Re: [PATCH v6 06/16] rust: add `Revocable` type
From: Benoît du Garreau
Date: Wed Dec 18 2024 - 07:24:30 EST
On Thu, 12 Dec 2024 17:33:37 +0100 Danilo Krummrich <dakr@xxxxxxxxxx> wrote:
> From: Wedson Almeida Filho <wedsonaf@xxxxxxxxx>
>
> Revocable allows access to objects to be safely revoked at run time.
>
> This is useful, for example, for resources allocated during device probe;
> when the device is removed, the driver should stop accessing the device
> resources even if another state is kept in memory due to existing
> references (i.e., device context data is ref-counted and has a non-zero
> refcount after removal of the device).
>
> Signed-off-by: Wedson Almeida Filho <wedsonaf@xxxxxxxxx>
> Co-developed-by: Danilo Krummrich <dakr@xxxxxxxxxx>
> Signed-off-by: Danilo Krummrich <dakr@xxxxxxxxxx>
> ---
> rust/kernel/lib.rs | 1 +
> rust/kernel/revocable.rs | 223 +++++++++++++++++++++++++++++++++++++++
> 2 files changed, 224 insertions(+)
> create mode 100644 rust/kernel/revocable.rs
>
> diff --git a/rust/kernel/lib.rs b/rust/kernel/lib.rs
> index 66149ac5c0c9..5702ce32ec8e 100644
> --- a/rust/kernel/lib.rs
> +++ b/rust/kernel/lib.rs
> @@ -60,6 +60,7 @@
> pub mod prelude;
> pub mod print;
> pub mod rbtree;
> +pub mod revocable;
> pub mod security;
> pub mod seq_file;
> pub mod sizes;
> diff --git a/rust/kernel/revocable.rs b/rust/kernel/revocable.rs
> new file mode 100644
> index 000000000000..e464d59eb6b5
> --- /dev/null
> +++ b/rust/kernel/revocable.rs
> @@ -0,0 +1,223 @@
> +// SPDX-License-Identifier: GPL-2.0
> +
> +//! Revocable objects.
> +//!
> +//! The [`Revocable`] type wraps other types and allows access to them to be revoked. The existence
> +//! of a [`RevocableGuard`] ensures that objects remain valid.
> +
> +use crate::{bindings, prelude::*, sync::rcu, types::Opaque};
> +use core::{
> + marker::PhantomData,
> + ops::Deref,
> + ptr::drop_in_place,
> + sync::atomic::{AtomicBool, Ordering},
> +};
> +
> +/// An object that can become inaccessible at runtime.
> +///
> +/// Once access is revoked and all concurrent users complete (i.e., all existing instances of
> +/// [`RevocableGuard`] are dropped), the wrapped object is also dropped.
> +///
> +/// # Examples
> +///
> +/// ```
> +/// # use kernel::revocable::Revocable;
> +///
> +/// struct Example {
> +/// a: u32,
> +/// b: u32,
> +/// }
> +///
> +/// fn add_two(v: &Revocable<Example>) -> Option<u32> {
> +/// let guard = v.try_access()?;
> +/// Some(guard.a + guard.b)
> +/// }
> +///
> +/// let v = KBox::pin_init(Revocable::new(Example { a: 10, b: 20 }), GFP_KERNEL).unwrap();
> +/// assert_eq!(add_two(&v), Some(30));
> +/// v.revoke();
> +/// assert_eq!(add_two(&v), None);
> +/// ```
> +///
> +/// Sample example as above, but explicitly using the rcu read side lock.
> +///
> +/// ```
> +/// # use kernel::revocable::Revocable;
> +/// use kernel::sync::rcu;
> +///
> +/// struct Example {
> +/// a: u32,
> +/// b: u32,
> +/// }
> +///
> +/// fn add_two(v: &Revocable<Example>) -> Option<u32> {
> +/// let guard = rcu::read_lock();
> +/// let e = v.try_access_with_guard(&guard)?;
> +/// Some(e.a + e.b)
> +/// }
> +///
> +/// let v = KBox::pin_init(Revocable::new(Example { a: 10, b: 20 }), GFP_KERNEL).unwrap();
> +/// assert_eq!(add_two(&v), Some(30));
> +/// v.revoke();
> +/// assert_eq!(add_two(&v), None);
> +/// ```
> +#[pin_data(PinnedDrop)]
> +pub struct Revocable<T> {
> + is_available: AtomicBool,
> + #[pin]
> + data: Opaque<T>,
> +}
> +
> +// SAFETY: `Revocable` is `Send` if the wrapped object is also `Send`. This is because while the
> +// functionality exposed by `Revocable` can be accessed from any thread/CPU, it is possible that
> +// this isn't supported by the wrapped object.
> +unsafe impl<T: Send> Send for Revocable<T> {}
> +
> +// SAFETY: `Revocable` is `Sync` if the wrapped object is both `Send` and `Sync`. We require `Send`
> +// from the wrapped object as well because of `Revocable::revoke`, which can trigger the `Drop`
> +// implementation of the wrapped object from an arbitrary thread.
> +unsafe impl<T: Sync + Send> Sync for Revocable<T> {}
> +
> +impl<T> Revocable<T> {
> + /// Creates a new revocable instance of the given data.
> + pub fn new(data: impl PinInit<T>) -> impl PinInit<Self> {
> + pin_init!(Self {
> + is_available: AtomicBool::new(true),
> + data <- Opaque::pin_init(data),
> + })
> + }
> +
> + /// Tries to access the revocable wrapped object.
> + ///
> + /// Returns `None` if the object has been revoked and is therefore no longer accessible.
