particular numa node. The group weight is given a
- * larger multiplier, in order to group tasks together that are almost
- * evenly spread out between numa nodes.
- */
-unsigned long task_weight(struct task_struct *p, int nid, int dist)
-{
- unsigned long faults, total_faults;
-
- if (!p->numa_faults)
- return 0;
-
- total_faults = p->total_numa_faults;
-
- if (!total_faults)
- return 0;
-
- faults = task_faults(p, nid);
- faults += score_nearby_nodes(p, nid, dist, true);
-
- return 1000 * faults / total_faults;
-}
-
-unsigned long group_weight(struct task_struct *p, int nid, int dist)
-{
- struct numa_group *ng = deref_task_numa_group(p);
- unsigned long faults, total_faults;
-
- if (!ng)
- return 0;
-
- total_faults = ng->total_faults;
-
- if (!total_faults)
- return 0;
-
- faults = group_faults(p, nid);
- faults += score_nearby_nodes(p, nid, dist, false);
-
- return 1000 * faults / total_faults;
-}
-
-/*
- * If memory tiering mode is enabled, cpupid of slow memory page is
- * used to record scan time instead of CPU and PID. When tiering mode
- * is disabled at run time, the scan time (in cpupid) will be
- * interpreted as CPU and PID. So CPU needs to be checked to avoid to
- * access out of array bound.
- */
-static inline bool cpupid_valid(int cpupid)
-{
- return cpupid_to_cpu(cpupid) < nr_cpu_ids;
-}
-
-/*
- * For memory tiering mode, if there are enough free pages (more than
- * enough watermark defined here) in fast memory node, to take full
- * advantage of fast memory capacity, all recently accessed slow
- * memory pages will be migrated to fast memory node without
- * considering hot threshold.
- */
-static bool pgdat_free_space_enough(struct pglist_data *pgdat)
-{
- int z;
- unsigned long enough_wmark;
-
- enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
- pgdat->node_present_pages >> 4);
- for (z = pgdat->nr_zones - 1; z >= 0; z--) {
- struct zone *zone = pgdat->node_zones + z;
-
- if (!populated_zone(zone))
- continue;
-
- if (zone_watermark_ok(zone, 0,
- wmark_pages(zone, WMARK_PROMO) + enough_wmark,
- ZONE_MOVABLE, 0))
- return true;
- }
- return false;
-}
-
-/*
- * For memory tiering mode, when page tables are scanned, the scan
- * time will be recorded in struct page in addition to make page
- * PROT_NONE for slow memory page. So when the page is accessed, in
- * hint page fault handler, the hint page fault latency is calculated
- * via,
- *
- * hint page fault latency = hint page fault time - scan time
- *
- * The smaller the hint page fault latency, the higher the possibility
- * for the page to be hot.
- */
-static int numa_hint_fault_latency(struct folio *folio)
-{
- int last_time, time;
-
- time = jiffies_to_msecs(jiffies);
- last_time = folio_xchg_access_time(folio, time);
-
- return (time - last_time) & PAGE_ACCESS_TIME_MASK;
-}
-
-/*
- * For memory tiering mode, too high promotion/demotion throughput may
- * hurt application latency. So we provide a mechanism to rate limit
- * the number of pages that are tried to be promoted.
- */
-static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
- unsigned long rate_limit, int nr)
-{
- unsigned long nr_cand;
- unsigned int now, start;
-
- now = jiffies_to_msecs(jiffies);
- mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
- nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
- start = pgdat->nbp_rl_start;
- if (now - start > MSEC_PER_SEC &&
- cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
- pgdat->nbp_rl_nr_cand = nr_cand;
- if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
- return true;
- return false;
-}
-
-#define NUMA_MIGRATION_ADJUST_STEPS 16
-
-static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
- unsigned long rate_limit,
- unsigned int ref_th)
-{
- unsigned int now, start, th_period, unit_th, th;
- unsigned long nr_cand, ref_cand, diff_cand;
-
- now = jiffies_to_msecs(jiffies);
- th_period = sysctl_numa_balancing_scan_period_max;
- start = pgdat->nbp_th_start;
- if (now - start > th_period &&
- cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
- ref_cand = rate_limit *
- sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
- nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
- diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
- unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
- th = pgdat->nbp_threshold ? : ref_th;
- if (diff_cand > ref_cand * 11 / 10)
- th = max(th - unit_th, unit_th);
- else if (diff_cand < ref_cand * 9 / 10)
- th = min(th + unit_th, ref_th * 2);
- pgdat->nbp_th_nr_cand = nr_cand;
- pgdat->nbp_threshold = th;
- }
-}
-
-bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
- int src_nid, int dst_cpu)
-{
- struct numa_group *ng = deref_curr_numa_group(p);
- int dst_nid = cpu_to_node(dst_cpu);
- int last_cpupid, this_cpupid;
-
- /*
- * Cannot migrate to memoryless nodes.
- */
- if (!node_state(dst_nid, N_MEMORY))
- return false;
-
- /*
- * The pages in slow memory node should be migrated according
- * to hot/cold instead of private/shared.
- */
- if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
- !node_is_toptier(src_nid)) {
- struct pglist_data *pgdat;
- unsigned long rate_limit;
- unsigned int latency, th, def_th;
-
- pgdat = NODE_DATA(dst_nid);
- if (pgdat_free_space_enough(pgdat)) {
- /* workload changed, reset hot threshold */
- pgdat->nbp_threshold = 0;
- return true;
- }
-
- def_th = sysctl_numa_balancing_hot_threshold;
- rate_limit = sysctl_numa_balancing_promote_rate_limit << \
- (20 - PAGE_SHIFT);
- numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
-
- th = pgdat->nbp_threshold ? : def_th;
- latency = numa_hint_fault_latency(folio);
- if (latency >= th)
- return false;
-
- return !numa_promotion_rate_limit(pgdat, rate_limit,
- folio_nr_pages(folio));
- }
-
- this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
- last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
-
- if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
- !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
- return false;
-
- /*
- * Allow first faults or private faults to migrate immediately early in
- * the lifetime of a task. The magic number 4 is based on waiting for
- * two full passes of the "multi-stage node selection" test that is
- * executed below.
- */
- if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
- (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
- return true;
-
- /*
- * Multi-stage node selection is used in conjunction with a periodic
- * migration fault to build a temporal task<->page relation. By using
- * a two-stage filter we remove short/unlikely relations.
- *
- * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
- * a task's usage of a particular page (n_p) per total usage of this
- * page (n_t) (in a given time-span) to a probability.
- *
- * Our periodic faults will sample this probability and getting the
- * same result twice in a row, given these samples are fully
- * independent, is then given by P(n)^2, provided our sample period
- * is sufficiently short compared to the usage pattern.
- *
- * This quadric squishes small probabilities, making it less likely we
- * act on an unlikely task<->page relation.
- */
- if (!cpupid_pid_unset(last_cpupid) &&
- cpupid_to_nid(last_cpupid) != dst_nid)
- return false;
-
- /* Always allow migrate on private faults */
- if (cpupid_match_pid(p, last_cpupid))
- return true;
-
- /* A shared fault, but p->numa_group has not been set up yet. */
- if (!ng)
- return true;
-
- /*
- * Destination node is much more heavily used than the source
- * node? Allow migration.
- */
- if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
- ACTIVE_NODE_FRACTION)
- return true;
-
- /*
- * Distribute memory according to CPU & memory use on each node,
- * with 3/4 hysteresis to avoid unnecessary memory migrations:
- *
- * faults_cpu(dst) 3 faults_cpu(src)
- * --------------- * - > ---------------
- * faults_mem(dst) 4 faults_mem(src)
- */
- return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
- group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
-}
-
-/*
- * 'numa_type' describes the node at the moment of load balancing.
- */
-enum numa_type {
- /* The node has spare capacity that can be used to run more tasks. */
- node_has_spare = 0,
- /*
- * The node is fully used and the tasks don't compete for more CPU
- * cycles. Nevertheless, some tasks might wait before running.
- */
- node_fully_busy,
- /*
- * The node is overloaded and can't provide expected CPU cycles to all
- * tasks.
- */
- node_overloaded
-};
-
-/* Cached statistics for all CPUs within a node */
-struct numa_stats {
- unsigned long load;
- unsigned long runnable;
- unsigned long util;
- /* Total compute capacity of CPUs on a node */
- unsigned long compute_capacity;
- unsigned int nr_running;
- unsigned int weight;
- enum numa_type node_type;
- int idle_cpu;
-};
-
-struct task_numa_env {
- struct task_struct *p;
-
- int src_cpu, src_nid;
- int dst_cpu, dst_nid;
- int imb_numa_nr;
-
- struct numa_stats src_stats, dst_stats;
-
- int imbalance_pct;
- int dist;
-
- struct task_struct *best_task;
- long best_imp;
- int best_cpu;
-};
-
-static unsigned long cpu_load(struct rq *rq);
-
-static inline enum
-numa_type numa_classify(unsigned int imbalance_pct,
- struct numa_stats *ns)
-{
- if ((ns->nr_running > ns->weight) &&
- (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
- ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
- return node_overloaded;
-
- if ((ns->nr_running < ns->weight) ||
- (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
- ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
- return node_has_spare;
-
- return node_fully_busy;
-}
-
-#ifdef CONFIG_SCHED_SMT
-/* Forward declarations of select_idle_sibling helpers */
-static inline bool test_idle_cores(int cpu);
-static inline int numa_idle_core(int idle_core, int cpu)
-{
- if (!static_branch_likely(&sched_smt_present) ||
- idle_core >= 0 || !test_idle_cores(cpu))
- return idle_core;
-
- /*
- * Prefer cores instead of packing HT siblings
- * and triggering future load balancing.
- */
- if (is_core_idle(cpu))
- idle_core = cpu;
-
- return idle_core;
-}
-#else
-static inline int numa_idle_core(int idle_core, int cpu)
-{
- return idle_core;
-}
-#endif
-
-/*
- * Gather all necessary information to make NUMA balancing placement
- * decisions that are compatible with standard load balancer. This
- * borrows code and logic from update_sg_lb_stats but sharing a
- * common implementation is impractical.
- */
-static void update_numa_stats(struct task_numa_env *env,
- struct numa_stats *ns, int nid,
- bool find_idle)
-{
- int cpu, idle_core = -1;
-
- memset(ns, 0, sizeof(*ns));
- ns->idle_cpu = -1;
-
- rcu_read_lock();
- for_each_cpu(cpu, cpumask_of_node(nid)) {
- struct rq *rq = cpu_rq(cpu);
-
- ns->load += cpu_load(rq);
- ns->runnable += cpu_runnable(rq);
- ns->util += cpu_util_cfs(cpu);
- ns->nr_running += rq->cfs.h_nr_running;
- ns->compute_capacity += capacity_of(cpu);
-
- if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
- if (READ_ONCE(rq->numa_migrate_on) ||
- !cpumask_test_cpu(cpu, env->p->cpus_ptr))
- continue;
-
- if (ns->idle_cpu == -1)
- ns->idle_cpu = cpu;
-
- idle_core = numa_idle_core(idle_core, cpu);
- }
- }
- rcu_read_unlock();
-
- ns->weight = cpumask_weight(cpumask_of_node(nid));
-
- ns->node_type = numa_classify(env->imbalance_pct, ns);
-
- if (idle_core >= 0)
- ns->idle_cpu = idle_core;
-}
-
-static void task_numa_assign(struct task_numa_env *env,
- struct task_struct *p, long imp)
-{
- struct rq *rq = cpu_rq(env->dst_cpu);
-
- /* Check if run-queue part of active NUMA balance. */
- if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
- int cpu;
- int start = env->dst_cpu;
-
- /* Find alternative idle CPU. */
- for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
- if (cpu == env->best_cpu || !idle_cpu(cpu) ||
- !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
- continue;
- }
-
- env->dst_cpu = cpu;
- rq = cpu_rq(env->dst_cpu);
- if (!xchg(&rq->numa_migrate_on, 1))
- goto assign;
- }
-
- /* Failed to find an alternative idle CPU */
- return;
- }
-
-assign:
- /*
- * Clear previous best_cpu/rq numa-migrate flag, since task now
- * found a better CPU to move/swap.
- */
- if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
- rq = cpu_rq(env->best_cpu);
- WRITE_ONCE(rq->numa_migrate_on, 0);
- }
-
- if (env->best_task)
- put_task_struct(env->best_task);
- if (p)
- get_task_struct(p);
-
- env->best_task = p;
- env->best_imp = imp;
- env->best_cpu = env->dst_cpu;
-}
-
-static bool load_too_imbalanced(long src_load, long dst_load,
- struct task_numa_env *env)
-{
- long imb, old_imb;
- long orig_src_load, orig_dst_load;
- long src_capacity, dst_capacity;
-
- /*
- * The load is corrected for the CPU capacity available on each node.
- *
- * src_load dst_load
- * ------------ vs ---------
- * src_capacity dst_capacity
- */
- src_capacity = env->src_stats.compute_capacity;
- dst_capacity = env->dst_stats.compute_capacity;
-
- imb = abs(dst_load * src_capacity - src_load * dst_capacity);
-
- orig_src_load = env->src_stats.load;
- orig_dst_load = env->dst_stats.load;
-
- old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
-
- /* Would this change make things worse? */
- return (imb > old_imb);
-}
-
-/*
- * Maximum NUMA importance can be 1998 (2*999);
- * SMALLIMP @ 30 would be close to 1998/64.
- * Used to deter task migration.
- */
-#define SMALLIMP 30
-
-/*
- * This checks if the overall compute and NUMA accesses of the system would
- * be improved if the source tasks was migrated to the target dst_cpu taking
- * into account that it might be best if task running on the dst_cpu should
- * be exchanged with the source task
- */
-static bool task_numa_compare(struct task_numa_env *env,
- long taskimp, long groupimp, bool maymove)
-{
- struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
- struct rq *dst_rq = cpu_rq(env->dst_cpu);
- long imp = p_ng ? groupimp : taskimp;
- struct task_struct *cur;
- long src_load, dst_load;
- int dist = env->dist;
- long moveimp = imp;
- long load;
- bool stopsearch = false;
-
- if (READ_ONCE(dst_rq->numa_migrate_on))
- return false;
-
- rcu_read_lock();
- cur = rcu_dereference(dst_rq->curr);
- if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
- cur = NULL;
-
- /*
- * Because we have preemption enabled we can get migrated around and
- * end try selecting ourselves (current == env->p) as a swap candidate.
- */
- if (cur == env->p) {
- stopsearch = true;
- goto unlock;
- }
-
- if (!cur) {
- if (maymove && moveimp >= env->best_imp)
- goto assign;
- else
- goto unlock;
- }
-
- /* Skip this swap candidate if cannot move to the source cpu. */
- if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
- goto unlock;
-
- /*
- * Skip this swap candidate if it is not moving to its preferred
- * node and the best task is.
- */
- if (env->best_task &&
- env->best_task->numa_preferred_nid == env->src_nid &&
- cur->numa_preferred_nid != env->src_nid) {
- goto unlock;
- }
-
- /*
- * "imp" is the fault differential for the source task between the
- * source and destination node. Calculate the total differential for
- * the source task and potential destination task. The more negative
- * the value is, the more remote accesses that would be expected to
- * be incurred if the tasks were swapped.
- *
- * If dst and source tasks are in the same NUMA group, or not
- * in any group then look only at task weights.
