[tip: perf/core] uprobes: Reuse return_instances between multiple uretprobes within task
From: tip-bot2 for Andrii Nakryiko
Date: Fri Dec 06 2024 - 04:39:21 EST
The following commit has been merged into the perf/core branch of tip:
Commit-ID: c65b7bf8027bb0c769f4636e81e846493b0f53e2
Gitweb: https://git.kernel.org/tip/c65b7bf8027bb0c769f4636e81e846493b0f53e2
Author: Andrii Nakryiko <andrii@xxxxxxxxxx>
AuthorDate: Thu, 05 Dec 2024 16:24:17 -08:00
Committer: Ingo Molnar <mingo@xxxxxxxxxx>
CommitterDate: Fri, 06 Dec 2024 09:52:01 +01:00
uprobes: Reuse return_instances between multiple uretprobes within task
Instead of constantly allocating and freeing very short-lived
struct return_instance, reuse it as much as possible within current
task. For that, store a linked list of reusable return_instances within
current->utask.
The only complication is that ri_timer() might be still processing such
return_instance. And so while the main uretprobe processing logic might
be already done with return_instance and would be OK to immediately
reuse it for the next uretprobe instance, it's not correct to
unconditionally reuse it just like that.
Instead we make sure that ri_timer() can't possibly be processing it by
using seqcount_t, with ri_timer() being "a writer", while
free_ret_instance() being "a reader". If, after we unlink return
instance from utask->return_instances list, we know that ri_timer()
hasn't gotten to processing utask->return_instances yet, then we can be
sure that immediate return_instance reuse is OK, and so we put it
onto utask->ri_pool for future (potentially, almost immediate) reuse.
This change shows improvements both in single CPU performance (by
avoiding relatively expensive kmalloc/free combon) and in terms of
multi-CPU scalability, where you can see that per-CPU throughput doesn't
decline as steeply with increased number of CPUs (which were previously
attributed to kmalloc()/free() through profiling):
BASELINE (latest perf/core)
===========================
uretprobe-nop ( 1 cpus): 1.898 ± 0.002M/s ( 1.898M/s/cpu)
uretprobe-nop ( 2 cpus): 3.574 ± 0.011M/s ( 1.787M/s/cpu)
uretprobe-nop ( 3 cpus): 5.279 ± 0.066M/s ( 1.760M/s/cpu)
uretprobe-nop ( 4 cpus): 6.824 ± 0.047M/s ( 1.706M/s/cpu)
uretprobe-nop ( 5 cpus): 8.339 ± 0.060M/s ( 1.668M/s/cpu)
uretprobe-nop ( 6 cpus): 9.812 ± 0.047M/s ( 1.635M/s/cpu)
uretprobe-nop ( 7 cpus): 11.030 ± 0.048M/s ( 1.576M/s/cpu)
uretprobe-nop ( 8 cpus): 12.453 ± 0.126M/s ( 1.557M/s/cpu)
uretprobe-nop (10 cpus): 14.838 ± 0.044M/s ( 1.484M/s/cpu)
uretprobe-nop (12 cpus): 17.092 ± 0.115M/s ( 1.424M/s/cpu)
uretprobe-nop (14 cpus): 19.576 ± 0.022M/s ( 1.398M/s/cpu)
uretprobe-nop (16 cpus): 22.264 ± 0.015M/s ( 1.391M/s/cpu)
uretprobe-nop (24 cpus): 33.534 ± 0.078M/s ( 1.397M/s/cpu)
uretprobe-nop (32 cpus): 43.262 ± 0.127M/s ( 1.352M/s/cpu)
uretprobe-nop (40 cpus): 53.252 ± 0.080M/s ( 1.331M/s/cpu)
uretprobe-nop (48 cpus): 55.778 ± 0.045M/s ( 1.162M/s/cpu)
uretprobe-nop (56 cpus): 56.850 ± 0.227M/s ( 1.015M/s/cpu)
uretprobe-nop (64 cpus): 62.005 ± 0.077M/s ( 0.969M/s/cpu)
uretprobe-nop (72 cpus): 66.445 ± 0.236M/s ( 0.923M/s/cpu)
uretprobe-nop (80 cpus): 68.353 ± 0.180M/s ( 0.854M/s/cpu)
THIS PATCHSET (on top of latest perf/core)
==========================================
uretprobe-nop ( 1 cpus): 2.253 ± 0.004M/s ( 2.253M/s/cpu)
uretprobe-nop ( 2 cpus): 4.281 ± 0.003M/s ( 2.140M/s/cpu)
uretprobe-nop ( 3 cpus): 6.389 ± 0.027M/s ( 2.130M/s/cpu)
uretprobe-nop ( 4 cpus): 8.328 ± 0.005M/s ( 2.082M/s/cpu)
uretprobe-nop ( 5 cpus): 10.353 ± 0.001M/s ( 2.071M/s/cpu)