> + ///
> + /// Returns a guard that gives access to the object otherwise; the object is guaranteed to
> + /// remain accessible while the guard is alive. In such cases, callers are not allowed to sleep
> + /// because another CPU may be waiting to complete the revocation of this object.
> + pub fn try_access(&self) -> Option<RevocableGuard<'_, T>> {
> + let guard = rcu::read_lock();
> + if self.is_available.load(Ordering::Relaxed) {
> + // Since `self.is_available` is true, data is initialised and has to remain valid
> + // because the RCU read side lock prevents it from being dropped.
> + Some(RevocableGuard::new(self.data.get(), guard))
> + } else {
> + None
> + }
> + }
> +
> + /// Tries to access the revocable wrapped object.
> + ///
> + /// Returns `None` if the object has been revoked and is therefore no longer accessible.
> + ///
> + /// Returns a shared reference to the object otherwise; the object is guaranteed to
> + /// remain accessible while the rcu read side guard is alive. In such cases, callers are not
> + /// allowed to sleep because another CPU may be waiting to complete the revocation of this
> + /// object.
> + pub fn try_access_with_guard<'a>(&'a self, _guard: &'a rcu::Guard) -> Option<&'a T> {
> + if self.is_available.load(Ordering::Relaxed) {
> + // SAFETY: Since `self.is_available` is true, data is initialised and has to remain
> + // valid because the RCU read side lock prevents it from being dropped.
> + Some(unsafe { &*self.data.get() })
> + } else {
> + None
> + }
> + }
> +
> + /// # Safety
> + ///
> + /// Callers must ensure that there are no more concurrent users of the revocable object.
> + unsafe fn revoke_internal<const SYNC: bool>(&self) {
> + if self
> + .is_available
> + .compare_exchange(true, false, Ordering::Relaxed, Ordering::Relaxed)
> + .is_ok()
> + {
The comment I made in a previous series was somehow lost, so I put it back here:
You can use `self.is_available.swap(false, Ordering::Relaxed)` instead of a CAS,
it is IMO clearer and optimizes better on some architectures.
> + if SYNC {
> + // SAFETY: Just an FFI call, there are no further requirements.
> + unsafe { bindings::synchronize_rcu() };
> + }
> +
> + // SAFETY: We know `self.data` is valid because only one CPU can succeed the
> + // `compare_exchange` above that takes `is_available` from `true` to `false`.
> + unsafe { drop_in_place(self.data.get()) };
> + }
> + }
> +
> + /// Revokes access to and drops the wrapped object.
> + ///
> + /// Access to the object is revoked immediately to new callers of [`Revocable::try_access`],
> + /// expecting that there are no concurrent users of the object.
> + ///
> + /// # Safety
> + ///
> + /// Callers must ensure that there are no more concurrent users of the revocable object.
> + pub unsafe fn revoke_nosync(&self) {
> + // SAFETY: By the safety requirement of this function, the caller ensures that nobody is
> + // accessing the data anymore and hence we don't have to wait for the grace period to
> + // finish.
> + unsafe { self.revoke_internal::<false>() }
> + }
> +
> + /// Revokes access to and drops the wrapped object.
> + ///
> + /// Access to the object is revoked immediately to new callers of [`Revocable::try_access`].
> + ///
> + /// If there are concurrent users of the object (i.e., ones that called
> + /// [`Revocable::try_access`] beforehand and still haven't dropped the returned guard), this
> + /// function waits for the concurrent access to complete before dropping the wrapped object.
> + pub fn revoke(&self) {
> + // SAFETY: By passing `true` we ask `revoke_internal` to wait for the grace period to
> + // finish.
> + unsafe { self.revoke_internal::<true>() }
> + }
> +}
> +
> +#[pinned_drop]
> +impl<T> PinnedDrop for Revocable<T> {
> + fn drop(self: Pin<&mut Self>) {
> + // Drop only if the data hasn't been revoked yet (in which case it has already been
> + // dropped).
> + // SAFETY: We are not moving out of `p`, only dropping in place
> + let p = unsafe { self.get_unchecked_mut() };
> + if *p.is_available.get_mut() {
> + // SAFETY: We know `self.data` is valid because no other CPU has changed
> + // `is_available` to `false` yet, and no other CPU can do it anymore because this CPU
> + // holds the only reference (mutable) to `self` now.
> + unsafe { drop_in_place(p.data.get()) };
> + }
> + }
> +}
> +
> +/// A guard that allows access to a revocable object and keeps it alive.
> +///
> +/// CPUs may not sleep while holding on to [`RevocableGuard`] because it's in atomic context
> +/// holding the RCU read-side lock.
> +///
> +/// # Invariants
> +///
> +/// The RCU read-side lock is held while the guard is alive.
> +pub struct RevocableGuard<'a, T> {
> + data_ref: *const T,
> + _rcu_guard: rcu::Guard,
> + _p: PhantomData<&'a ()>,
> +}
> +
> +impl<T> RevocableGuard<'_, T> {
> + fn new(data_ref: *const T, rcu_guard: rcu::Guard) -> Self {
> + Self {
> + data_ref,
> + _rcu_guard: rcu_guard,
> + _p: PhantomData,
> + }
> + }
> +}
> +
> +impl<T> Deref for RevocableGuard<'_, T> {
> + type Target = T;
> +
> + fn deref(&self) -> &Self::Target {
> + // SAFETY: By the type invariants, we hold the rcu read-side lock, so the object is
> + // guaranteed to remain valid.
> + unsafe { &*self.data_ref }
> + }
> +}
> --
> 2.47.1
>
>
Benoît du Garreau