- */
- cur_ng = rcu_dereference(cur->numa_group);
- if (cur_ng == p_ng) {
- /*
- * Do not swap within a group or between tasks that have
- * no group if there is spare capacity. Swapping does
- * not address the load imbalance and helps one task at
- * the cost of punishing another.
- */
- if (env->dst_stats.node_type == node_has_spare)
- goto unlock;
-
- imp = taskimp + task_weight(cur, env->src_nid, dist) -
- task_weight(cur, env->dst_nid, dist);
- /*
- * Add some hysteresis to prevent swapping the
- * tasks within a group over tiny differences.
- */
- if (cur_ng)
- imp -= imp / 16;
- } else {
- /*
- * Compare the group weights. If a task is all by itself
- * (not part of a group), use the task weight instead.
- */
- if (cur_ng && p_ng)
- imp += group_weight(cur, env->src_nid, dist) -
- group_weight(cur, env->dst_nid, dist);
- else
- imp += task_weight(cur, env->src_nid, dist) -
- task_weight(cur, env->dst_nid, dist);
- }
-
- /* Discourage picking a task already on its preferred node */
- if (cur->numa_preferred_nid == env->dst_nid)
- imp -= imp / 16;
-
- /*
- * Encourage picking a task that moves to its preferred node.
- * This potentially makes imp larger than it's maximum of
- * 1998 (see SMALLIMP and task_weight for why) but in this
- * case, it does not matter.
- */
- if (cur->numa_preferred_nid == env->src_nid)
- imp += imp / 8;
-
- if (maymove && moveimp > imp && moveimp > env->best_imp) {
- imp = moveimp;
- cur = NULL;
- goto assign;
- }
-
- /*
- * Prefer swapping with a task moving to its preferred node over a
- * task that is not.
- */
- if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
- env->best_task->numa_preferred_nid != env->src_nid) {
- goto assign;
- }
-
- /*
- * If the NUMA importance is less than SMALLIMP,
- * task migration might only result in ping pong
- * of tasks and also hurt performance due to cache
- * misses.
- */
- if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
- goto unlock;
-
- /*
- * In the overloaded case, try and keep the load balanced.
- */
- load = task_h_load(env->p) - task_h_load(cur);
- if (!load)
- goto assign;
-
- dst_load = env->dst_stats.load + load;
- src_load = env->src_stats.load - load;
-
- if (load_too_imbalanced(src_load, dst_load, env))
- goto unlock;
-
-assign:
- /* Evaluate an idle CPU for a task numa move. */
- if (!cur) {
- int cpu = env->dst_stats.idle_cpu;
-
- /* Nothing cached so current CPU went idle since the search. */
- if (cpu < 0)
- cpu = env->dst_cpu;
-
- /*
- * If the CPU is no longer truly idle and the previous best CPU
- * is, keep using it.
- */
- if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
- idle_cpu(env->best_cpu)) {
- cpu = env->best_cpu;
- }
-
- env->dst_cpu = cpu;
- }
-
- task_numa_assign(env, cur, imp);
-
- /*
- * If a move to idle is allowed because there is capacity or load
- * balance improves then stop the search. While a better swap
- * candidate may exist, a search is not free.
- */
- if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
- stopsearch = true;
-
- /*
- * If a swap candidate must be identified and the current best task
- * moves its preferred node then stop the search.
- */
- if (!maymove && env->best_task &&
- env->best_task->numa_preferred_nid == env->src_nid) {
- stopsearch = true;
- }
-unlock:
- rcu_read_unlock();
-
- return stopsearch;
-}
-
-static void task_numa_find_cpu(struct task_numa_env *env,
- long taskimp, long groupimp)
-{
- bool maymove = false;
- int cpu;
-
- /*
- * If dst node has spare capacity, then check if there is an
- * imbalance that would be overruled by the load balancer.
- */
- if (env->dst_stats.node_type == node_has_spare) {
- unsigned int imbalance;
- int src_running, dst_running;
-
- /*
- * Would movement cause an imbalance? Note that if src has
- * more running tasks that the imbalance is ignored as the
- * move improves the imbalance from the perspective of the
- * CPU load balancer.
- * */
- src_running = env->src_stats.nr_running - 1;
- dst_running = env->dst_stats.nr_running + 1;
- imbalance = max(0, dst_running - src_running);
- imbalance = adjust_numa_imbalance(imbalance, dst_running,
- env->imb_numa_nr);
-
- /* Use idle CPU if there is no imbalance */
- if (!imbalance) {
- maymove = true;
- if (env->dst_stats.idle_cpu >= 0) {
- env->dst_cpu = env->dst_stats.idle_cpu;
- task_numa_assign(env, NULL, 0);
- return;
- }
- }
- } else {
- long src_load, dst_load, load;
- /*
- * If the improvement from just moving env->p direction is better
- * than swapping tasks around, check if a move is possible.
- */
- load = task_h_load(env->p);
- dst_load = env->dst_stats.load + load;
- src_load = env->src_stats.load - load;
- maymove = !load_too_imbalanced(src_load, dst_load, env);
- }
-
- for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
- /* Skip this CPU if the source task cannot migrate */
- if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
- continue;
-
- env->dst_cpu = cpu;
- if (task_numa_compare(env, taskimp, groupimp, maymove))
- break;
- }
-}
-
-static int task_numa_migrate(struct task_struct *p)
-{
- struct task_numa_env env = {
- .p = p,
-
- .src_cpu = task_cpu(p),
- .src_nid = task_node(p),
-
- .imbalance_pct = 112,
-
- .best_task = NULL,
- .best_imp = 0,
- .best_cpu = -1,
- };
- unsigned long taskweight, groupweight;
- struct sched_domain *sd;
- long taskimp, groupimp;
- struct numa_group *ng;
- struct rq *best_rq;
- int nid, ret, dist;
-
- /*
- * Pick the lowest SD_NUMA domain, as that would have the smallest
- * imbalance and would be the first to start moving tasks about.
- *
- * And we want to avoid any moving of tasks about, as that would create
- * random movement of tasks -- counter the numa conditions we're trying
- * to satisfy here.
- */
- rcu_read_lock();
- sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
- if (sd) {
- env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
- env.imb_numa_nr = sd->imb_numa_nr;
- }
- rcu_read_unlock();
-
- /*
- * Cpusets can break the scheduler domain tree into smaller
- * balance domains, some of which do not cross NUMA boundaries.
- * Tasks that are "trapped" in such domains cannot be migrated
- * elsewhere, so there is no point in (re)trying.
- */
- if (unlikely(!sd)) {
- sched_setnuma(p, task_node(p));
- return -EINVAL;
- }
-
- env.dst_nid = p->numa_preferred_nid;
- dist = env.dist = node_distance(env.src_nid, env.dst_nid);
- taskweight = task_weight(p, env.src_nid, dist);
- groupweight = group_weight(p, env.src_nid, dist);
- update_numa_stats(&env, &env.src_stats, env.src_nid, false);
- taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
- groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
- update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
-
- /* Try to find a spot on the preferred nid. */
- task_numa_find_cpu(&env, taskimp, groupimp);
-
- /*
- * Look at other nodes in these cases:
- * - there is no space available on the preferred_nid
- * - the task is part of a numa_group that is interleaved across
- * multiple NUMA nodes; in order to better consolidate the group,
- * we need to check other locations.
- */
- ng = deref_curr_numa_group(p);
- if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
- for_each_node_state(nid, N_CPU) {
- if (nid == env.src_nid || nid == p->numa_preferred_nid)
- continue;
-
- dist = node_distance(env.src_nid, env.dst_nid);
- if (sched_numa_topology_type == NUMA_BACKPLANE &&
- dist != env.dist) {
- taskweight = task_weight(p, env.src_nid, dist);
- groupweight = group_weight(p, env.src_nid, dist);
- }
-
- /* Only consider nodes where both task and groups benefit */
- taskimp = task_weight(p, nid, dist) - taskweight;
- groupimp = group_weight(p, nid, dist) - groupweight;
- if (taskimp < 0 && groupimp < 0)
- continue;
-
- env.dist = dist;
- env.dst_nid = nid;
- update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
- task_numa_find_cpu(&env, taskimp, groupimp);
- }
- }
-
- /*
- * If the task is part of a workload that spans multiple NUMA nodes,
- * and is migrating into one of the workload's active nodes, remember
- * this node as the task's preferred numa node, so the workload can
- * settle down.
- * A task that migrated to a second choice node will be better off
- * trying for a better one later. Do not set the preferred node here.
- */
- if (ng) {
- if (env.best_cpu == -1)
- nid = env.src_nid;
- else
- nid = cpu_to_node(env.best_cpu);
-
- if (nid != p->numa_preferred_nid)
- sched_setnuma(p, nid);
- }
-
- /* No better CPU than the current one was found. */
- if (env.best_cpu == -1) {
- trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
- return -EAGAIN;
- }
-
- best_rq = cpu_rq(env.best_cpu);
- if (env.best_task == NULL) {
- ret = migrate_task_to(p, env.best_cpu);
- WRITE_ONCE(best_rq->numa_migrate_on, 0);
- if (ret != 0)
- trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
- return ret;
- }
-
- ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
- WRITE_ONCE(best_rq->numa_migrate_on, 0);
-
- if (ret != 0)
- trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
- put_task_struct(env.best_task);
- return ret;
-}
-
-/* Attempt to migrate a task to a CPU on the preferred node. */
-static void numa_migrate_preferred(struct task_struct *p)
-{
- unsigned long interval = HZ;
-
- /* This task has no NUMA fault statistics yet */
- if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
- return;
-
- /* Periodically retry migrating the task to the preferred node */
- interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
- p->numa_migrate_retry = jiffies + interval;
-
- /* Success if task is already running on preferred CPU */
- if (task_node(p) == p->numa_preferred_nid)
- return;
-
- /* Otherwise, try migrate to a CPU on the preferred node */
- task_numa_migrate(p);
-}
-
-/*
- * Find out how many nodes the workload is actively running on. Do this by
- * tracking the nodes from which NUMA hinting faults are triggered. This can
- * be different from the set of nodes where the workload's memory is currently
- * located.
- */
-static void numa_group_count_active_nodes(struct numa_group *numa_group)
-{
- unsigned long faults, max_faults = 0;
- int nid, active_nodes = 0;
-
- for_each_node_state(nid, N_CPU) {
- faults = group_faults_cpu(numa_group, nid);
- if (faults > max_faults)
- max_faults = faults;
- }
-
- for_each_node_state(nid, N_CPU) {
- faults = group_faults_cpu(numa_group, nid);
- if (faults * ACTIVE_NODE_FRACTION > max_faults)
- active_nodes++;
- }
-
- numa_group->max_faults_cpu = max_faults;
- numa_group->active_nodes = active_nodes;
-}
-
-/*
- * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
- * increments. The more local the fault statistics are, the higher the scan
- * period will be for the next scan window. If local/(local+remote) ratio is
- * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
- * the scan period will decrease. Aim for 70% local accesses.
- */
-#define NUMA_PERIOD_SLOTS 10
-#define NUMA_PERIOD_THRESHOLD 7
-
-/*
- * Increase the scan period (slow down scanning) if the majority of
- * our memory is already on our local node, or if the majority of
- * the page accesses are shared with other processes.
- * Otherwise, decrease the scan period.
- */
-static void update_task_scan_period(struct task_struct *p,
- unsigned long shared, unsigned long private)
-{
- unsigned int period_slot;
- int lr_ratio, ps_ratio;
- int diff;
-
- unsigned long remote = p->numa_faults_locality[0];
- unsigned long local = p->numa_faults_locality[1];
-
- /*
- * If there were no record hinting faults then either the task is
- * completely idle or all activity is in areas that are not of interest
- * to automatic numa balancing. Related to that, if there were failed
- * migration then it implies we are migrating too quickly or the local
- * node is overloaded. In either case, scan slower
- */
- if (local + shared == 0 || p->numa_faults_locality[2]) {
- p->numa_scan_period = min(p->numa_scan_period_max,
- p->numa_scan_period << 1);
-
- p->mm->numa_next_scan = jiffies +
- msecs_to_jiffies(p->numa_scan_period);
-
- return;
- }
-
- /*
- * Prepare to scale scan period relative to the current period.
- * == NUMA_PERIOD_THRESHOLD scan period stays the same
- * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
- * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
- */
- period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
- lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
- ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
-
- if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
- /*
- * Most memory accesses are local. There is no need to
- * do fast NUMA scanning, since memory is already local.
- */
- int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
- if (!slot)
- slot = 1;
- diff = slot * period_slot;
- } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
- /*
- * Most memory accesses are shared with other tasks.
- * There is no point in continuing fast NUMA scanning,
- * since other tasks may just move the memory elsewhere.
- */
- int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
- if (!slot)
- slot = 1;
- diff = slot * period_slot;
- } else {
- /*
- * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
- * yet they are not on the local NUMA node. Speed up
- * NUMA scanning to get the memory moved over.
- */
- int ratio = max(lr_ratio, ps_ratio);
- diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
- }
-
- p->numa_scan_period = clamp(p->numa_scan_period + diff,
- task_scan_min(p), task_scan_max(p));
- memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
-}
-
-/*
- * Get the fraction of time the task has been running since the last
- * NUMA placement cycle. The scheduler keeps similar statistics, but
- * decays those on a 32ms period, which is orders of magnitude off
- * from the dozens-of-seconds NUMA balancing period. Use the scheduler
- * stats only if the task is so new there are no NUMA statistics yet.
- */
-static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
-{
- u64 runtime, delta, now;
- /* Use the start of this time slice to avoid calculations. */
- now = p->se.exec_start;
- runtime = p->se.sum_exec_runtime;
-
- if (p->last_task_numa_placement) {
- delta = runtime - p->last_sum_exec_runtime;
- *period = now - p->last_task_numa_placement;
-
- /* Avoid time going backwards, prevent potential divide error: */
- if (unlikely((s64)*period < 0))
- *period = 0;
- } else {
- delta = p->se.avg.load_sum;
- *period = LOAD_AVG_MAX;
- }
-
- p->last_sum_exec_runtime = runtime;
- p->last_task_numa_placement = now;
-
- return delta;
-}
-
-/*
- * Determine the preferred nid for a task in a numa_group. This needs to
- * be done in a way that produces consistent results with group_weight,
- * otherwise workloads might not converge.
- */
-static int preferred_group_nid(struct task_struct *p, int nid)
-{
- nodemask_t nodes;
- int dist;
-
- /* Direct connections between all NUMA nodes. */
- if (sched_numa_topology_type == NUMA_DIRECT)
- return nid;
-
- /*
- * On a system with glueless mesh NUMA topology, group_weight
- * scores nodes according to the number of NUMA hinting faults on
- * both the node itself, and on nearby nodes.
- */
- if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
- unsigned long score, max_score = 0;
- int node, max_node = nid;
-
- dist = sched_max_numa_distance;
-
- for_each_node_state(node, N_CPU) {
- score = group_weight(p, node, dist);
- if (score > max_score) {
- max_score = score;
- max_node = node;
- }
- }
- return max_node;
- }
-
- /*
- * Finding the preferred nid in a system with NUMA backplane
- * interconnect topology is more involved. The goal is to locate
- * tasks from numa_groups near each other in the system, and
- * untangle workloads from different sides of the system. This requires
- * searching down the hierarchy of node groups, recursively searching
- * inside the highest scoring group of nodes. The nodemask tricks
- * keep the complexity of the search down.