uretprobe-nop ( 6 cpus): 12.513 ± 0.010M/s ( 2.086M/s/cpu)
uretprobe-nop ( 7 cpus): 14.525 ± 0.017M/s ( 2.075M/s/cpu)
uretprobe-nop ( 8 cpus): 15.633 ± 0.013M/s ( 1.954M/s/cpu)
uretprobe-nop (10 cpus): 19.532 ± 0.011M/s ( 1.953M/s/cpu)
uretprobe-nop (12 cpus): 21.405 ± 0.009M/s ( 1.784M/s/cpu)
uretprobe-nop (14 cpus): 24.857 ± 0.020M/s ( 1.776M/s/cpu)
uretprobe-nop (16 cpus): 26.466 ± 0.018M/s ( 1.654M/s/cpu)
uretprobe-nop (24 cpus): 40.513 ± 0.222M/s ( 1.688M/s/cpu)
uretprobe-nop (32 cpus): 54.180 ± 0.074M/s ( 1.693M/s/cpu)
uretprobe-nop (40 cpus): 66.100 ± 0.082M/s ( 1.652M/s/cpu)
uretprobe-nop (48 cpus): 70.544 ± 0.068M/s ( 1.470M/s/cpu)
uretprobe-nop (56 cpus): 74.494 ± 0.055M/s ( 1.330M/s/cpu)
uretprobe-nop (64 cpus): 79.317 ± 0.029M/s ( 1.239M/s/cpu)
uretprobe-nop (72 cpus): 84.875 ± 0.020M/s ( 1.179M/s/cpu)
uretprobe-nop (80 cpus): 92.318 ± 0.224M/s ( 1.154M/s/cpu)
For reference, with uprobe-nop we hit the following throughput:
uprobe-nop (80 cpus): 143.485 ± 0.035M/s ( 1.794M/s/cpu)
So now uretprobe stays a bit closer to that performance.
Signed-off-by: Andrii Nakryiko <andrii@xxxxxxxxxx>
Signed-off-by: Ingo Molnar <mingo@xxxxxxxxxx>
Cc: Masami Hiramatsu <mhiramat@xxxxxxxxxx>
Cc: Peter Zijlstra <peterz@xxxxxxxxxxxxx>
Cc: Oleg Nesterov <oleg@xxxxxxxxxx>
Link: https://lore.kernel.org/r/20241206002417.3295533-5-andrii@xxxxxxxxxx
---
include/linux/uprobes.h | 6 ++-
kernel/events/uprobes.c | 83 +++++++++++++++++++++++++++++++++-------
2 files changed, 75 insertions(+), 14 deletions(-)
diff --git a/include/linux/uprobes.h b/include/linux/uprobes.h
index 1d44997..b1df7d7 100644
--- a/include/linux/uprobes.h
+++ b/include/linux/uprobes.h
@@ -16,6 +16,7 @@
#include <linux/types.h>
#include <linux/wait.h>
#include <linux/timer.h>
+#include <linux/seqlock.h>
struct uprobe;
struct vm_area_struct;
@@ -124,6 +125,10 @@ struct uprobe_task {
unsigned int depth;
struct return_instance *return_instances;
+ struct return_instance *ri_pool;
+ struct timer_list ri_timer;
+ seqcount_t ri_seqcount;
+
union {
struct {
struct arch_uprobe_task autask;
@@ -137,7 +142,6 @@ struct uprobe_task {
};
struct uprobe *active_uprobe;
- struct timer_list ri_timer;
unsigned long xol_vaddr;
struct arch_uprobe *auprobe;
diff --git a/kernel/events/uprobes.c b/kernel/events/uprobes.c
index 2345aeb..1af9502 100644
--- a/kernel/events/uprobes.c
+++ b/kernel/events/uprobes.c
@@ -1888,8 +1888,34 @@ unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
return instruction_pointer(regs);
}
-static void free_ret_instance(struct return_instance *ri, bool cleanup_hprobe)
+static void ri_pool_push(struct uprobe_task *utask, struct return_instance *ri)
{
+ ri->cons_cnt = 0;
+ ri->next = utask->ri_pool;
+ utask->ri_pool = ri;
+}
+
+static struct return_instance *ri_pool_pop(struct uprobe_task *utask)
+{
+ struct return_instance *ri = utask->ri_pool;
+
+ if (likely(ri))
+ utask->ri_pool = ri->next;
+
+ return ri;
+}
+
+static void ri_free(struct return_instance *ri)
+{
+ kfree(ri->extra_consumers);
+ kfree_rcu(ri, rcu);
+}
+
+static void free_ret_instance(struct uprobe_task *utask,
+ struct return_instance *ri, bool cleanup_hprobe)
+{
+ unsigned seq;
+
if (cleanup_hprobe) {
enum hprobe_state hstate;
@@ -1897,8 +1923,22 @@ static void free_ret_instance(struct return_instance *ri, bool cleanup_hprobe)
hprobe_finalize(&ri->hprobe, hstate);
}
- kfree(ri->extra_consumers);
- kfree_rcu(ri, rcu);
+ /*
+ * At this point return_instance is unlinked from utask's
+ * return_instances list and this has become visible to ri_timer().
