[PATCH] x86/resctrl: Introduce snc_nodes_per_l3_cache
From: Tony Luck
Date: Thu May 30 2024 - 12:45:35 EST
Intel Sub-NUMA Cluster (SNC) is a feature that subdivides the CPU cores
and memory controllers on a socket into two or more groups. These are
presented to the operating system as NUMA nodes.
This may enable some workloads to have slightly lower latency to memory
as the memory controller(s) in an SNC node are electrically closer to the
CPU cores on that SNC node. This cost may be offset by lower bandwidth
since the memory accesses for each core can only be interleaved between
the memory controllers on the same SNC node.
Resctrl monitoring on an Intel system depends upon attaching RMIDs to tasks
to track L3 cache occupancy and memory bandwidth. There is an MSR that
controls how the RMIDs are shared between SNC nodes.
The default mode divides them numerically. E.g. when there are two SNC
nodes on a socket the lower number half of the RMIDs are given to the
first node, the remainder to the second node. This would be difficult
to use with the Linux resctrl interface as specific RMID values assigned
to resctrl groups are not visible to users.
RMID sahring mode divides the RMIDs and renumbers the ones on the second
SNC node to start from zero.
Even with this renumbering SNC mode requires several changes in resctrl
behavior for correct operation.
Add a static global to arch/x86/kernel/cpu/resctrl/monitor.c to indicate
how many SNC domains share an L3 cache instance. Initialize this to
"1". Runtime detection of SNC mode will adjust this value.
Update all places to take appropriate action when SNC mode is enabled:
1) The number of logical RMIDs per L3 cache available for use is the
number of physical RMIDs divided by the number of SNC nodes.
2) Likewise the "mon_scale" value must be divided by the number of SNC
nodes.
3) Add a function to convert from logical RMID values (assigned to
tasks and loaded into the IA32_PQR_ASSOC MSR on context switch)
to physical RMID values to load into IA32_QM_EVTSEL MSR when
reading counters on each SNC node.
Signed-off-by: Tony Luck <tony.luck@xxxxxxxxx>
---
arch/x86/kernel/cpu/resctrl/monitor.c | 52 +++++++++++++++++++++++----
1 file changed, 46 insertions(+), 6 deletions(-)
diff --git a/arch/x86/kernel/cpu/resctrl/monitor.c b/arch/x86/kernel/cpu/resctrl/monitor.c
index 89d7e6fcbaa1..0b05dfb5ab67 100644
--- a/arch/x86/kernel/cpu/resctrl/monitor.c
+++ b/arch/x86/kernel/cpu/resctrl/monitor.c
@@ -97,6 +97,8 @@ unsigned int resctrl_rmid_realloc_limit;
#define CF(cf) ((unsigned long)(1048576 * (cf) + 0.5))
+static int snc_nodes_per_l3_cache = 1;
+
/*
* The correction factor table is documented in Documentation/arch/x86/resctrl.rst.
* If rmid > rmid threshold, MBM total and local values should be multiplied
@@ -185,7 +187,39 @@ static inline struct rmid_entry *__rmid_entry(u32 idx)
return entry;
}
-static int __rmid_read(u32 rmid, enum resctrl_event_id eventid, u64 *val)
+/*
+ * When Sub-NUMA Cluster (SNC) mode is not enabled the RMID value
+ * loaded into IA32_PQR_ASSOC for the CPU to accumulate data is
+ * the same as the RMID value loaded into IA32_QM_EVTSEL to
+ * retrieve the current value of counters from IA32_QM_CTR.
+ *
+ * When SNC mode is enabled in RMID sharing mode there are fewer
+ * RMID values available to accumulate data (RMIDs are divided
+ * evenly between SNC nodes that share an L3 cache). Here we refer
+ * to the value loaded into IA32_PQR_ASSOC as the "logical RMID".