- */
- nodes = node_states[N_CPU];
- for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
- unsigned long max_faults = 0;
- nodemask_t max_group = NODE_MASK_NONE;
- int a, b;
-
- /* Are there nodes at this distance from each other? */
- if (!find_numa_distance(dist))
- continue;
-
- for_each_node_mask(a, nodes) {
- unsigned long faults = 0;
- nodemask_t this_group;
- nodes_clear(this_group);
-
- /* Sum group's NUMA faults; includes a==b case. */
- for_each_node_mask(b, nodes) {
- if (node_distance(a, b) < dist) {
- faults += group_faults(p, b);
- node_set(b, this_group);
- node_clear(b, nodes);
- }
- }
-
- /* Remember the top group. */
- if (faults > max_faults) {
- max_faults = faults;
- max_group = this_group;
- /*
- * subtle: at the smallest distance there is
- * just one node left in each "group", the
- * winner is the preferred nid.
- */
- nid = a;
- }
- }
- /* Next round, evaluate the nodes within max_group. */
- if (!max_faults)
- break;
- nodes = max_group;
- }
- return nid;
-}
-
-static void task_numa_placement(struct task_struct *p)
-{
- int seq, nid, max_nid = NUMA_NO_NODE;
- unsigned long max_faults = 0;
- unsigned long fault_types[2] = { 0, 0 };
- unsigned long total_faults;
- u64 runtime, period;
- spinlock_t *group_lock = NULL;
- struct numa_group *ng;
-
- /*
- * The p->mm->numa_scan_seq field gets updated without
- * exclusive access. Use READ_ONCE() here to ensure
- * that the field is read in a single access:
- */
- seq = READ_ONCE(p->mm->numa_scan_seq);
- if (p->numa_scan_seq == seq)
- return;
- p->numa_scan_seq = seq;
- p->numa_scan_period_max = task_scan_max(p);
-
- total_faults = p->numa_faults_locality[0] +
- p->numa_faults_locality[1];
- runtime = numa_get_avg_runtime(p, &period);
-
- /* If the task is part of a group prevent parallel updates to group stats */
- ng = deref_curr_numa_group(p);
- if (ng) {
- group_lock = &ng->lock;
- spin_lock_irq(group_lock);
- }
-
- /* Find the node with the highest number of faults */
- for_each_online_node(nid) {
- /* Keep track of the offsets in numa_faults array */
- int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
- unsigned long faults = 0, group_faults = 0;
- int priv;
-
- for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
- long diff, f_diff, f_weight;
-
- mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
- membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
- cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
- cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
-
- /* Decay existing window, copy faults since last scan */
- diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
- fault_types[priv] += p->numa_faults[membuf_idx];
- p->numa_faults[membuf_idx] = 0;
-
- /*
- * Normalize the faults_from, so all tasks in a group
- * count according to CPU use, instead of by the raw
- * number of faults. Tasks with little runtime have
- * little over-all impact on throughput, and thus their
- * faults are less important.
- */
- f_weight = div64_u64(runtime << 16, period + 1);
- f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
- (total_faults + 1);
- f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
- p->numa_faults[cpubuf_idx] = 0;
-
- p->numa_faults[mem_idx] += diff;
- p->numa_faults[cpu_idx] += f_diff;
- faults += p->numa_faults[mem_idx];
- p->total_numa_faults += diff;
- if (ng) {
- /*
- * safe because we can only change our own group
- *
- * mem_idx represents the offset for a given
- * nid and priv in a specific region because it
- * is at the beginning of the numa_faults array.
- */
- ng->faults[mem_idx] += diff;
- ng->faults[cpu_idx] += f_diff;
- ng->total_faults += diff;
- group_faults += ng->faults[mem_idx];
- }
- }
-
- if (!ng) {
- if (faults > max_faults) {
- max_faults = faults;
- max_nid = nid;
- }
- } else if (group_faults > max_faults) {
- max_faults = group_faults;
- max_nid = nid;
- }
- }
-
- /* Cannot migrate task to CPU-less node */
- max_nid = numa_nearest_node(max_nid, N_CPU);
-
- if (ng) {
- numa_group_count_active_nodes(ng);
- spin_unlock_irq(group_lock);
- max_nid = preferred_group_nid(p, max_nid);
- }
-
- if (max_faults) {
- /* Set the new preferred node */
- if (max_nid != p->numa_preferred_nid)
- sched_setnuma(p, max_nid);
- }
-
- update_task_scan_period(p, fault_types[0], fault_types[1]);
-}
-
-static inline int get_numa_group(struct numa_group *grp)
-{
- return refcount_inc_not_zero(&grp->refcount);
-}
-
-static inline void put_numa_group(struct numa_group *grp)
-{
- if (refcount_dec_and_test(&grp->refcount))
- kfree_rcu(grp, rcu);
-}
-
-static void task_numa_group(struct task_struct *p, int cpupid, int flags,
- int *priv)
-{
- struct numa_group *grp, *my_grp;
- struct task_struct *tsk;
- bool join = false;
- int cpu = cpupid_to_cpu(cpupid);
- int i;
-
- if (unlikely(!deref_curr_numa_group(p))) {
- unsigned int size = sizeof(struct numa_group) +
- NR_NUMA_HINT_FAULT_STATS *
- nr_node_ids * sizeof(unsigned long);
-
- grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
- if (!grp)
- return;
-
- refcount_set(&grp->refcount, 1);
- grp->active_nodes = 1;
- grp->max_faults_cpu = 0;
- spin_lock_init(&grp->lock);
- grp->gid = p->pid;
-
- for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
- grp->faults[i] = p->numa_faults[i];
-
- grp->total_faults = p->total_numa_faults;
-
- grp->nr_tasks++;
- rcu_assign_pointer(p->numa_group, grp);
- }
-
- rcu_read_lock();
- tsk = READ_ONCE(cpu_rq(cpu)->curr);
-
- if (!cpupid_match_pid(tsk, cpupid))
- goto no_join;
-
- grp = rcu_dereference(tsk->numa_group);
- if (!grp)
- goto no_join;
-
- my_grp = deref_curr_numa_group(p);
- if (grp == my_grp)
- goto no_join;
-
- /*
- * Only join the other group if its bigger; if we're the bigger group,
- * the other task will join us.
- */
- if (my_grp->nr_tasks > grp->nr_tasks)
- goto no_join;
-
- /*
- * Tie-break on the grp address.
- */
- if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
- goto no_join;
-
- /* Always join threads in the same process. */
- if (tsk->mm == current->mm)
- join = true;
-
- /* Simple filter to avoid false positives due to PID collisions */
- if (flags & TNF_SHARED)
- join = true;
-
- /* Update priv based on whether false sharing was detected */
- *priv = !join;
-
- if (join && !get_numa_group(grp))
- goto no_join;
-
- rcu_read_unlock();
-
- if (!join)
- return;
-
- WARN_ON_ONCE(irqs_disabled());
- double_lock_irq(&my_grp->lock, &grp->lock);
-
- for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
- my_grp->faults[i] -= p->numa_faults[i];
- grp->faults[i] += p->numa_faults[i];
- }
- my_grp->total_faults -= p->total_numa_faults;
- grp->total_faults += p->total_numa_faults;
-
- my_grp->nr_tasks--;
- grp->nr_tasks++;
-
- spin_unlock(&my_grp->lock);
- spin_unlock_irq(&grp->lock);
-
- rcu_assign_pointer(p->numa_group, grp);
-
- put_numa_group(my_grp);
- return;
-
-no_join:
- rcu_read_unlock();
- return;
-}
-
-/*
- * Get rid of NUMA statistics associated with a task (either current or dead).
- * If @final is set, the task is dead and has reached refcount zero, so we can
- * safely free all relevant data structures. Otherwise, there might be
- * concurrent reads from places like load balancing and procfs, and we should
- * reset the data back to default state without freeing ->numa_faults.
- */
-void task_numa_free(struct task_struct *p, bool final)
-{
- /* safe: p either is current or is being freed by current */
- struct numa_group *grp = rcu_dereference_raw(p->numa_group);
- unsigned long *numa_faults = p->numa_faults;
- unsigned long flags;
- int i;
-
- if (!numa_faults)
- return;
-
- if (grp) {
- spin_lock_irqsave(&grp->lock, flags);
- for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
- grp->faults[i] -= p->numa_faults[i];
- grp->total_faults -= p->total_numa_faults;
-
- grp->nr_tasks--;
- spin_unlock_irqrestore(&grp->lock, flags);
- RCU_INIT_POINTER(p->numa_group, NULL);
- put_numa_group(grp);
- }
-
- if (final) {
- p->numa_faults = NULL;
- kfree(numa_faults);
- } else {
- p->total_numa_faults = 0;
- for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
- numa_faults[i] = 0;
- }
-}
-
-/*
- * Got a PROT_NONE fault for a page on @node.
- */
-void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
-{
- struct task_struct *p = current;
- bool migrated = flags & TNF_MIGRATED;
- int cpu_node = task_node(current);
- int local = !!(flags & TNF_FAULT_LOCAL);
- struct numa_group *ng;
- int priv;
-
- if (!static_branch_likely(&sched_numa_balancing))
- return;
-
- /* for example, ksmd faulting in a user's mm */
- if (!p->mm)
- return;
-
- /*
- * NUMA faults statistics are unnecessary for the slow memory
- * node for memory tiering mode.
- */
- if (!node_is_toptier(mem_node) &&
- (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
- !cpupid_valid(last_cpupid)))
- return;
-
- /* Allocate buffer to track faults on a per-node basis */
- if (unlikely(!p->numa_faults)) {
- int size = sizeof(*p->numa_faults) *
- NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
-
- p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
- if (!p->numa_faults)
- return;
-
- p->total_numa_faults = 0;
- memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
- }
-
- /*
- * First accesses are treated as private, otherwise consider accesses
- * to be private if the accessing pid has not changed
- */
- if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
- priv = 1;
- } else {
- priv = cpupid_match_pid(p, last_cpupid);
- if (!priv && !(flags & TNF_NO_GROUP))
- task_numa_group(p, last_cpupid, flags, &priv);
- }
-
- /*
- * If a workload spans multiple NUMA nodes, a shared fault that
- * occurs wholly within the set of nodes that the workload is
- * actively using should be counted as local. This allows the
- * scan rate to slow down when a workload has settled down.
- */
- ng = deref_curr_numa_group(p);
- if (!priv && !local && ng && ng->active_nodes > 1 &&
- numa_is_active_node(cpu_node, ng) &&
- numa_is_active_node(mem_node, ng))
- local = 1;
-
- /*
- * Retry to migrate task to preferred node periodically, in case it
- * previously failed, or the scheduler moved us.
- */
- if (time_after(jiffies, p->numa_migrate_retry)) {
- task_numa_placement(p);
- numa_migrate_preferred(p);
- }
-
- if (migrated)
- p->numa_pages_migrated += pages;
- if (flags & TNF_MIGRATE_FAIL)
- p->numa_faults_locality[2] += pages;
-
- p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
- p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
- p->numa_faults_locality[local] += pages;
-}
-
-static void reset_ptenuma_scan(struct task_struct *p)
-{
- /*
- * We only did a read acquisition of the mmap sem, so
- * p->mm->numa_scan_seq is written to without exclusive access
- * and the update is not guaranteed to be atomic. That's not
- * much of an issue though, since this is just used for
- * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
- * expensive, to avoid any form of compiler optimizations:
- */
- WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
- p->mm->numa_scan_offset = 0;
-}
-
-static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
-{
- unsigned long pids;
- /*
- * Allow unconditional access first two times, so that all the (pages)
- * of VMAs get prot_none fault introduced irrespective of accesses.
- * This is also done to avoid any side effect of task scanning
- * amplifying the unfairness of disjoint set of VMAs' access.
- */
- if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
- return true;
-
- pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
- if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
- return true;
-
- /*
- * Complete a scan that has already started regardless of PID access, or
- * some VMAs may never be scanned in multi-threaded applications:
- */
- if (mm->numa_scan_offset > vma->vm_start) {
- trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
- return true;
- }
-
- return false;
-}
-
-#define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
-
-/*
- * The expensive part of numa migration is done from task_work context.
- * Triggered from task_tick_numa().
- */
-static void task_numa_work(struct callback_head *work)
-{
- unsigned long migrate, next_scan, now = jiffies;
- struct task_struct *p = current;
- struct mm_struct *mm = p->mm;
- u64 runtime = p->se.sum_exec_runtime;
- struct vm_area_struct *vma;
- unsigned long start, end;
- unsigned long nr_pte_updates = 0;
- long pages, virtpages;
- struct vma_iterator vmi;
- bool vma_pids_skipped;
- bool vma_pids_forced = false;
-
- SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
-
- work->next = work;
- /*
- * Who cares about NUMA placement when they're dying.
- *
- * NOTE: make sure not to dereference p->mm before this check,
- * exit_task_work() happens _after_ exit_mm() so we could be called
- * without p->mm even though we still had it when we enqueued this
- * work.
- */
- if (p->flags & PF_EXITING)
- return;
-
- if (!mm->numa_next_scan) {
- mm->numa_next_scan = now +
- msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
- }
-
- /*
- * Enforce maximal scan/migration frequency..
- */
- migrate = mm->numa_next_scan;
- if (time_before(now, migrate))
- return;
-
- if (p->numa_scan_period == 0) {
- p->numa_scan_period_max = task_scan_max(p);
- p->numa_scan_period = task_scan_start(p);
- }
-
- next_scan = now + msecs_to_jiffies(p->numa_scan_period);
- if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
- return;
-
- /*
- * Delay this task enough that another task of this mm will likely win
- * the next time around.
- */
- p->node_stamp += 2 * TICK_NSEC;
-
- pages = sysctl_numa_balancing_scan_size;
- pages <<= 20 - PAGE_SHIFT; /* MB in pages */
- virtpages = pages * 8; /* Scan up to this much virtual space */
- if (!pages)
- return;
-
-
- if (!mmap_read_trylock(mm))
- return;
-
- /*
- * VMAs are skipped if the current PID has not trapped a fault within
- * the VMA recently. Allow scanning to be forced if there is no
- * suitable VMA remaining.
- */
- vma_pids_skipped = false;
-
-retry_pids:
- start = mm->numa_scan_offset;
- vma_iter_init(&vmi, mm, start);
- vma = vma_next(&vmi);
- if (!vma) {
- reset_ptenuma_scan(p);
- start = 0;
- vma_iter_set(&vmi, start);
- vma = vma_next(&vmi);
- }
-
- do {
- if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
- is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
- trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
- continue;
- }
-
- /*
- * Shared library pages mapped by multiple processes are not
- * migrated as it is expected they are cache replicated. Avoid
- * hinting faults in read-only file-backed mappings or the vDSO
- * as migrating the pages will be of marginal benefit.
- */
- if (!vma->vm_mm ||
- (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
- trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
- continue;
- }
-
- /*
- * Skip inaccessible VMAs to avoid any confusion between
- * PROT_NONE and NUMA hinting PTEs
- */
- if (!vma_is_accessible(vma)) {
- trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
- continue;
- }
-
- /* Initialise new per-VMA NUMAB state. */
- if (!vma->numab_state) {
- vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
- GFP_KERNEL);
- if (!vma->numab_state)
- continue;
-
- vma->numab_state->start_scan_seq = mm->numa_scan_seq;
-
- vma->numab_state->next_scan = now +
- msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
-
- /* Reset happens after 4 times scan delay of scan start */
- vma->numab_state->pids_active_reset = vma->numab_state->next_scan +
- msecs_to_jiffies(VMA_PID_RESET_PERIOD);
-
- /*
- * Ensure prev_scan_seq does not match numa_scan_seq,
- * to prevent VMAs being skipped prematurely on the
- * first scan:
- */
- vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
- }
-
- /*
- * Scanning the VMAs of short lived tasks add more overhead. So
- * delay the scan for new VMAs.
