[PATCH v3 2/5] rust: rbtree: add `RBTreeIterator`

From: Matt Gilbride
Date: Thu Apr 18 2024 - 10:16:54 EST


From: Wedson Almeida Filho <wedsonaf@xxxxxxxxx>

- Add Iterator implementation (`RBTreeIterator`) for `RBTree`, allowing
iteration over (key, value) pairs in key order.
- Add individual `keys()` and `values()` functions to iterate over keys
or values alone.
- Update doctests to use iteration instead of explicitly getting items.

Iteration is needed by the binder driver to enumerate all values in a
tree for oneway spam detection [1].

Link: https://lore.kernel.org/rust-for-linux/20231101-rust-binder-v1-17-08ba9197f637@xxxxxxxxxx/ [1]
Signed-off-by: Wedson Almeida Filho <wedsonaf@xxxxxxxxx>
Reviewed-by: Alice Ryhl <aliceryhl@xxxxxxxxxx>
Tested-by: Alice Ryhl <aliceryhl@xxxxxxxxxx>
Signed-off-by: Matt Gilbride <mattgilbride@xxxxxxxxxx>
---
rust/kernel/rbtree.rs | 129 +++++++++++++++++++++++++++++++++++++++++++-------
1 file changed, 111 insertions(+), 18 deletions(-)

diff --git a/rust/kernel/rbtree.rs b/rust/kernel/rbtree.rs
index ad406fc32d67..2f836be7bdbe 100644
--- a/rust/kernel/rbtree.rs
+++ b/rust/kernel/rbtree.rs
@@ -54,14 +54,30 @@ struct Node<K, V> {
/// assert_eq!(tree.get(&30).unwrap(), &300);
/// }
///
+/// // Iterate over the nodes we just inserted.
+/// {
+/// let mut iter = tree.iter();
+/// assert_eq!(iter.next().unwrap(), (&10, &100));
+/// assert_eq!(iter.next().unwrap(), (&20, &200));
+/// assert_eq!(iter.next().unwrap(), (&30, &300));
+/// assert!(iter.next().is_none());
+/// }
+///
+/// // Print all elements.
+/// for (key, value) in &tree {
+/// pr_info!("{} = {}\n", key, value);
+/// }
+///
/// // Replace one of the elements.
/// tree.try_create_and_insert(10, 1000)?;
///
/// // Check that the tree reflects the replacement.
/// {
-/// assert_eq!(tree.get(&10).unwrap(), &1000);
-/// assert_eq!(tree.get(&20).unwrap(), &200);
-/// assert_eq!(tree.get(&30).unwrap(), &300);
+/// let mut iter = tree.iter();
+/// assert_eq!(iter.next().unwrap(), (&10, &1000));
+/// assert_eq!(iter.next().unwrap(), (&20, &200));
+/// assert_eq!(iter.next().unwrap(), (&30, &300));
+/// assert!(iter.next().is_none());
/// }
///
/// // Change the value of one of the elements.
@@ -69,9 +85,11 @@ struct Node<K, V> {
///
/// // Check that the tree reflects the update.
/// {
-/// assert_eq!(tree.get(&10).unwrap(), &1000);
-/// assert_eq!(tree.get(&20).unwrap(), &200);
-/// assert_eq!(tree.get(&30).unwrap(), &3000);
+/// let mut iter = tree.iter();
+/// assert_eq!(iter.next().unwrap(), (&10, &1000));
+/// assert_eq!(iter.next().unwrap(), (&20, &200));
+/// assert_eq!(iter.next().unwrap(), (&30, &3000));
+/// assert!(iter.next().is_none());
/// }
///
/// // Remove an element.
@@ -79,9 +97,10 @@ struct Node<K, V> {
///
/// // Check that the tree reflects the removal.
/// {
-/// assert_eq!(tree.get(&10), None);
-/// assert_eq!(tree.get(&20).unwrap(), &200);
-/// assert_eq!(tree.get(&30).unwrap(), &3000);
+/// let mut iter = tree.iter();
+/// assert_eq!(iter.next().unwrap(), (&20, &200));
+/// assert_eq!(iter.next().unwrap(), (&30, &3000));
+/// assert!(iter.next().is_none());
/// }
///
/// # Ok::<(), Error>(())
@@ -121,9 +140,11 @@ struct Node<K, V> {
///
/// // Check the nodes we just inserted.
/// {
-/// assert_eq!(tree.get(&10).unwrap(), &100);
-/// assert_eq!(tree.get(&20).unwrap(), &200);
-/// assert_eq!(tree.get(&30).unwrap(), &300);
+/// let mut iter = tree.iter();
+/// assert_eq!(iter.next().unwrap(), (&10, &100));
+/// assert_eq!(iter.next().unwrap(), (&20, &200));
+/// assert_eq!(iter.next().unwrap(), (&30, &300));
+/// assert!(iter.next().is_none());
/// }
///
/// // Remove a node, getting back ownership of it.
@@ -131,9 +152,10 @@ struct Node<K, V> {
///
/// // Check that the tree reflects the removal.
/// {
-/// assert_eq!(tree.get(&10).unwrap(), &100);
-/// assert_eq!(tree.get(&20).unwrap(), &200);
-/// assert_eq!(tree.get(&30), None);
+/// let mut iter = tree.iter();
+/// assert_eq!(iter.next().unwrap(), (&10, &100));
+/// assert_eq!(iter.next().unwrap(), (&20, &200));
+/// assert!(iter.next().is_none());
/// }
///
/// // Create a preallocated reservation that we can re-use later.
@@ -145,9 +167,11 @@ struct Node<K, V> {
///
/// // Check that the tree reflect the new insertion.
/// {
-/// assert_eq!(tree.get(&10).unwrap(), &100);
-/// assert_eq!(tree.get(&15).unwrap(), &150);
-/// assert_eq!(tree.get(&20).unwrap(), &200);
+/// let mut iter = tree.iter();
+/// assert_eq!(iter.next().unwrap(), (&10, &100));
+/// assert_eq!(iter.next().unwrap(), (&15, &150));
+/// assert_eq!(iter.next().unwrap(), (&20, &200));
+/// assert!(iter.next().is_none());
/// }
///
/// # Ok::<(), Error>(())
@@ -188,6 +212,25 @@ pub fn try_reserve_node() -> Result<RBTreeNodeReservation<K, V>> {
pub fn try_allocate_node(key: K, value: V) -> Result<RBTreeNode<K, V>> {
Ok(Self::try_reserve_node()?.into_node(key, value))
}
+
+ /// Returns an iterator over the tree nodes, sorted by key.
+ pub fn iter(&self) -> RBTreeIterator<'_, K, V> {
+ RBTreeIterator {
+ _tree: PhantomData,
+ // SAFETY: `root` is valid as it's embedded in `self` and we have a valid `self`.
+ next: unsafe { bindings::rb_first(&self.root) },
+ }
+ }
+
+ /// Returns an iterator over the keys of the nodes in the tree, in sorted order.
+ pub fn keys(&self) -> impl Iterator<Item = &'_ K> {
+ self.iter().map(|(k, _)| k)
+ }
+
+ /// Returns an iterator over the values of the nodes in the tree, sorted by key.
+ pub fn values(&self) -> impl Iterator<Item = &'_ V> {
+ self.iter().map(|(_, v)| v)
+ }
}