+ *
+ * Data is collected independently on each SNC node and can be retrieved
+ * using the "physical RMID" value computed by this function. The
+ * cpu argument can be any CPU in the SNC domain for the node.
+ *
+ * Note that the scope of the IA32_QM_EVTSEL and IA32_QM_CTR MSRs is
+ * still at the L3 cache scope. So a physical RMID may be read from any
+ * CPU that shares the L3 cache with the desired SNC node domain.
+ *
+ * For more details and examples see the "RMID Sharing Mode" section
+ * in the "Intel Resource Director Technology Architecture Specification".
+ */
+static int logical_rmid_to_physical_rmid(int cpu, int lrmid)
+{
+ struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
+
+ if (snc_nodes_per_l3_cache == 1)
+ return lrmid;
+
+ return lrmid + (cpu_to_node(cpu) % snc_nodes_per_l3_cache) * r->num_rmid;
+}
+
+static int __rmid_read_phys(u32 prmid, enum resctrl_event_id eventid, u64 *val)
{
u64 msr_val;
@@ -197,7 +231,7 @@ static int __rmid_read(u32 rmid, enum resctrl_event_id eventid, u64 *val)
* IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
* are error bits.
*/
- wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid);
+ wrmsr(MSR_IA32_QM_EVTSEL, eventid, prmid);
rdmsrl(MSR_IA32_QM_CTR, msr_val);
if (msr_val & RMID_VAL_ERROR)
@@ -233,14 +267,17 @@ void resctrl_arch_reset_rmid(struct rdt_resource *r, struct rdt_mon_domain *d,
enum resctrl_event_id eventid)
{
struct rdt_hw_mon_domain *hw_dom = resctrl_to_arch_mon_dom(d);
+ int cpu = cpumask_any(&d->hdr.cpu_mask);
struct arch_mbm_state *am;
+ u32 prmid;
am = get_arch_mbm_state(hw_dom, rmid, eventid);
if (am) {
memset(am, 0, sizeof(*am));
+ prmid = logical_rmid_to_physical_rmid(cpu, rmid);
/* Record any initial, non-zero count value. */
- __rmid_read(rmid, eventid, &am->prev_msr);
+ __rmid_read_phys(prmid, eventid, &am->prev_msr);
}
}
@@ -275,8 +312,10 @@ int resctrl_arch_rmid_read(struct rdt_resource *r, struct rdt_mon_domain *d,
{
struct rdt_hw_mon_domain *hw_dom = resctrl_to_arch_mon_dom(d);
struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
+ int cpu = cpumask_any(&d->hdr.cpu_mask);
struct arch_mbm_state *am;
u64 msr_val, chunks;
+ u32 prmid;
int ret;
resctrl_arch_rmid_read_context_check();
@@ -284,7 +323,8 @@ int resctrl_arch_rmid_read(struct rdt_resource *r, struct rdt_mon_domain *d,
if (!cpumask_test_cpu(smp_processor_id(), &d->hdr.cpu_mask))
return -EINVAL;
- ret = __rmid_read(rmid, eventid, &msr_val);
+ prmid = logical_rmid_to_physical_rmid(cpu, rmid);
+ ret = __rmid_read_phys(prmid, eventid, &msr_val);
if (ret)
return ret;
@@ -1022,8 +1062,8 @@ int __init rdt_get_mon_l3_config(struct rdt_resource *r)
int ret;
resctrl_rmid_realloc_limit = boot_cpu_data.x86_cache_size * 1024;
- hw_res->mon_scale = boot_cpu_data.x86_cache_occ_scale;
- r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1;
+ hw_res->mon_scale = boot_cpu_data.x86_cache_occ_scale / snc_nodes_per_l3_cache;
+ r->num_rmid = (boot_cpu_data.x86_cache_max_rmid + 1) / snc_nodes_per_l3_cache;
hw_res->mbm_width = MBM_CNTR_WIDTH_BASE;
if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX)
--
2.45.0