- */
- if (mm->numa_scan_seq && time_before(jiffies,
- vma->numab_state->next_scan)) {
- trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
- continue;
- }
-
- /* RESET access PIDs regularly for old VMAs. */
- if (mm->numa_scan_seq &&
- time_after(jiffies, vma->numab_state->pids_active_reset)) {
- vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
- msecs_to_jiffies(VMA_PID_RESET_PERIOD);
- vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
- vma->numab_state->pids_active[1] = 0;
- }
-
- /* Do not rescan VMAs twice within the same sequence. */
- if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
- mm->numa_scan_offset = vma->vm_end;
- trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
- continue;
- }
-
- /*
- * Do not scan the VMA if task has not accessed it, unless no other
- * VMA candidate exists.
- */
- if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
- vma_pids_skipped = true;
- trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
- continue;
- }
-
- do {
- start = max(start, vma->vm_start);
- end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
- end = min(end, vma->vm_end);
- nr_pte_updates = change_prot_numa(vma, start, end);
-
- /*
- * Try to scan sysctl_numa_balancing_size worth of
- * hpages that have at least one present PTE that
- * is not already PTE-numa. If the VMA contains
- * areas that are unused or already full of prot_numa
- * PTEs, scan up to virtpages, to skip through those
- * areas faster.
- */
- if (nr_pte_updates)
- pages -= (end - start) >> PAGE_SHIFT;
- virtpages -= (end - start) >> PAGE_SHIFT;
-
- start = end;
- if (pages <= 0 || virtpages <= 0)
- goto out;
-
- cond_resched();
- } while (end != vma->vm_end);
-
- /* VMA scan is complete, do not scan until next sequence. */
- vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
-
- /*
- * Only force scan within one VMA at a time, to limit the
- * cost of scanning a potentially uninteresting VMA.
- */
- if (vma_pids_forced)
- break;
- } for_each_vma(vmi, vma);
-
- /*
- * If no VMAs are remaining and VMAs were skipped due to the PID
- * not accessing the VMA previously, then force a scan to ensure
- * forward progress:
- */
- if (!vma && !vma_pids_forced && vma_pids_skipped) {
- vma_pids_forced = true;
- goto retry_pids;
- }
-
-out:
- /*
- * It is possible to reach the end of the VMA list but the last few
- * VMAs are not guaranteed to the vma_migratable. If they are not, we
- * would find the !migratable VMA on the next scan but not reset the
- * scanner to the start so check it now.
- */
- if (vma)
- mm->numa_scan_offset = start;
- else
- reset_ptenuma_scan(p);
- mmap_read_unlock(mm);
-
- /*
- * Make sure tasks use at least 32x as much time to run other code
- * than they used here, to limit NUMA PTE scanning overhead to 3% max.
- * Usually update_task_scan_period slows down scanning enough; on an
- * overloaded system we need to limit overhead on a per task basis.
- */
- if (unlikely(p->se.sum_exec_runtime != runtime)) {
- u64 diff = p->se.sum_exec_runtime - runtime;
- p->node_stamp += 32 * diff;
- }
-}
-
-void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
-{
- int mm_users = 0;
- struct mm_struct *mm = p->mm;
-
- if (mm) {
- mm_users = atomic_read(&mm->mm_users);
- if (mm_users == 1) {
- mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
- mm->numa_scan_seq = 0;
- }
- }
- p->node_stamp = 0;
- p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
- p->numa_scan_period = sysctl_numa_balancing_scan_delay;
- p->numa_migrate_retry = 0;
- /* Protect against double add, see task_tick_numa and task_numa_work */
- p->numa_work.next = &p->numa_work;
- p->numa_faults = NULL;
- p->numa_pages_migrated = 0;
- p->total_numa_faults = 0;
- RCU_INIT_POINTER(p->numa_group, NULL);
- p->last_task_numa_placement = 0;
- p->last_sum_exec_runtime = 0;
-
- init_task_work(&p->numa_work, task_numa_work);
-
- /* New address space, reset the preferred nid */
- if (!(clone_flags & CLONE_VM)) {
- p->numa_preferred_nid = NUMA_NO_NODE;
- return;
- }
-
- /*
- * New thread, keep existing numa_preferred_nid which should be copied
- * already by arch_dup_task_struct but stagger when scans start.
- */
- if (mm) {
- unsigned int delay;
-
- delay = min_t(unsigned int, task_scan_max(current),
- current->numa_scan_period * mm_users * NSEC_PER_MSEC);
- delay += 2 * TICK_NSEC;
- p->node_stamp = delay;
- }
-}
-
-/*
- * Drive the periodic memory faults..
- */
-static void task_tick_numa(struct rq *rq, struct task_struct *curr)
-{
- struct callback_head *work = &curr->numa_work;
- u64 period, now;
-
- /*
- * We don't care about NUMA placement if we don't have memory.
- */
- if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
- return;
-
- /*
- * Using runtime rather than walltime has the dual advantage that
- * we (mostly) drive the selection from busy threads and that the
- * task needs to have done some actual work before we bother with
- * NUMA placement.
- */
- now = curr->se.sum_exec_runtime;
- period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
-
- if (now > curr->node_stamp + period) {
- if (!curr->node_stamp)
- curr->numa_scan_period = task_scan_start(curr);
- curr->node_stamp += period;
-
- if (!time_before(jiffies, curr->mm->numa_next_scan))
- task_work_add(curr, work, TWA_RESUME);
- }
-}
-
-static void update_scan_period(struct task_struct *p, int new_cpu)
-{
- int src_nid = cpu_to_node(task_cpu(p));
- int dst_nid = cpu_to_node(new_cpu);
-
- if (!static_branch_likely(&sched_numa_balancing))
- return;
-
- if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
- return;
-
- if (src_nid == dst_nid)
- return;
-
- /*
- * Allow resets if faults have been trapped before one scan
- * has completed. This is most likely due to a new task that
- * is pulled cross-node due to wakeups or load balancing.
- */
- if (p->numa_scan_seq) {
- /*
- * Avoid scan adjustments if moving to the preferred
- * node or if the task was not previously running on
- * the preferred node.
- */
- if (dst_nid == p->numa_preferred_nid ||
- (p->numa_preferred_nid != NUMA_NO_NODE &&
- src_nid != p->numa_preferred_nid))
- return;
- }
-
- p->numa_scan_period = task_scan_start(p);
-}
-
-#else
-static void task_tick_numa(struct rq *rq, struct task_struct *curr)
-{
-}
-
-static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
-{
-}
-
-static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
-{
-}
-
-static inline void update_scan_period(struct task_struct *p, int new_cpu)
-{
-}
-
-#endif /* CONFIG_NUMA_BALANCING */
-
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
@@ -5865,17 +3600,6 @@ static inline void set_idle_cores(int cpu, int val)
WRITE_ONCE(sds->has_idle_cores, val);
}
-static inline bool test_idle_cores(int cpu)
-{
- struct sched_domain_shared *sds;
-
- sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
- if (sds)
- return READ_ONCE(sds->has_idle_cores);
-
- return false;
-}
-
/*
* Scans the local SMT mask to see if the entire core is idle, and records this
* information in sd_llc_shared->has_idle_cores.
@@ -5967,11 +3691,6 @@ static inline void set_idle_cores(int cpu, int val)
{
}
-static inline bool test_idle_cores(int cpu)
-{
- return false;
-}
-
static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
{
return __select_idle_cpu(core, p);
@@ -7982,30 +5701,6 @@ void print_cfs_stats(struct seq_file *m, int cpu)
print_cfs_rq(m, cpu, cfs_rq);
rcu_read_unlock();
}
-
-#ifdef CONFIG_NUMA_BALANCING
-void show_numa_stats(struct task_struct *p, struct seq_file *m)
-{
- int node;
- unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
- struct numa_group *ng;
-
- rcu_read_lock();
- ng = rcu_dereference(p->numa_group);
- for_each_online_node(node) {
- if (p->numa_faults) {
- tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
- tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
- }
- if (ng) {
- gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
- gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
- }
- print_numa_stats(m, node, tsf, tpf, gsf, gpf);
- }
- rcu_read_unlock();
-}
-#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
__init void init_sched_fair_class(void)
diff --git a/kernel/sched/numa_balancing.c b/kernel/sched/numa_balancing.c
new file mode 100644
index 000000000000..2649ba6ed349
--- /dev/null
+++ b/kernel/sched/numa_balancing.c
@@ -0,0 +1,2277 @@
+#include <linux/sched.h>
+#include <linux/memory-tiers.h>
+#include <linux/mempolicy.h>
+#include <linux/task_work.h>
+
+#include "sched.h"
+#include "pelt.h"
+
+#ifdef CONFIG_SMP
+bool is_core_idle(int cpu)
+{
+#ifdef CONFIG_SCHED_SMT
+ int sibling;
+
+ for_each_cpu(sibling, cpu_smt_mask(cpu)) {
+ if (cpu == sibling)
+ continue;
+
+ if (!idle_cpu(sibling))
+ return false;
+ }
+#endif
+
+ return true;
+}
+#endif
+
+#ifdef CONFIG_NUMA
+#define NUMA_IMBALANCE_MIN 2
+
+long adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
+{
+ /*
+ * Allow a NUMA imbalance if busy CPUs is less than the maximum
+ * threshold. Above this threshold, individual tasks may be contending
+ * for both memory bandwidth and any shared HT resources. This is an
+ * approximation as the number of running tasks may not be related to
+ * the number of busy CPUs due to sched_setaffinity.
+ */
+ if (dst_running > imb_numa_nr)
+ return imbalance;
+
+ /*
+ * Allow a small imbalance based on a simple pair of communicating
+ * tasks that remain local when the destination is lightly loaded.
+ */
+ if (imbalance <= NUMA_IMBALANCE_MIN)
+ return 0;
+
+ return imbalance;
+}
+#endif /* CONFIG_NUMA */
+
+#ifdef CONFIG_NUMA_BALANCING
+/*
+ * Approximate time to scan a full NUMA task in ms. The task scan period is
+ * calculated based on the tasks virtual memory size and
+ * numa_balancing_scan_size.
+ */
+unsigned int sysctl_numa_balancing_scan_period_min = 1000;
+unsigned int sysctl_numa_balancing_scan_period_max = 60000;
+
+/* Portion of address space to scan in MB */
+unsigned int sysctl_numa_balancing_scan_size = 256;
+
+/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
+unsigned int sysctl_numa_balancing_scan_delay = 1000;
+
+/* The page with hint page fault latency < threshold in ms is considered hot */
+unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
+
+struct numa_group {
+ refcount_t refcount;
+
+ spinlock_t lock; /* nr_tasks, tasks */
+ int nr_tasks;
+ pid_t gid;
+ int active_nodes;
+
+ struct rcu_head rcu;
+ unsigned long total_faults;
+ unsigned long max_faults_cpu;
+ /*
+ * faults[] array is split into two regions: faults_mem and faults_cpu.
+ *
+ * Faults_cpu is used to decide whether memory should move
+ * towards the CPU. As a consequence, these stats are weighted
+ * more by CPU use than by memory faults.
+ */
+ unsigned long faults[];
+};
+
+/*
+ * For functions that can be called in multiple contexts that permit reading
+ * ->numa_group (see struct task_struct for locking rules).
+ */
+static struct numa_group *deref_task_numa_group(struct task_struct *p)
+{
+ return rcu_dereference_check(p->numa_group, p == current ||
+ (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
+}
+
+static struct numa_group *deref_curr_numa_group(struct task_struct *p)
+{
+ return rcu_dereference_protected(p->numa_group, p == current);
+}
+
+static inline unsigned long group_faults_priv(struct numa_group *ng);
+static inline unsigned long group_faults_shared(struct numa_group *ng);
+
+static unsigned int task_nr_scan_windows(struct task_struct *p)
+{
+ unsigned long rss = 0;
+ unsigned long nr_scan_pages;
+
+ /*
+ * Calculations based on RSS as non-present and empty pages are skipped
+ * by the PTE scanner and NUMA hinting faults should be trapped based
+ * on resident pages
+ */
+ nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
+ rss = get_mm_rss(p->mm);
+ if (!rss)
+ rss = nr_scan_pages;
+
+ rss = round_up(rss, nr_scan_pages);
+ return rss / nr_scan_pages;
+}
+
+/* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
+#define MAX_SCAN_WINDOW 2560
+
+static unsigned int task_scan_min(struct task_struct *p)
+{
+ unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
+ unsigned int scan, floor;
+ unsigned int windows = 1;
+
+ if (scan_size < MAX_SCAN_WINDOW)
+ windows = MAX_SCAN_WINDOW / scan_size;
+ floor = 1000 / windows;
+
+ scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
+ return max_t(unsigned int, floor, scan);
+}
+
+static unsigned int task_scan_start(struct task_struct *p)
+{
+ unsigned long smin = task_scan_min(p);
+ unsigned long period = smin;
+ struct numa_group *ng;
+
+ /* Scale the maximum scan period with the amount of shared memory. */
+ rcu_read_lock();
+ ng = rcu_dereference(p->numa_group);
+ if (ng) {
+ unsigned long shared = group_faults_shared(ng);
+ unsigned long private = group_faults_priv(ng);
+
+ period *= refcount_read(&ng->refcount);
+ period *= shared + 1;
+ period /= private + shared + 1;
+ }
+ rcu_read_unlock();
+
+ return max(smin, period);
+}
+
+static unsigned int task_scan_max(struct task_struct *p)
+{
+ unsigned long smin = task_scan_min(p);
+ unsigned long smax;
+ struct numa_group *ng;
+
+ /* Watch for min being lower than max due to floor calculations */
+ smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
+
+ /* Scale the maximum scan period with the amount of shared memory. */
+ ng = deref_curr_numa_group(p);
+ if (ng) {
+ unsigned long shared = group_faults_shared(ng);
+ unsigned long private = group_faults_priv(ng);
+ unsigned long period = smax;
+
+ period *= refcount_read(&ng->refcount);
+ period *= shared + 1;
+ period /= private + shared + 1;
+
+ smax = max(smax, period);
+ }
+
+ return max(smin, smax);
+}
+
+void account_numa_enqueue(struct rq *rq, struct task_struct *p)
+{
+ rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
+ rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
+}
+
+void account_numa_dequeue(struct rq *rq, struct task_struct *p)
+{
+ rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
+ rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
+}
+
+/* Shared or private faults. */
+#define NR_NUMA_HINT_FAULT_TYPES 2
+
+/* Memory and CPU locality */
+#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
+
+/* Averaged statistics, and temporary buffers. */
+#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
+
+pid_t task_numa_group_id(struct task_struct *p)
+{
+ struct numa_group *ng;
+ pid_t gid = 0;
+
+ rcu_read_lock();
+ ng = rcu_dereference(p->numa_group);
+ if (ng)
+ gid = ng->gid;
+ rcu_read_unlock();
+
+ return gid;
+}
+
+/*
+ * The averaged statistics, shared & private, memory & CPU,
+ * occupy the first half of the array. The second half of the
+ * array is for current counters, which are averaged into the
+ * first set by task_numa_placement.
