Re: [PATCH v10 2/3] rust: add dma coherent allocator abstraction.
From: Alice Ryhl
Date: Wed Jan 22 2025 - 04:13:57 EST
On Tue, Jan 21, 2025 at 8:14 PM Abdiel Janulgue
<abdiel.janulgue@xxxxxxxxx> wrote:
>
> Add a simple dma coherent allocator rust abstraction. Based on
> Andreas Hindborg's dma abstractions from the rnvme driver, which
> was also based on earlier work by Wedson Almeida Filho.
>
> Signed-off-by: Abdiel Janulgue <abdiel.janulgue@xxxxxxxxx>
> ---
> rust/bindings/bindings_helper.h | 1 +
> rust/kernel/dma.rs | 281 ++++++++++++++++++++++++++++++++
> rust/kernel/lib.rs | 1 +
> 3 files changed, 283 insertions(+)
> create mode 100644 rust/kernel/dma.rs
>
> diff --git a/rust/bindings/bindings_helper.h b/rust/bindings/bindings_helper.h
> index 5c4dfe22f41a..49bf713b9bb6 100644
> --- a/rust/bindings/bindings_helper.h
> +++ b/rust/bindings/bindings_helper.h
> @@ -11,6 +11,7 @@
> #include <linux/blk_types.h>
> #include <linux/blkdev.h>
> #include <linux/cred.h>
> +#include <linux/dma-mapping.h>
> #include <linux/errname.h>
> #include <linux/ethtool.h>
> #include <linux/file.h>
> diff --git a/rust/kernel/dma.rs b/rust/kernel/dma.rs
> new file mode 100644
> index 000000000000..ebae7270190e
> --- /dev/null
> +++ b/rust/kernel/dma.rs
> @@ -0,0 +1,281 @@
> +// SPDX-License-Identifier: GPL-2.0
> +
> +//! Direct memory access (DMA).
> +//!
> +//! C header: [`include/linux/dma-mapping.h`](srctree/include/linux/dma-mapping.h)
> +
> +use crate::{
> + bindings, build_assert,
> + device::Device,
> + error::code::*,
> + error::Result,
> + transmute::{AsBytes, FromBytes},
> + types::ARef,
> +};
> +
> +/// Possible attributes associated with a DMA mapping.
> +///
> +/// They can be combined with the operators `|`, `&`, and `!`.
> +///
> +/// Values can be used from the [`attrs`] module.
> +#[derive(Clone, Copy, PartialEq)]
> +#[repr(transparent)]
> +pub struct Attrs(u32);
> +
> +impl Attrs {
> + /// Get the raw representation of this attribute.
> + pub(crate) fn as_raw(self) -> crate::ffi::c_ulong {
> + self.0 as _
> + }
> +
> + /// Check whether `flags` is contained in `self`.
> + pub fn contains(self, flags: Attrs) -> bool {
> + (self & flags) == flags
> + }
> +}
> +
> +impl core::ops::BitOr for Attrs {
> + type Output = Self;
> + fn bitor(self, rhs: Self) -> Self::Output {
> + Self(self.0 | rhs.0)
> + }
> +}
> +
> +impl core::ops::BitAnd for Attrs {
> + type Output = Self;
> + fn bitand(self, rhs: Self) -> Self::Output {
> + Self(self.0 & rhs.0)
> + }
> +}
> +
> +impl core::ops::Not for Attrs {
> + type Output = Self;
> + fn not(self) -> Self::Output {
> + Self(!self.0)
> + }
> +}
> +
> +/// DMA mapping attrributes.
> +pub mod attrs {
> + use super::Attrs;
> +
> + /// Specifies that reads and writes to the mapping may be weakly ordered, that is that reads
> + /// and writes may pass each other.
> + pub const DMA_ATTR_WEAK_ORDERING: Attrs = Attrs(bindings::DMA_ATTR_WEAK_ORDERING);
> +
> + /// Specifies that writes to the mapping may be buffered to improve performance.
> + pub const DMA_ATTR_WRITE_COMBINE: Attrs = Attrs(bindings::DMA_ATTR_WRITE_COMBINE);
> +
> + /// Lets the platform to avoid creating a kernel virtual mapping for the allocated buffer.
> + pub const DMA_ATTR_NO_KERNEL_MAPPING: Attrs = Attrs(bindings::DMA_ATTR_NO_KERNEL_MAPPING);
> +
> + /// Allows platform code to skip synchronization of the CPU cache for the given buffer assuming
> + /// that it has been already transferred to 'device' domain.
> + pub const DMA_ATTR_SKIP_CPU_SYNC: Attrs = Attrs(bindings::DMA_ATTR_SKIP_CPU_SYNC);
> +
> + /// Forces contiguous allocation of the buffer in physical memory.