+ * If seqcount now indicates that ri_timer's return instance
+ * processing loop isn't active, we can return ri into the pool of
+ * to-be-reused return instances for future uretprobes. If ri_timer()
+ * happens to be running right now, though, we fallback to safety and
+ * just perform RCU-delated freeing of ri.
+ */
+ if (raw_seqcount_try_begin(&utask->ri_seqcount, seq)) {
+ /* immediate reuse of ri without RCU GP is OK */
+ ri_pool_push(utask, ri);
+ } else {
+ /* we might be racing with ri_timer(), so play it safe */
+ ri_free(ri);
+ }
}
/*
@@ -1920,7 +1960,15 @@ void uprobe_free_utask(struct task_struct *t)
ri = utask->return_instances;
while (ri) {
ri_next = ri->next;
- free_ret_instance(ri, true /* cleanup_hprobe */);
+ free_ret_instance(utask, ri, true /* cleanup_hprobe */);
+ ri = ri_next;
+ }
+
+ /* free_ret_instance() above might add to ri_pool, so this loop should come last */
+ ri = utask->ri_pool;
+ while (ri) {
+ ri_next = ri->next;
+ ri_free(ri);
ri = ri_next;
}
@@ -1943,8 +1991,12 @@ static void ri_timer(struct timer_list *timer)
/* RCU protects return_instance from freeing. */
guard(rcu)();
+ write_seqcount_begin(&utask->ri_seqcount);
+
for_each_ret_instance_rcu(ri, utask->return_instances)
hprobe_expire(&ri->hprobe, false);
+
+ write_seqcount_end(&utask->ri_seqcount);
}
static struct uprobe_task *alloc_utask(void)
@@ -1956,6 +2008,7 @@ static struct uprobe_task *alloc_utask(void)
return NULL;
timer_setup(&utask->ri_timer, ri_timer, 0);
+ seqcount_init(&utask->ri_seqcount);
return utask;
}
@@ -1975,10 +2028,14 @@ static struct uprobe_task *get_utask(void)
return current->utask;
}
-static struct return_instance *alloc_return_instance(void)
+static struct return_instance *alloc_return_instance(struct uprobe_task *utask)
{
struct return_instance *ri;
+ ri = ri_pool_pop(utask);
+ if (ri)
+ return ri;
+
ri = kzalloc(sizeof(*ri), GFP_KERNEL);
if (!ri)
return ZERO_SIZE_PTR;
@@ -2119,7 +2176,7 @@ static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
rcu_assign_pointer(utask->return_instances, ri_next);
utask->depth--;
- free_ret_instance(ri, true /* cleanup_hprobe */);
+ free_ret_instance(utask, ri, true /* cleanup_hprobe */);
ri = ri_next;
}
}
@@ -2186,7 +2243,7 @@ static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs,
return;
free:
- kfree(ri);
+ ri_free(ri);
}
/* Prepare to single-step probed instruction out of line. */
@@ -2385,8 +2442,7 @@ static struct return_instance *push_consumer(struct return_instance *ri, __u64 i
if (unlikely(ri->cons_cnt > 0)) {
ric = krealloc(ri->extra_consumers, sizeof(*ric) * ri->cons_cnt, GFP_KERNEL);
if (!ric) {
- kfree(ri->extra_consumers);
- kfree_rcu(ri, rcu);
+ ri_free(ri);
return ZERO_SIZE_PTR;
}
ri->extra_consumers = ric;
@@ -2428,8 +2484,9 @@ static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
struct uprobe_consumer *uc;
bool has_consumers = false, remove = true;
struct return_instance *ri = NULL;
+ struct uprobe_task *utask = current->utask;
- current->utask->auprobe = &uprobe->arch;
+ utask->auprobe = &uprobe->arch;
list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
bool session = uc->handler && uc->ret_handler;
@@ -2449,12 +2506,12 @@ static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
continue;
if (!ri)
- ri = alloc_return_instance();
+ ri = alloc_return_instance(utask);
if (session)
ri = push_consumer(ri, uc->id, cookie);
}
- current->utask->auprobe = NULL;
+ utask->auprobe = NULL;
if (!ZERO_OR_NULL_PTR(ri))
prepare_uretprobe(uprobe, regs, ri);
@@ -2554,7 +2611,7 @@ void uprobe_handle_trampoline(struct pt_regs *regs)
hprobe_finalize(&ri->hprobe, hstate);
/* We already took care of hprobe, no need to waste more time on that. */
- free_ret_instance(ri, false /* !cleanup_hprobe */);
+ free_ret_instance(utask, ri, false /* !cleanup_hprobe */);
ri = ri_next;
} while (ri != next_chain);
} while (!valid);