+ */
+static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
+{
+ return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
+}
+
+static inline unsigned long task_faults(struct task_struct *p, int nid)
+{
+ if (!p->numa_faults)
+ return 0;
+
+ return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
+ p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
+}
+
+static inline unsigned long group_faults(struct task_struct *p, int nid)
+{
+ struct numa_group *ng = deref_task_numa_group(p);
+
+ if (!ng)
+ return 0;
+
+ return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
+ ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
+}
+
+static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
+{
+ return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
+ group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
+}
+
+static inline unsigned long group_faults_priv(struct numa_group *ng)
+{
+ unsigned long faults = 0;
+ int node;
+
+ for_each_online_node(node) {
+ faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
+ }
+
+ return faults;
+}
+
+static inline unsigned long group_faults_shared(struct numa_group *ng)
+{
+ unsigned long faults = 0;
+ int node;
+
+ for_each_online_node(node) {
+ faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
+ }
+
+ return faults;
+}
+
+/*
+ * A node triggering more than 1/3 as many NUMA faults as the maximum is
+ * considered part of a numa group's pseudo-interleaving set. Migrations
+ * between these nodes are slowed down, to allow things to settle down.
+ */
+#define ACTIVE_NODE_FRACTION 3
+
+static bool numa_is_active_node(int nid, struct numa_group *ng)
+{
+ return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
+}
+
+/* Handle placement on systems where not all nodes are directly connected. */
+static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
+ int lim_dist, bool task)
+{
+ unsigned long score = 0;
+ int node, max_dist;
+
+ /*
+ * All nodes are directly connected, and the same distance
+ * from each other. No need for fancy placement algorithms.
+ */
+ if (sched_numa_topology_type == NUMA_DIRECT)
+ return 0;
+
+ /* sched_max_numa_distance may be changed in parallel. */
+ max_dist = READ_ONCE(sched_max_numa_distance);
+ /*
+ * This code is called for each node, introducing N^2 complexity,
+ * which should be OK given the number of nodes rarely exceeds 8.
+ */
+ for_each_online_node(node) {
+ unsigned long faults;
+ int dist = node_distance(nid, node);
+
+ /*
+ * The furthest away nodes in the system are not interesting
+ * for placement; nid was already counted.
+ */
+ if (dist >= max_dist || node == nid)
+ continue;
+
+ /*
+ * On systems with a backplane NUMA topology, compare groups
+ * of nodes, and move tasks towards the group with the most
+ * memory accesses. When comparing two nodes at distance
+ * "hoplimit", only nodes closer by than "hoplimit" are part
+ * of each group. Skip other nodes.
+ */
+ if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
+ continue;
+
+ /* Add up the faults from nearby nodes. */
+ if (task)
+ faults = task_faults(p, node);
+ else
+ faults = group_faults(p, node);
+
+ /*
+ * On systems with a glueless mesh NUMA topology, there are
+ * no fixed "groups of nodes". Instead, nodes that are not
+ * directly connected bounce traffic through intermediate
+ * nodes; a numa_group can occupy any set of nodes.
+ * The further away a node is, the less the faults count.
+ * This seems to result in good task placement.
+ */
+ if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
+ faults *= (max_dist - dist);
+ faults /= (max_dist - LOCAL_DISTANCE);
+ }
+
+ score += faults;
+ }
+
+ return score;
+}
+
+/*
+ * These return the fraction of accesses done by a particular task, or
+ * task group, on a particular numa node. The group weight is given a
+ * larger multiplier, in order to group tasks together that are almost
+ * evenly spread out between numa nodes.
+ */
+unsigned long task_weight(struct task_struct *p, int nid, int dist)
+{
+ unsigned long faults, total_faults;
+
+ if (!p->numa_faults)
+ return 0;
+
+ total_faults = p->total_numa_faults;
+
+ if (!total_faults)
+ return 0;
+
+ faults = task_faults(p, nid);
+ faults += score_nearby_nodes(p, nid, dist, true);
+
+ return 1000 * faults / total_faults;
+}
+
+unsigned long group_weight(struct task_struct *p, int nid, int dist)
+{
+ struct numa_group *ng = deref_task_numa_group(p);
+ unsigned long faults, total_faults;
+
+ if (!ng)
+ return 0;
+
+ total_faults = ng->total_faults;
+
+ if (!total_faults)
+ return 0;
+
+ faults = group_faults(p, nid);
+ faults += score_nearby_nodes(p, nid, dist, false);
+
+ return 1000 * faults / total_faults;
+}
+
+/*
+ * If memory tiering mode is enabled, cpupid of slow memory page is
+ * used to record scan time instead of CPU and PID. When tiering mode
+ * is disabled at run time, the scan time (in cpupid) will be
+ * interpreted as CPU and PID. So CPU needs to be checked to avoid to
+ * access out of array bound.
+ */
+static inline bool cpupid_valid(int cpupid)
+{
+ return cpupid_to_cpu(cpupid) < nr_cpu_ids;
+}
+
+/*
+ * For memory tiering mode, if there are enough free pages (more than
+ * enough watermark defined here) in fast memory node, to take full
+ * advantage of fast memory capacity, all recently accessed slow
+ * memory pages will be migrated to fast memory node without
+ * considering hot threshold.
+ */
+static bool pgdat_free_space_enough(struct pglist_data *pgdat)
+{
+ int z;
+ unsigned long enough_wmark;
+
+ enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
+ pgdat->node_present_pages >> 4);
+ for (z = pgdat->nr_zones - 1; z >= 0; z--) {
+ struct zone *zone = pgdat->node_zones + z;
+
+ if (!populated_zone(zone))
+ continue;
+
+ if (zone_watermark_ok(zone, 0,
+ wmark_pages(zone, WMARK_PROMO) + enough_wmark,
+ ZONE_MOVABLE, 0))
+ return true;
+ }
+ return false;
+}
+
+/*
+ * For memory tiering mode, when page tables are scanned, the scan
+ * time will be recorded in struct page in addition to make page
+ * PROT_NONE for slow memory page. So when the page is accessed, in
+ * hint page fault handler, the hint page fault latency is calculated
+ * via,
+ *
+ * hint page fault latency = hint page fault time - scan time
+ *
+ * The smaller the hint page fault latency, the higher the possibility
+ * for the page to be hot.
+ */
+static int numa_hint_fault_latency(struct folio *folio)
+{
+ int last_time, time;
+
+ time = jiffies_to_msecs(jiffies);
+ last_time = folio_xchg_access_time(folio, time);
+
+ return (time - last_time) & PAGE_ACCESS_TIME_MASK;
+}
+
+/*
+ * For memory tiering mode, too high promotion/demotion throughput may
+ * hurt application latency. So we provide a mechanism to rate limit
+ * the number of pages that are tried to be promoted.
+ */
+static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
+ unsigned long rate_limit, int nr)
+{
+ unsigned long nr_cand;
+ unsigned int now, start;
+
+ now = jiffies_to_msecs(jiffies);
+ mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
+ nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
+ start = pgdat->nbp_rl_start;
+ if (now - start > MSEC_PER_SEC &&
+ cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
+ pgdat->nbp_rl_nr_cand = nr_cand;
+ if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
+ return true;
+ return false;
+}
+
+#define NUMA_MIGRATION_ADJUST_STEPS 16
+
+static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
+ unsigned long rate_limit,
+ unsigned int ref_th)
+{
+ unsigned int now, start, th_period, unit_th, th;
+ unsigned long nr_cand, ref_cand, diff_cand;
+
+ now = jiffies_to_msecs(jiffies);
+ th_period = sysctl_numa_balancing_scan_period_max;
+ start = pgdat->nbp_th_start;
+ if (now - start > th_period &&
+ cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
+ ref_cand = rate_limit *
+ sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
+ nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
+ diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
+ unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
+ th = pgdat->nbp_threshold ? : ref_th;
+ if (diff_cand > ref_cand * 11 / 10)
+ th = max(th - unit_th, unit_th);
+ else if (diff_cand < ref_cand * 9 / 10)
+ th = min(th + unit_th, ref_th * 2);
+ pgdat->nbp_th_nr_cand = nr_cand;
+ pgdat->nbp_threshold = th;
+ }
+}
+
+bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
+ int src_nid, int dst_cpu)
+{
+ struct numa_group *ng = deref_curr_numa_group(p);
+ int dst_nid = cpu_to_node(dst_cpu);
+ int last_cpupid, this_cpupid;
+
+ /*
+ * Cannot migrate to memoryless nodes.
+ */
+ if (!node_state(dst_nid, N_MEMORY))
+ return false;
+
+ /*
+ * The pages in slow memory node should be migrated according
+ * to hot/cold instead of private/shared.
+ */
+ if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
+ !node_is_toptier(src_nid)) {
+ struct pglist_data *pgdat;
+ unsigned long rate_limit;
+ unsigned int latency, th, def_th;
+
+ pgdat = NODE_DATA(dst_nid);
+ if (pgdat_free_space_enough(pgdat)) {
+ /* workload changed, reset hot threshold */
+ pgdat->nbp_threshold = 0;
+ return true;
+ }
+
+ def_th = sysctl_numa_balancing_hot_threshold;
+ rate_limit = sysctl_numa_balancing_promote_rate_limit << \
+ (20 - PAGE_SHIFT);
+ numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
+
+ th = pgdat->nbp_threshold ? : def_th;
+ latency = numa_hint_fault_latency(folio);
+ if (latency >= th)
+ return false;
+
+ return !numa_promotion_rate_limit(pgdat, rate_limit,
+ folio_nr_pages(folio));
+ }
+
+ this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
+ last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
+
+ if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
+ !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
+ return false;
+
+ /*
+ * Allow first faults or private faults to migrate immediately early in
+ * the lifetime of a task. The magic number 4 is based on waiting for
+ * two full passes of the "multi-stage node selection" test that is
+ * executed below.
+ */
+ if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
+ (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
+ return true;
+
+ /*
+ * Multi-stage node selection is used in conjunction with a periodic
+ * migration fault to build a temporal task<->page relation. By using
+ * a two-stage filter we remove short/unlikely relations.
+ *
+ * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
+ * a task's usage of a particular page (n_p) per total usage of this
+ * page (n_t) (in a given time-span) to a probability.
+ *
+ * Our periodic faults will sample this probability and getting the
+ * same result twice in a row, given these samples are fully
+ * independent, is then given by P(n)^2, provided our sample period
+ * is sufficiently short compared to the usage pattern.
+ *
+ * This quadric squishes small probabilities, making it less likely we
+ * act on an unlikely task<->page relation.
+ */
+ if (!cpupid_pid_unset(last_cpupid) &&
+ cpupid_to_nid(last_cpupid) != dst_nid)
+ return false;
+
+ /* Always allow migrate on private faults */
+ if (cpupid_match_pid(p, last_cpupid))
+ return true;
+
+ /* A shared fault, but p->numa_group has not been set up yet. */
+ if (!ng)
+ return true;
+
+ /*
+ * Destination node is much more heavily used than the source
+ * node? Allow migration.
+ */
+ if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
+ ACTIVE_NODE_FRACTION)
+ return true;
+
+ /*
+ * Distribute memory according to CPU & memory use on each node,
+ * with 3/4 hysteresis to avoid unnecessary memory migrations:
+ *
+ * faults_cpu(dst) 3 faults_cpu(src)
+ * --------------- * - > ---------------
+ * faults_mem(dst) 4 faults_mem(src)
+ */
+ return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
+ group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
+}
+
+/*
+ * 'numa_type' describes the node at the moment of load balancing.
+ */
+enum numa_type {
+ /* The node has spare capacity that can be used to run more tasks. */
+ node_has_spare = 0,
+ /*
+ * The node is fully used and the tasks don't compete for more CPU
+ * cycles. Nevertheless, some tasks might wait before running.
+ */
+ node_fully_busy,
+ /*
+ * The node is overloaded and can't provide expected CPU cycles to all
+ * tasks.
+ */
+ node_overloaded
+};
+
+/* Cached statistics for all CPUs within a node */
+struct numa_stats {
+ unsigned long load;
+ unsigned long runnable;
+ unsigned long util;
+ /* Total compute capacity of CPUs on a node */
+ unsigned long compute_capacity;
+ unsigned int nr_running;
+ unsigned int weight;
+ enum numa_type node_type;
+ int idle_cpu;
+};
+
+struct task_numa_env {
+ struct task_struct *p;
+
+ int src_cpu, src_nid;
+ int dst_cpu, dst_nid;
+ int imb_numa_nr;
+
+ struct numa_stats src_stats, dst_stats;
+
+ int imbalance_pct;
+ int dist;
+
+ struct task_struct *best_task;
+ long best_imp;
+ int best_cpu;
+};
+
+static unsigned long cpu_load(struct rq *rq);
+
+static inline enum
+numa_type numa_classify(unsigned int imbalance_pct,
+ struct numa_stats *ns)
+{
+ if ((ns->nr_running > ns->weight) &&
+ (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
+ ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
+ return node_overloaded;
+
+ if ((ns->nr_running < ns->weight) ||
+ (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
+ ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
+ return node_has_spare;
+
+ return node_fully_busy;
+}
+
+#ifdef CONFIG_SCHED_SMT
+static inline int numa_idle_core(int idle_core, int cpu)
+{
+ if (!static_branch_likely(&sched_smt_present) ||
+ idle_core >= 0 || !test_idle_cores(cpu))
+ return idle_core;
+
+ /*
+ * Prefer cores instead of packing HT siblings
+ * and triggering future load balancing.
+ */
+ if (is_core_idle(cpu))
+ idle_core = cpu;
+
+ return idle_core;
+}
+#else
+static inline int numa_idle_core(int idle_core, int cpu)
+{
+ return idle_core;
+}
+#endif
+
+/*
+ * Gather all necessary information to make NUMA balancing placement
+ * decisions that are compatible with standard load balancer. This
+ * borrows code and logic from update_sg_lb_stats but sharing a
+ * common implementation is impractical.
+ */
+static void update_numa_stats(struct task_numa_env *env,
+ struct numa_stats *ns, int nid,
+ bool find_idle)
+{
+ int cpu, idle_core = -1;
+
+ memset(ns, 0, sizeof(*ns));
+ ns->idle_cpu = -1;
+
+ rcu_read_lock();
+ for_each_cpu(cpu, cpumask_of_node(nid)) {
+ struct rq *rq = cpu_rq(cpu);
+
+ ns->load += cpu_load(rq);
+ ns->runnable += cpu_runnable(rq);
+ ns->util += cpu_util_cfs(cpu);
+ ns->nr_running += rq->cfs.h_nr_running;
+ ns->compute_capacity += capacity_of(cpu);
+
+ if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
+ if (READ_ONCE(rq->numa_migrate_on) ||
+ !cpumask_test_cpu(cpu, env->p->cpus_ptr))
+ continue;
+
+ if (ns->idle_cpu == -1)
+ ns->idle_cpu = cpu;
+
+ idle_core = numa_idle_core(idle_core, cpu);
+ }
+ }
+ rcu_read_unlock();
+
+ ns->weight = cpumask_weight(cpumask_of_node(nid));
+
+ ns->node_type = numa_classify(env->imbalance_pct, ns);
+
+ if (idle_core >= 0)
+ ns->idle_cpu = idle_core;
+}
+
+static void task_numa_assign(struct task_numa_env *env,
+ struct task_struct *p, long imp)
+{
+ struct rq *rq = cpu_rq(env->dst_cpu);
+
+ /* Check if run-queue part of active NUMA balance. */
+ if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
+ int cpu;
+ int start = env->dst_cpu;
+
+ /* Find alternative idle CPU. */
+ for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
+ if (cpu == env->best_cpu || !idle_cpu(cpu) ||
+ !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
+ continue;
+ }
+
+ env->dst_cpu = cpu;
+ rq = cpu_rq(env->dst_cpu);
+ if (!xchg(&rq->numa_migrate_on, 1))
+ goto assign;
+ }
+
+ /* Failed to find an alternative idle CPU */
+ return;
+ }
+
+assign:
+ /*
+ * Clear previous best_cpu/rq numa-migrate flag, since task now
+ * found a better CPU to move/swap.