impl<K, V> RBTree<K, V>
@@ -373,6 +416,56 @@ fn drop(&mut self) {
}
}

+impl<'a, K, V> IntoIterator for &'a RBTree<K, V> {
+ type Item = (&'a K, &'a V);
+ type IntoIter = RBTreeIterator<'a, K, V>;
+
+ fn into_iter(self) -> Self::IntoIter {
+ self.iter()
+ }
+}
+
+/// An iterator over the nodes of a [`RBTree`].
+///
+/// Instances are created by calling [`RBTree::iter`].
+///
+/// # Invariants
+/// - `self.next` is a valid pointer.
+/// - `self.next` points to a node stored inside of a valid `RBTree`.
+pub struct RBTreeIterator<'a, K, V> {
+ _tree: PhantomData<&'a RBTree<K, V>>,
+ next: *mut bindings::rb_node,
+}
+
+// SAFETY: The [`RBTreeIterator`] gives out immutable references to K and V, so it has the same
+// thread safety requirements as immutable references.
+unsafe impl<'a, K: Sync, V: Sync> Send for RBTreeIterator<'a, K, V> {}
+
+// SAFETY: The [`RBTreeIterator`] gives out immutable references to K and V, so it has the same
+// thread safety requirements as immutable references.
+unsafe impl<'a, K: Sync, V: Sync> Sync for RBTreeIterator<'a, K, V> {}
+
+impl<'a, K, V> Iterator for RBTreeIterator<'a, K, V> {
+ type Item = (&'a K, &'a V);
+
+ fn next(&mut self) -> Option<Self::Item> {
+ if self.next.is_null() {
+ return None;
+ }
+
+ // SAFETY: By the type invariant of `Self`, all non-null `rb_node` pointers stored in `self`
+ // point to the links field of `Node<K, V>` objects.
+ let cur = unsafe { container_of!(self.next, Node<K, V>, links) };
+
+ // SAFETY: `self.next` is a valid tree node by the type invariants.
+ self.next = unsafe { bindings::rb_next(self.next) };
+
+ // SAFETY: By the same reasoning above, it is safe to dereference the node. Additionally,
+ // it is ok to return a reference to members because the iterator must outlive it.
+ Some(unsafe { (&(*cur).key, &(*cur).value) })
+ }
+}
+
/// A memory reservation for a red-black tree node.
///
/// It contains the memory needed to hold a node that can be inserted into a red-black tree. One

--
2.44.0.769.g3c40516874-goog