+ */
+ if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
+ rq = cpu_rq(env->best_cpu);
+ WRITE_ONCE(rq->numa_migrate_on, 0);
+ }
+
+ if (env->best_task)
+ put_task_struct(env->best_task);
+ if (p)
+ get_task_struct(p);
+
+ env->best_task = p;
+ env->best_imp = imp;
+ env->best_cpu = env->dst_cpu;
+}
+
+static bool load_too_imbalanced(long src_load, long dst_load,
+ struct task_numa_env *env)
+{
+ long imb, old_imb;
+ long orig_src_load, orig_dst_load;
+ long src_capacity, dst_capacity;
+
+ /*
+ * The load is corrected for the CPU capacity available on each node.
+ *
+ * src_load dst_load
+ * ------------ vs ---------
+ * src_capacity dst_capacity
+ */
+ src_capacity = env->src_stats.compute_capacity;
+ dst_capacity = env->dst_stats.compute_capacity;
+
+ imb = abs(dst_load * src_capacity - src_load * dst_capacity);
+
+ orig_src_load = env->src_stats.load;
+ orig_dst_load = env->dst_stats.load;
+
+ old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
+
+ /* Would this change make things worse? */
+ return (imb > old_imb);
+}
+
+/*
+ * Maximum NUMA importance can be 1998 (2*999);
+ * SMALLIMP @ 30 would be close to 1998/64.
+ * Used to deter task migration.
+ */
+#define SMALLIMP 30
+
+/*
+ * This checks if the overall compute and NUMA accesses of the system would
+ * be improved if the source tasks was migrated to the target dst_cpu taking
+ * into account that it might be best if task running on the dst_cpu should
+ * be exchanged with the source task
+ */
+static bool task_numa_compare(struct task_numa_env *env,
+ long taskimp, long groupimp, bool maymove)
+{
+ struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
+ struct rq *dst_rq = cpu_rq(env->dst_cpu);
+ long imp = p_ng ? groupimp : taskimp;
+ struct task_struct *cur;
+ long src_load, dst_load;
+ int dist = env->dist;
+ long moveimp = imp;
+ long load;
+ bool stopsearch = false;
+
+ if (READ_ONCE(dst_rq->numa_migrate_on))
+ return false;
+
+ rcu_read_lock();
+ cur = rcu_dereference(dst_rq->curr);
+ if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
+ cur = NULL;
+
+ /*
+ * Because we have preemption enabled we can get migrated around and
+ * end try selecting ourselves (current == env->p) as a swap candidate.
+ */
+ if (cur == env->p) {
+ stopsearch = true;
+ goto unlock;
+ }
+
+ if (!cur) {
+ if (maymove && moveimp >= env->best_imp)
+ goto assign;
+ else
+ goto unlock;
+ }
+
+ /* Skip this swap candidate if cannot move to the source cpu. */
+ if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
+ goto unlock;
+
+ /*
+ * Skip this swap candidate if it is not moving to its preferred
+ * node and the best task is.
+ */
+ if (env->best_task &&
+ env->best_task->numa_preferred_nid == env->src_nid &&
+ cur->numa_preferred_nid != env->src_nid) {
+ goto unlock;
+ }
+
+ /*
+ * "imp" is the fault differential for the source task between the
+ * source and destination node. Calculate the total differential for
+ * the source task and potential destination task. The more negative
+ * the value is, the more remote accesses that would be expected to
+ * be incurred if the tasks were swapped.
+ *
+ * If dst and source tasks are in the same NUMA group, or not
+ * in any group then look only at task weights.
+ */
+ cur_ng = rcu_dereference(cur->numa_group);
+ if (cur_ng == p_ng) {
+ /*
+ * Do not swap within a group or between tasks that have
+ * no group if there is spare capacity. Swapping does
+ * not address the load imbalance and helps one task at
+ * the cost of punishing another.
+ */
+ if (env->dst_stats.node_type == node_has_spare)
+ goto unlock;
+
+ imp = taskimp + task_weight(cur, env->src_nid, dist) -
+ task_weight(cur, env->dst_nid, dist);
+ /*
+ * Add some hysteresis to prevent swapping the
+ * tasks within a group over tiny differences.
+ */
+ if (cur_ng)
+ imp -= imp / 16;
+ } else {
+ /*
+ * Compare the group weights. If a task is all by itself
+ * (not part of a group), use the task weight instead.
+ */
+ if (cur_ng && p_ng)
+ imp += group_weight(cur, env->src_nid, dist) -
+ group_weight(cur, env->dst_nid, dist);
+ else
+ imp += task_weight(cur, env->src_nid, dist) -
+ task_weight(cur, env->dst_nid, dist);
+ }
+
+ /* Discourage picking a task already on its preferred node */
+ if (cur->numa_preferred_nid == env->dst_nid)
+ imp -= imp / 16;
+
+ /*
+ * Encourage picking a task that moves to its preferred node.
+ * This potentially makes imp larger than it's maximum of
+ * 1998 (see SMALLIMP and task_weight for why) but in this
+ * case, it does not matter.
+ */
+ if (cur->numa_preferred_nid == env->src_nid)
+ imp += imp / 8;
+
+ if (maymove && moveimp > imp && moveimp > env->best_imp) {
+ imp = moveimp;
+ cur = NULL;
+ goto assign;
+ }
+
+ /*
+ * Prefer swapping with a task moving to its preferred node over a
+ * task that is not.
+ */
+ if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
+ env->best_task->numa_preferred_nid != env->src_nid) {
+ goto assign;
+ }
+
+ /*
+ * If the NUMA importance is less than SMALLIMP,
+ * task migration might only result in ping pong
+ * of tasks and also hurt performance due to cache
+ * misses.
+ */
+ if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
+ goto unlock;
+
+ /*
+ * In the overloaded case, try and keep the load balanced.
+ */
+ load = task_h_load(env->p) - task_h_load(cur);
+ if (!load)
+ goto assign;
+
+ dst_load = env->dst_stats.load + load;
+ src_load = env->src_stats.load - load;
+
+ if (load_too_imbalanced(src_load, dst_load, env))
+ goto unlock;
+
+assign:
+ /* Evaluate an idle CPU for a task numa move. */
+ if (!cur) {
+ int cpu = env->dst_stats.idle_cpu;
+
+ /* Nothing cached so current CPU went idle since the search. */
+ if (cpu < 0)
+ cpu = env->dst_cpu;
+
+ /*
+ * If the CPU is no longer truly idle and the previous best CPU
+ * is, keep using it.
+ */
+ if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
+ idle_cpu(env->best_cpu)) {
+ cpu = env->best_cpu;
+ }
+
+ env->dst_cpu = cpu;
+ }
+
+ task_numa_assign(env, cur, imp);
+
+ /*
+ * If a move to idle is allowed because there is capacity or load
+ * balance improves then stop the search. While a better swap
+ * candidate may exist, a search is not free.
+ */
+ if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
+ stopsearch = true;
+
+ /*
+ * If a swap candidate must be identified and the current best task
+ * moves its preferred node then stop the search.
+ */
+ if (!maymove && env->best_task &&
+ env->best_task->numa_preferred_nid == env->src_nid) {
+ stopsearch = true;
+ }
+unlock:
+ rcu_read_unlock();
+
+ return stopsearch;
+}
+
+static void task_numa_find_cpu(struct task_numa_env *env,
+ long taskimp, long groupimp)
+{
+ bool maymove = false;
+ int cpu;
+
+ /*
+ * If dst node has spare capacity, then check if there is an
+ * imbalance that would be overruled by the load balancer.
+ */
+ if (env->dst_stats.node_type == node_has_spare) {
+ unsigned int imbalance;
+ int src_running, dst_running;
+
+ /*
+ * Would movement cause an imbalance? Note that if src has
+ * more running tasks that the imbalance is ignored as the
+ * move improves the imbalance from the perspective of the
+ * CPU load balancer.
+ * */
+ src_running = env->src_stats.nr_running - 1;
+ dst_running = env->dst_stats.nr_running + 1;
+ imbalance = max(0, dst_running - src_running);
+ imbalance = adjust_numa_imbalance(imbalance, dst_running,
+ env->imb_numa_nr);
+
+ /* Use idle CPU if there is no imbalance */
+ if (!imbalance) {
+ maymove = true;
+ if (env->dst_stats.idle_cpu >= 0) {
+ env->dst_cpu = env->dst_stats.idle_cpu;
+ task_numa_assign(env, NULL, 0);
+ return;
+ }
+ }
+ } else {
+ long src_load, dst_load, load;
+ /*
+ * If the improvement from just moving env->p direction is better
+ * than swapping tasks around, check if a move is possible.
+ */
+ load = task_h_load(env->p);
+ dst_load = env->dst_stats.load + load;
+ src_load = env->src_stats.load - load;
+ maymove = !load_too_imbalanced(src_load, dst_load, env);
+ }
+
+ for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
+ /* Skip this CPU if the source task cannot migrate */
+ if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
+ continue;
+
+ env->dst_cpu = cpu;
+ if (task_numa_compare(env, taskimp, groupimp, maymove))
+ break;
+ }
+}
+
+static int task_numa_migrate(struct task_struct *p)
+{
+ struct task_numa_env env = {
+ .p = p,
+
+ .src_cpu = task_cpu(p),
+ .src_nid = task_node(p),
+
+ .imbalance_pct = 112,
+
+ .best_task = NULL,
+ .best_imp = 0,
+ .best_cpu = -1,
+ };
+ unsigned long taskweight, groupweight;
+ struct sched_domain *sd;
+ long taskimp, groupimp;
+ struct numa_group *ng;
+ struct rq *best_rq;
+ int nid, ret, dist;
+
+ /*
+ * Pick the lowest SD_NUMA domain, as that would have the smallest
+ * imbalance and would be the first to start moving tasks about.
+ *
+ * And we want to avoid any moving of tasks about, as that would create
+ * random movement of tasks -- counter the numa conditions we're trying
+ * to satisfy here.
+ */
+ rcu_read_lock();
+ sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
+ if (sd) {
+ env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
+ env.imb_numa_nr = sd->imb_numa_nr;
+ }
+ rcu_read_unlock();
+
+ /*
+ * Cpusets can break the scheduler domain tree into smaller
+ * balance domains, some of which do not cross NUMA boundaries.
+ * Tasks that are "trapped" in such domains cannot be migrated
+ * elsewhere, so there is no point in (re)trying.
+ */
+ if (unlikely(!sd)) {
+ sched_setnuma(p, task_node(p));
+ return -EINVAL;
+ }
+
+ env.dst_nid = p->numa_preferred_nid;
+ dist = env.dist = node_distance(env.src_nid, env.dst_nid);
+ taskweight = task_weight(p, env.src_nid, dist);
+ groupweight = group_weight(p, env.src_nid, dist);
+ update_numa_stats(&env, &env.src_stats, env.src_nid, false);
+ taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
+ groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
+ update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
+
+ /* Try to find a spot on the preferred nid. */
+ task_numa_find_cpu(&env, taskimp, groupimp);
+
+ /*
+ * Look at other nodes in these cases:
+ * - there is no space available on the preferred_nid
+ * - the task is part of a numa_group that is interleaved across
+ * multiple NUMA nodes; in order to better consolidate the group,
+ * we need to check other locations.
+ */
+ ng = deref_curr_numa_group(p);
+ if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
+ for_each_node_state(nid, N_CPU) {
+ if (nid == env.src_nid || nid == p->numa_preferred_nid)
+ continue;
+
+ dist = node_distance(env.src_nid, env.dst_nid);
+ if (sched_numa_topology_type == NUMA_BACKPLANE &&
+ dist != env.dist) {
+ taskweight = task_weight(p, env.src_nid, dist);
+ groupweight = group_weight(p, env.src_nid, dist);
+ }
+
+ /* Only consider nodes where both task and groups benefit */
+ taskimp = task_weight(p, nid, dist) - taskweight;
+ groupimp = group_weight(p, nid, dist) - groupweight;
+ if (taskimp < 0 && groupimp < 0)
+ continue;
+
+ env.dist = dist;
+ env.dst_nid = nid;
+ update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
+ task_numa_find_cpu(&env, taskimp, groupimp);
+ }
+ }
+
+ /*
+ * If the task is part of a workload that spans multiple NUMA nodes,
+ * and is migrating into one of the workload's active nodes, remember
+ * this node as the task's preferred numa node, so the workload can
+ * settle down.
+ * A task that migrated to a second choice node will be better off
+ * trying for a better one later. Do not set the preferred node here.
+ */
+ if (ng) {
+ if (env.best_cpu == -1)
+ nid = env.src_nid;
+ else
+ nid = cpu_to_node(env.best_cpu);
+
+ if (nid != p->numa_preferred_nid)
+ sched_setnuma(p, nid);
+ }
+
+ /* No better CPU than the current one was found. */
+ if (env.best_cpu == -1) {
+ trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
+ return -EAGAIN;
+ }
+
+ best_rq = cpu_rq(env.best_cpu);
+ if (env.best_task == NULL) {
+ ret = migrate_task_to(p, env.best_cpu);
+ WRITE_ONCE(best_rq->numa_migrate_on, 0);
+ if (ret != 0)
+ trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
+ return ret;
+ }
+
+ ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
+ WRITE_ONCE(best_rq->numa_migrate_on, 0);
+
+ if (ret != 0)
+ trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
+ put_task_struct(env.best_task);
+ return ret;
+}
+
+/* Attempt to migrate a task to a CPU on the preferred node. */
+static void numa_migrate_preferred(struct task_struct *p)
+{
+ unsigned long interval = HZ;
+
+ /* This task has no NUMA fault statistics yet */
+ if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
+ return;
+
+ /* Periodically retry migrating the task to the preferred node */
+ interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
+ p->numa_migrate_retry = jiffies + interval;
+
+ /* Success if task is already running on preferred CPU */
+ if (task_node(p) == p->numa_preferred_nid)
+ return;
+
+ /* Otherwise, try migrate to a CPU on the preferred node */
+ task_numa_migrate(p);
+}
+
+/*
+ * Find out how many nodes the workload is actively running on. Do this by
+ * tracking the nodes from which NUMA hinting faults are triggered. This can
+ * be different from the set of nodes where the workload's memory is currently
+ * located.
+ */
+static void numa_group_count_active_nodes(struct numa_group *numa_group)
+{
+ unsigned long faults, max_faults = 0;
+ int nid, active_nodes = 0;
+
+ for_each_node_state(nid, N_CPU) {
+ faults = group_faults_cpu(numa_group, nid);
+ if (faults > max_faults)
+ max_faults = faults;
+ }
+
+ for_each_node_state(nid, N_CPU) {
+ faults = group_faults_cpu(numa_group, nid);
+ if (faults * ACTIVE_NODE_FRACTION > max_faults)
+ active_nodes++;
+ }
+
+ numa_group->max_faults_cpu = max_faults;
+ numa_group->active_nodes = active_nodes;
+}
+
+/*
+ * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
+ * increments. The more local the fault statistics are, the higher the scan
+ * period will be for the next scan window. If local/(local+remote) ratio is
+ * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
+ * the scan period will decrease. Aim for 70% local accesses.
+ */
+#define NUMA_PERIOD_SLOTS 10
+#define NUMA_PERIOD_THRESHOLD 7
+
+/*
+ * Increase the scan period (slow down scanning) if the majority of
+ * our memory is already on our local node, or if the majority of
+ * the page accesses are shared with other processes.
+ * Otherwise, decrease the scan period.
+ */
+static void update_task_scan_period(struct task_struct *p,
+ unsigned long shared, unsigned long private)
+{
+ unsigned int period_slot;
+ int lr_ratio, ps_ratio;
+ int diff;
+
+ unsigned long remote = p->numa_faults_locality[0];
+ unsigned long local = p->numa_faults_locality[1];
+
+ /*
+ * If there were no record hinting faults then either the task is
+ * completely idle or all activity is in areas that are not of interest
+ * to automatic numa balancing. Related to that, if there were failed
+ * migration then it implies we are migrating too quickly or the local
+ * node is overloaded. In either case, scan slower
+ */
+ if (local + shared == 0 || p->numa_faults_locality[2]) {
+ p->numa_scan_period = min(p->numa_scan_period_max,
+ p->numa_scan_period << 1);
+
+ p->mm->numa_next_scan = jiffies +
+ msecs_to_jiffies(p->numa_scan_period);
+
+ return;
+ }
+
+ /*
+ * Prepare to scale scan period relative to the current period.
+ * == NUMA_PERIOD_THRESHOLD scan period stays the same
+ * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
+ * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
+ */
+ period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
+ lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
+ ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
+
+ if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
+ /*
+ * Most memory accesses are local. There is no need to
+ * do fast NUMA scanning, since memory is already local.
+ */
+ int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
+ if (!slot)
+ slot = 1;
+ diff = slot * period_slot;
+ } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
+ /*
+ * Most memory accesses are shared with other tasks.
+ * There is no point in continuing fast NUMA scanning,
+ * since other tasks may just move the memory elsewhere.
+ */
+ int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
+ if (!slot)
+ slot = 1;
+ diff = slot * period_slot;
+ } else {
+ /*
+ * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
+ * yet they are not on the local NUMA node. Speed up
+ * NUMA scanning to get the memory moved over.
+ */
+ int ratio = max(lr_ratio, ps_ratio);
+ diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
+ }
+
+ p->numa_scan_period = clamp(p->numa_scan_period + diff,
+ task_scan_min(p), task_scan_max(p));
+ memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
+}
+
+/*
+ * Get the fraction of time the task has been running since the last
+ * NUMA placement cycle. The scheduler keeps similar statistics, but
+ * decays those on a 32ms period, which is orders of magnitude off
+ * from the dozens-of-seconds NUMA balancing period. Use the scheduler
+ * stats only if the task is so new there are no NUMA statistics yet.
+ */
+static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
+{
+ u64 runtime, delta, now;
+ /* Use the start of this time slice to avoid calculations. */
+ now = p->se.exec_start;
+ runtime = p->se.sum_exec_runtime;
+
+ if (p->last_task_numa_placement) {
+ delta = runtime - p->last_sum_exec_runtime;
+ *period = now - p->last_task_numa_placement;
+
+ /* Avoid time going backwards, prevent potential divide error: */
+ if (unlikely((s64)*period < 0))
+ *period = 0;
+ } else {
+ delta = p->se.avg.load_sum;
+ *period = LOAD_AVG_MAX;
+ }
+
+ p->last_sum_exec_runtime = runtime;
+ p->last_task_numa_placement = now;
+
+ return delta;
+}
+
+/*
+ * Determine the preferred nid for a task in a numa_group. This needs to
+ * be done in a way that produces consistent results with group_weight,
+ * otherwise workloads might not converge.
+ */
+static int preferred_group_nid(struct task_struct *p, int nid)
+{
+ nodemask_t nodes;
+ int dist;
+
+ /* Direct connections between all NUMA nodes. */
+ if (sched_numa_topology_type == NUMA_DIRECT)
+ return nid;
+
+ /*
+ * On a system with glueless mesh NUMA topology, group_weight
+ * scores nodes according to the number of NUMA hinting faults on
+ * both the node itself, and on nearby nodes.
+ */
+ if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
+ unsigned long score, max_score = 0;
+ int node, max_node = nid;
+
+ dist = sched_max_numa_distance;
+
+ for_each_node_state(node, N_CPU) {
+ score = group_weight(p, node, dist);
+ if (score > max_score) {
+ max_score = score;
+ max_node = node;
+ }
+ }
+ return max_node;
+ }
+
+ /*
+ * Finding the preferred nid in a system with NUMA backplane
+ * interconnect topology is more involved. The goal is to locate
+ * tasks from numa_groups near each other in the system, and
+ * untangle workloads from different sides of the system. This requires
+ * searching down the hierarchy of node groups, recursively searching
+ * inside the highest scoring group of nodes. The nodemask tricks
+ * keep the complexity of the search down.
+ */
+ nodes = node_states[N_CPU];
+ for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
+ unsigned long max_faults = 0;
+ nodemask_t max_group = NODE_MASK_NONE;
+ int a, b;
+
+ /* Are there nodes at this distance from each other? */
+ if (!find_numa_distance(dist))
+ continue;
+
+ for_each_node_mask(a, nodes) {
+ unsigned long faults = 0;
+ nodemask_t this_group;
+ nodes_clear(this_group);
+
+ /* Sum group's NUMA faults; includes a==b case. */
+ for_each_node_mask(b, nodes) {
+ if (node_distance(a, b) < dist) {
+ faults += group_faults(p, b);
+ node_set(b, this_group);
+ node_clear(b, nodes);
+ }
+ }
+
+ /* Remember the top group. */
+ if (faults > max_faults) {
+ max_faults = faults;
+ max_group = this_group;
+ /*
+ * subtle: at the smallest distance there is
+ * just one node left in each "group", the
+ * winner is the preferred nid.
+ */
+ nid = a;
+ }
+ }
+ /* Next round, evaluate the nodes within max_group. */
+ if (!max_faults)
+ break;
+ nodes = max_group;
+ }
+ return nid;
+}
+
+static void task_numa_placement(struct task_struct *p)
+{
+ int seq, nid, max_nid = NUMA_NO_NODE;
+ unsigned long max_faults = 0;
+ unsigned long fault_types[2] = { 0, 0 };
+ unsigned long total_faults;
+ u64 runtime, period;
+ spinlock_t *group_lock = NULL;
+ struct numa_group *ng;
+
+ /*
+ * The p->mm->numa_scan_seq field gets updated without
+ * exclusive access. Use READ_ONCE() here to ensure
+ * that the field is read in a single access:
+ */
+ seq = READ_ONCE(p->mm->numa_scan_seq);
+ if (p->numa_scan_seq == seq)
+ return;
+ p->numa_scan_seq = seq;
+ p->numa_scan_period_max = task_scan_max(p);
+
+ total_faults = p->numa_faults_locality[0] +
+ p->numa_faults_locality[1];
+ runtime = numa_get_avg_runtime(p, &period);
+
+ /* If the task is part of a group prevent parallel updates to group stats */
+ ng = deref_curr_numa_group(p);
+ if (ng) {
+ group_lock = &ng->lock;
+ spin_lock_irq(group_lock);
+ }
+
+ /* Find the node with the highest number of faults */
+ for_each_online_node(nid) {
+ /* Keep track of the offsets in numa_faults array */
+ int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
+ unsigned long faults = 0, group_faults = 0;
+ int priv;
+
+ for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
+ long diff, f_diff, f_weight;
+
+ mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
+ membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
+ cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
+ cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
+
+ /* Decay existing window, copy faults since last scan */
+ diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
+ fault_types[priv] += p->numa_faults[membuf_idx];
+ p->numa_faults[membuf_idx] = 0;
+
+ /*
+ * Normalize the faults_from, so all tasks in a group
+ * count according to CPU use, instead of by the raw
+ * number of faults. Tasks with little runtime have
+ * little over-all impact on throughput, and thus their
+ * faults are less important.
+ */
+ f_weight = div64_u64(runtime << 16, period + 1);
+ f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
+ (total_faults + 1);
+ f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
+ p->numa_faults[cpubuf_idx] = 0;
+
+ p->numa_faults[mem_idx] += diff;
+ p->numa_faults[cpu_idx] += f_diff;
+ faults += p->numa_faults[mem_idx];
+ p->total_numa_faults += diff;
+ if (ng) {
+ /*
+ * safe because we can only change our own group
+ *
+ * mem_idx represents the offset for a given
+ * nid and priv in a specific region because it
+ * is at the beginning of the numa_faults array.
+ */
+ ng->faults[mem_idx] += diff;
+ ng->faults[cpu_idx] += f_diff;
+ ng->total_faults += diff;
+ group_faults += ng->faults[mem_idx];
+ }
+ }
+
+ if (!ng) {
+ if (faults > max_faults) {
+ max_faults = faults;
+ max_nid = nid;
+ }
+ } else if (group_faults > max_faults) {
+ max_faults = group_faults;
+ max_nid = nid;
+ }
+ }
+
+ /* Cannot migrate task to CPU-less node */
+ max_nid = numa_nearest_node(max_nid, N_CPU);
+
+ if (ng) {
+ numa_group_count_active_nodes(ng);
+ spin_unlock_irq(group_lock);
+ max_nid = preferred_group_nid(p, max_nid);
+ }
+
+ if (max_faults) {
+ /* Set the new preferred node */
+ if (max_nid != p->numa_preferred_nid)
+ sched_setnuma(p, max_nid);
+ }
+
+ update_task_scan_period(p, fault_types[0], fault_types[1]);
+}
+
+static inline int get_numa_group(struct numa_group *grp)
+{
+ return refcount_inc_not_zero(&grp->refcount);
+}
+
+static inline void put_numa_group(struct numa_group *grp)
+{
+ if (refcount_dec_and_test(&grp->refcount))
+ kfree_rcu(grp, rcu);
+}
+
+static void task_numa_group(struct task_struct *p, int cpupid, int flags,
+ int *priv)
+{
+ struct numa_group *grp, *my_grp;
+ struct task_struct *tsk;
+ bool join = false;
+ int cpu = cpupid_to_cpu(cpupid);
+ int i;
+
+ if (unlikely(!deref_curr_numa_group(p))) {
+ unsigned int size = sizeof(struct numa_group) +
+ NR_NUMA_HINT_FAULT_STATS *
+ nr_node_ids * sizeof(unsigned long);
+
+ grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
+ if (!grp)
+ return;
+
+ refcount_set(&grp->refcount, 1);
+ grp->active_nodes = 1;
+ grp->max_faults_cpu = 0;
+ spin_lock_init(&grp->lock);
+ grp->gid = p->pid;
+
+ for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
+ grp->faults[i] = p->numa_faults[i];
+
+ grp->total_faults = p->total_numa_faults;
+
+ grp->nr_tasks++;
+ rcu_assign_pointer(p->numa_group, grp);
+ }
+
+ rcu_read_lock();
+ tsk = READ_ONCE(cpu_rq(cpu)->curr);
+
+ if (!cpupid_match_pid(tsk, cpupid))
+ goto no_join;
+
+ grp = rcu_dereference(tsk->numa_group);
+ if (!grp)
+ goto no_join;
+
+ my_grp = deref_curr_numa_group(p);
+ if (grp == my_grp)
+ goto no_join;
+
+ /*
+ * Only join the other group if its bigger; if we're the bigger group,
+ * the other task will join us.
+ */
+ if (my_grp->nr_tasks > grp->nr_tasks)
+ goto no_join;
+
+ /*
+ * Tie-break on the grp address.
+ */
+ if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
+ goto no_join;
+
+ /* Always join threads in the same process. */
+ if (tsk->mm == current->mm)
+ join = true;
+
+ /* Simple filter to avoid false positives due to PID collisions */
+ if (flags & TNF_SHARED)
+ join = true;
+
+ /* Update priv based on whether false sharing was detected */
+ *priv = !join;
+
+ if (join && !get_numa_group(grp))
+ goto no_join;
+
+ rcu_read_unlock();
+
+ if (!join)
+ return;
+
+ WARN_ON_ONCE(irqs_disabled());
+ double_lock_irq(&my_grp->lock, &grp->lock);
+
+ for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
+ my_grp->faults[i] -= p->numa_faults[i];
+ grp->faults[i] += p->numa_faults[i];
+ }
+ my_grp->total_faults -= p->total_numa_faults;
+ grp->total_faults += p->total_numa_faults;
+
+ my_grp->nr_tasks--;
+ grp->nr_tasks++;
+
+ spin_unlock(&my_grp->lock);
+ spin_unlock_irq(&grp->lock);
+
+ rcu_assign_pointer(p->numa_group, grp);
+
+ put_numa_group(my_grp);
+ return;
+
+no_join:
+ rcu_read_unlock();
+ return;
+}
+
+/*
+ * Get rid of NUMA statistics associated with a task (either current or dead).
+ * If @final is set, the task is dead and has reached refcount zero, so we can
+ * safely free all relevant data structures. Otherwise, there might be
+ * concurrent reads from places like load balancing and procfs, and we should
+ * reset the data back to default state without freeing ->numa_faults.
+ */
+void task_numa_free(struct task_struct *p, bool final)
+{
+ /* safe: p either is current or is being freed by current */
+ struct numa_group *grp = rcu_dereference_raw(p->numa_group);
+ unsigned long *numa_faults = p->numa_faults;
+ unsigned long flags;
+ int i;
+
+ if (!numa_faults)
+ return;
+
+ if (grp) {
+ spin_lock_irqsave(&grp->lock, flags);
+ for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
+ grp->faults[i] -= p->numa_faults[i];
+ grp->total_faults -= p->total_numa_faults;
+
+ grp->nr_tasks--;
+ spin_unlock_irqrestore(&grp->lock, flags);
+ RCU_INIT_POINTER(p->numa_group, NULL);
+ put_numa_group(grp);
+ }
+
+ if (final) {
+ p->numa_faults = NULL;
+ kfree(numa_faults);
+ } else {
+ p->total_numa_faults = 0;
+ for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
+ numa_faults[i] = 0;
+ }
+}
+
+/*
+ * Got a PROT_NONE fault for a page on @node.
+ */
+void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
+{
+ struct task_struct *p = current;
+ bool migrated = flags & TNF_MIGRATED;
+ int cpu_node = task_node(current);
+ int local = !!(flags & TNF_FAULT_LOCAL);
+ struct numa_group *ng;
+ int priv;
+
+ if (!static_branch_likely(&sched_numa_balancing))
+ return;
+
+ /* for example, ksmd faulting in a user's mm */
+ if (!p->mm)
+ return;
+
+ /*
+ * NUMA faults statistics are unnecessary for the slow memory
+ * node for memory tiering mode.
+ */
+ if (!node_is_toptier(mem_node) &&
+ (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
+ !cpupid_valid(last_cpupid)))
+ return;
+
+ /* Allocate buffer to track faults on a per-node basis */
+ if (unlikely(!p->numa_faults)) {
+ int size = sizeof(*p->numa_faults) *
+ NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
+
+ p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
+ if (!p->numa_faults)
+ return;
+
+ p->total_numa_faults = 0;
+ memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
+ }
+
+ /*
+ * First accesses are treated as private, otherwise consider accesses
+ * to be private if the accessing pid has not changed
+ */
+ if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
+ priv = 1;
+ } else {
+ priv = cpupid_match_pid(p, last_cpupid);
+ if (!priv && !(flags & TNF_NO_GROUP))
+ task_numa_group(p, last_cpupid, flags, &priv);
+ }
+
+ /*
+ * If a workload spans multiple NUMA nodes, a shared fault that
+ * occurs wholly within the set of nodes that the workload is
+ * actively using should be counted as local. This allows the
+ * scan rate to slow down when a workload has settled down.
+ */
+ ng = deref_curr_numa_group(p);
+ if (!priv && !local && ng && ng->active_nodes > 1 &&
+ numa_is_active_node(cpu_node, ng) &&
+ numa_is_active_node(mem_node, ng))
+ local = 1;
+
+ /*
+ * Retry to migrate task to preferred node periodically, in case it
+ * previously failed, or the scheduler moved us.
+ */
+ if (time_after(jiffies, p->numa_migrate_retry)) {
+ task_numa_placement(p);
+ numa_migrate_preferred(p);
+ }
+
+ if (migrated)
+ p->numa_pages_migrated += pages;
+ if (flags & TNF_MIGRATE_FAIL)
+ p->numa_faults_locality[2] += pages;
+
+ p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
+ p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
+ p->numa_faults_locality[local] += pages;
+}
+
+static void reset_ptenuma_scan(struct task_struct *p)
+{
+ /*
+ * We only did a read acquisition of the mmap sem, so
+ * p->mm->numa_scan_seq is written to without exclusive access
+ * and the update is not guaranteed to be atomic. That's not
+ * much of an issue though, since this is just used for
+ * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
+ * expensive, to avoid any form of compiler optimizations:
+ */
+ WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
+ p->mm->numa_scan_offset = 0;
+}
+
+static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
+{
+ unsigned long pids;
+ /*
+ * Allow unconditional access first two times, so that all the (pages)
+ * of VMAs get prot_none fault introduced irrespective of accesses.
+ * This is also done to avoid any side effect of task scanning
+ * amplifying the unfairness of disjoint set of VMAs' access.
+ */
+ if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
+ return true;
+
+ pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
+ if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
+ return true;
+
+ /*
+ * Complete a scan that has already started regardless of PID access, or
+ * some VMAs may never be scanned in multi-threaded applications:
+ */
+ if (mm->numa_scan_offset > vma->vm_start) {
+ trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
+ return true;
+ }
+
+ return false;
+}
+
+#define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
+
+/*
+ * The expensive part of numa migration is done from task_work context.
+ * Triggered from task_tick_numa().
+ */
+static void task_numa_work(struct callback_head *work)
+{
+ unsigned long migrate, next_scan, now = jiffies;
+ struct task_struct *p = current;
+ struct mm_struct *mm = p->mm;
+ u64 runtime = p->se.sum_exec_runtime;
+ struct vm_area_struct *vma;
+ unsigned long start, end;
+ unsigned long nr_pte_updates = 0;
+ long pages, virtpages;
+ struct vma_iterator vmi;
+ bool vma_pids_skipped;
+ bool vma_pids_forced = false;
+
+ SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
+
+ work->next = work;
+ /*
+ * Who cares about NUMA placement when they're dying.
+ *
+ * NOTE: make sure not to dereference p->mm before this check,
+ * exit_task_work() happens _after_ exit_mm() so we could be called
+ * without p->mm even though we still had it when we enqueued this
+ * work.
+ */
+ if (p->flags & PF_EXITING)
+ return;
+
+ if (!mm->numa_next_scan) {
+ mm->numa_next_scan = now +
+ msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
+ }
+
+ /*
+ * Enforce maximal scan/migration frequency..
+ */
+ migrate = mm->numa_next_scan;
+ if (time_before(now, migrate))
+ return;
+
+ if (p->numa_scan_period == 0) {
+ p->numa_scan_period_max = task_scan_max(p);
+ p->numa_scan_period = task_scan_start(p);
+ }
+
+ next_scan = now + msecs_to_jiffies(p->numa_scan_period);
+ if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
+ return;
+
+ /*
+ * Delay this task enough that another task of this mm will likely win
+ * the next time around.
+ */
+ p->node_stamp += 2 * TICK_NSEC;
+
+ pages = sysctl_numa_balancing_scan_size;
+ pages <<= 20 - PAGE_SHIFT; /* MB in pages */
+ virtpages = pages * 8; /* Scan up to this much virtual space */
+ if (!pages)
+ return;
+
+
+ if (!mmap_read_trylock(mm))
+ return;
+
+ /*
+ * VMAs are skipped if the current PID has not trapped a fault within
+ * the VMA recently. Allow scanning to be forced if there is no
+ * suitable VMA remaining.
+ */
+ vma_pids_skipped = false;
+
+retry_pids:
+ start = mm->numa_scan_offset;
+ vma_iter_init(&vmi, mm, start);
+ vma = vma_next(&vmi);
+ if (!vma) {
+ reset_ptenuma_scan(p);
+ start = 0;
+ vma_iter_set(&vmi, start);
+ vma = vma_next(&vmi);
+ }
+
+ do {
+ if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
+ is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
+ trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
+ continue;
+ }
+
+ /*
+ * Shared library pages mapped by multiple processes are not
+ * migrated as it is expected they are cache replicated. Avoid
+ * hinting faults in read-only file-backed mappings or the vDSO
+ * as migrating the pages will be of marginal benefit.
+ */
+ if (!vma->vm_mm ||
+ (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
+ trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
+ continue;
+ }
+
+ /*
+ * Skip inaccessible VMAs to avoid any confusion between
+ * PROT_NONE and NUMA hinting PTEs
+ */
+ if (!vma_is_accessible(vma)) {
+ trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
+ continue;
+ }
+
+ /* Initialise new per-VMA NUMAB state. */
+ if (!vma->numab_state) {
+ vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
+ GFP_KERNEL);
+ if (!vma->numab_state)
+ continue;
+
+ vma->numab_state->start_scan_seq = mm->numa_scan_seq;
+
+ vma->numab_state->next_scan = now +
+ msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
+
+ /* Reset happens after 4 times scan delay of scan start */
+ vma->numab_state->pids_active_reset = vma->numab_state->next_scan +
+ msecs_to_jiffies(VMA_PID_RESET_PERIOD);
+
+ /*
+ * Ensure prev_scan_seq does not match numa_scan_seq,
+ * to prevent VMAs being skipped prematurely on the
+ * first scan:
+ */
+ vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
+ }
+
+ /*
+ * Scanning the VMAs of short lived tasks add more overhead. So
+ * delay the scan for new VMAs.
+ */
+ if (mm->numa_scan_seq && time_before(jiffies,
+ vma->numab_state->next_scan)) {
+ trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
+ continue;
+ }
+
+ /* RESET access PIDs regularly for old VMAs. */
+ if (mm->numa_scan_seq &&
+ time_after(jiffies, vma->numab_state->pids_active_reset)) {
+ vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
+ msecs_to_jiffies(VMA_PID_RESET_PERIOD);
+ vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
+ vma->numab_state->pids_active[1] = 0;
+ }
+
+ /* Do not rescan VMAs twice within the same sequence. */
+ if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
+ mm->numa_scan_offset = vma->vm_end;
+ trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
+ continue;
+ }
+
+ /*
+ * Do not scan the VMA if task has not accessed it, unless no other
+ * VMA candidate exists.
+ */
+ if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
+ vma_pids_skipped = true;
+ trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
+ continue;
+ }
+
+ do {
+ start = max(start, vma->vm_start);
+ end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
+ end = min(end, vma->vm_end);
+ nr_pte_updates = change_prot_numa(vma, start, end);
+
+ /*
+ * Try to scan sysctl_numa_balancing_size worth of
+ * hpages that have at least one present PTE that
+ * is not already PTE-numa. If the VMA contains
+ * areas that are unused or already full of prot_numa
+ * PTEs, scan up to virtpages, to skip through those
+ * areas faster.
+ */
+ if (nr_pte_updates)
+ pages -= (end - start) >> PAGE_SHIFT;
+ virtpages -= (end - start) >> PAGE_SHIFT;
+
+ start = end;
+ if (pages <= 0 || virtpages <= 0)
+ goto out;
+
+ cond_resched();
+ } while (end != vma->vm_end);
+
+ /* VMA scan is complete, do not scan until next sequence. */
+ vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
+
+ /*
+ * Only force scan within one VMA at a time, to limit the
+ * cost of scanning a potentially uninteresting VMA.
+ */
+ if (vma_pids_forced)
+ break;
+ } for_each_vma(vmi, vma);
+
+ /*
+ * If no VMAs are remaining and VMAs were skipped due to the PID
+ * not accessing the VMA previously, then force a scan to ensure
+ * forward progress:
+ */
+ if (!vma && !vma_pids_forced && vma_pids_skipped) {
+ vma_pids_forced = true;
+ goto retry_pids;
+ }
+
+out:
+ /*
+ * It is possible to reach the end of the VMA list but the last few
+ * VMAs are not guaranteed to the vma_migratable. If they are not, we
+ * would find the !migratable VMA on the next scan but not reset the
+ * scanner to the start so check it now.
+ */
+ if (vma)
+ mm->numa_scan_offset = start;
+ else
+ reset_ptenuma_scan(p);
+ mmap_read_unlock(mm);
+
+ /*
+ * Make sure tasks use at least 32x as much time to run other code
+ * than they used here, to limit NUMA PTE scanning overhead to 3% max.
+ * Usually update_task_scan_period slows down scanning enough; on an
+ * overloaded system we need to limit overhead on a per task basis.
+ */
+ if (unlikely(p->se.sum_exec_runtime != runtime)) {
+ u64 diff = p->se.sum_exec_runtime - runtime;
+ p->node_stamp += 32 * diff;
+ }
+}
+
+void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
+{
+ int mm_users = 0;
+ struct mm_struct *mm = p->mm;
+
+ if (mm) {
+ mm_users = atomic_read(&mm->mm_users);
+ if (mm_users == 1) {
+ mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
+ mm->numa_scan_seq = 0;
+ }
+ }
+ p->node_stamp = 0;
+ p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
+ p->numa_scan_period = sysctl_numa_balancing_scan_delay;
+ p->numa_migrate_retry = 0;
+ /* Protect against double add, see task_tick_numa and task_numa_work */
+ p->numa_work.next = &p->numa_work;
+ p->numa_faults = NULL;
+ p->numa_pages_migrated = 0;
+ p->total_numa_faults = 0;
+ RCU_INIT_POINTER(p->numa_group, NULL);
+ p->last_task_numa_placement = 0;
+ p->last_sum_exec_runtime = 0;
+
+ init_task_work(&p->numa_work, task_numa_work);
+
+ /* New address space, reset the preferred nid */
+ if (!(clone_flags & CLONE_VM)) {
+ p->numa_preferred_nid = NUMA_NO_NODE;
+ return;
+ }
+
+ /*
+ * New thread, keep existing numa_preferred_nid which should be copied
+ * already by arch_dup_task_struct but stagger when scans start.
+ */
+ if (mm) {
+ unsigned int delay;
+
+ delay = min_t(unsigned int, task_scan_max(current),
+ current->numa_scan_period * mm_users * NSEC_PER_MSEC);
+ delay += 2 * TICK_NSEC;
+ p->node_stamp = delay;
+ }
+}
+
+/*
+ * Drive the periodic memory faults..
+ */
+void task_tick_numa(struct rq *rq, struct task_struct *curr)
+{
+ struct callback_head *work = &curr->numa_work;
+ u64 period, now;
+
+ /*
+ * We don't care about NUMA placement if we don't have memory.
+ */
+ if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
+ return;
+
+ /*
+ * Using runtime rather than walltime has the dual advantage that
+ * we (mostly) drive the selection from busy threads and that the
+ * task needs to have done some actual work before we bother with
+ * NUMA placement.
+ */
+ now = curr->se.sum_exec_runtime;
+ period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
+
+ if (now > curr->node_stamp + period) {
+ if (!curr->node_stamp)
+ curr->numa_scan_period = task_scan_start(curr);
+ curr->node_stamp += period;
+
+ if (!time_before(jiffies, curr->mm->numa_next_scan))
+ task_work_add(curr, work, TWA_RESUME);
+ }
+}
+
+void update_scan_period(struct task_struct *p, int new_cpu)
+{
+ int src_nid = cpu_to_node(task_cpu(p));
+ int dst_nid = cpu_to_node(new_cpu);
+
+ if (!static_branch_likely(&sched_numa_balancing))
+ return;
+
+ if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
+ return;
+
+ if (src_nid == dst_nid)
+ return;
+
+ /*
+ * Allow resets if faults have been trapped before one scan
+ * has completed. This is most likely due to a new task that
+ * is pulled cross-node due to wakeups or load balancing.
+ */
+ if (p->numa_scan_seq) {
+ /*
+ * Avoid scan adjustments if moving to the preferred
+ * node or if the task was not previously running on
+ * the preferred node.
+ */
+ if (dst_nid == p->numa_preferred_nid ||
+ (p->numa_preferred_nid != NUMA_NO_NODE &&
+ src_nid != p->numa_preferred_nid))
+ return;
+ }
+
+ p->numa_scan_period = task_scan_start(p);
+}
+
+#ifdef CONFIG_SCHED_DEBUG
+void show_numa_stats(struct task_struct *p, struct seq_file *m)
+{
+ int node;
+ unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
+ struct numa_group *ng;
+
+ rcu_read_lock();
+ ng = rcu_dereference(p->numa_group);
+ for_each_online_node(node) {
+ if (p->numa_faults) {
+ tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
+ tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
+ }
+ if (ng) {
+ gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
+ gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
+ }
+ print_numa_stats(m, node, tsf, tpf, gsf, gpf);
+ }
+ rcu_read_unlock();
+}
+#endif /* CONFIG_SCHED_DEBUG */
+
+#endif /* CONFIG_NUMA_BALANCING */
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index 7f1d856fdc3b..d687b9a272fc 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -3608,7 +3608,7 @@ sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int
#ifdef CONFIG_FAIR_GROUP_SCHED
extern unsigned long task_h_load(struct task_struct *p);
#else
-static unsigned long task_h_load(struct task_struct *p)
+static inline unsigned long task_h_load(struct task_struct *p)
{
return p->se.avg.load_avg;
}
@@ -3850,4 +3850,42 @@ static inline void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_en
static inline void remove_entity_load_avg(struct sched_entity *se) {}
#endif
+#ifdef CONFIG_NUMA_BALANCING
+extern void task_tick_numa(struct rq *rq, struct task_struct *curr);
+extern void account_numa_enqueue(struct rq *rq, struct task_struct *p);
+extern void account_numa_dequeue(struct rq *rq, struct task_struct *p);
+extern void update_scan_period(struct task_struct *p, int new_cpu);
+
+extern unsigned int sysctl_numa_balancing_promote_rate_limit;
+
+#else
+static inline void task_tick_numa(struct rq *rq, struct task_struct *curr) { }
+static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) { }
+static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) { }
+static inline void update_scan_period(struct task_struct *p, int new_cpu) { }
+#endif
+
+
+#ifdef CONFIG_SCHED_SMT
+
+static inline bool test_idle_cores(int cpu)
+{
+ struct sched_domain_shared *sds;
+
+ sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
+ if (sds)
+ return READ_ONCE(sds->has_idle_cores);
+
+ return false;
+}
+
+#else
+
+static inline bool test_idle_cores(int cpu)
+{
+ return false;
+}
+
+#endif
+
#endif /* _KERNEL_SCHED_SCHED_H */
--
2.40.1