> + pub const DMA_ATTR_FORCE_CONTIGUOUS: Attrs = Attrs(bindings::DMA_ATTR_FORCE_CONTIGUOUS);
> +
> + /// This is a hint to the DMA-mapping subsystem that it's probably not worth the time to try
> + /// to allocate memory to in a way that gives better TLB efficiency.
> + pub const DMA_ATTR_ALLOC_SINGLE_PAGES: Attrs = Attrs(bindings::DMA_ATTR_ALLOC_SINGLE_PAGES);
> +
> + /// This tells the DMA-mapping subsystem to suppress allocation failure reports (similarly to
> + /// __GFP_NOWARN).
> + pub const DMA_ATTR_NO_WARN: Attrs = Attrs(bindings::DMA_ATTR_NO_WARN);
> +
> + /// Used to indicate that the buffer is fully accessible at an elevated privilege level (and
> + /// ideally inaccessible or at least read-only at lesser-privileged levels).
> + pub const DMA_ATTR_PRIVILEGED: Attrs = Attrs(bindings::DMA_ATTR_PRIVILEGED);
> +}
> +
> +/// An abstraction of the `dma_alloc_coherent` API.
> +///
> +/// This is an abstraction around the `dma_alloc_coherent` API which is used to allocate and map
> +/// large consistent DMA regions.
> +///
> +/// A [`CoherentAllocation`] instance contains a pointer to the allocated region (in the
> +/// processor's virtual address space) and the device address which can be given to the device
> +/// as the DMA address base of the region. The region is released once [`CoherentAllocation`]
> +/// is dropped.
> +///
> +/// # Invariants
> +///
> +/// For the lifetime of an instance of [`CoherentAllocation`], the cpu address is a valid pointer
> +/// to an allocated region of consistent memory and we hold a reference to the device.
> +pub struct CoherentAllocation<T: AsBytes + FromBytes> {
> + dev: ARef<Device>,
> + dma_handle: bindings::dma_addr_t,
> + count: usize,
> + cpu_addr: *mut T,
> + dma_attrs: Attrs,
> +}
> +
> +impl<T: AsBytes + FromBytes> CoherentAllocation<T> {
> + /// Allocates a region of `size_of::<T> * count` of consistent memory.
> + ///
> + /// # Examples
> + ///
> + /// ```
> + /// use kernel::device::Device;
> + /// use kernel::dma::{attrs::*, CoherentAllocation};
> + ///
> + /// # fn test(dev: &Device) -> Result {
> + /// let c: CoherentAllocation<u64> = CoherentAllocation::alloc_attrs(dev.into(), 4, GFP_KERNEL,
> + /// DMA_ATTR_NO_WARN)?;
> + /// # Ok::<(), Error>(()) }
> + /// ```
> + pub fn alloc_attrs(
> + dev: ARef<Device>,
> + count: usize,
> + gfp_flags: kernel::alloc::Flags,
> + dma_attrs: Attrs,
> + ) -> Result<CoherentAllocation<T>> {
> + build_assert!(
> + core::mem::size_of::<T>() > 0,
> + "It doesn't make sense for the allocated type to be a ZST"
> + );
> +
> + let size = count
> + .checked_mul(core::mem::size_of::<T>())
> + .ok_or(EOVERFLOW)?;
> + let mut dma_handle = 0;
> + // SAFETY: device pointer is guaranteed as valid by invariant on `Device`.
> + // We ensure that we catch the failure on this function and throw an ENOMEM
> + let ret = unsafe {
> + bindings::dma_alloc_attrs(
> + dev.as_raw(),
> + size,
> + &mut dma_handle,
> + gfp_flags.as_raw(),
> + dma_attrs.as_raw(),
> + )
> + };
> + if ret.is_null() {
> + return Err(ENOMEM);
> + }
> + // INVARIANT: We just successfully allocated a coherent region which is accessible for
> + // `count` elements, hence the cpu address is valid. We also hold a refcounted reference
> + // to the device.
> + Ok(Self {
> + dev,
> + dma_handle,
> + count,
> + cpu_addr: ret as *mut T,
> + dma_attrs,
> + })
> + }
> +
> + /// Performs the same functionality as `alloc_attrs`, except the `dma_attrs` is 0 by default.
> + pub fn alloc_coherent(
> + dev: ARef<Device>,
> + count: usize,
> + gfp_flags: kernel::alloc::Flags,
> + ) -> Result<CoherentAllocation<T>> {
> + CoherentAllocation::alloc_attrs(dev, count, gfp_flags, Attrs(0))
> + }
> +
> + /// Returns the device, base address, dma handle, attributes and the size of the
> + /// allocated region.
> + ///
> + /// The caller takes ownership of the returned resources, i.e., will have the responsibility
> + /// in calling `bindings::dma_free_attrs`. The allocated region is valid as long as
> + /// the returned device exists.
> + pub fn into_parts(
> + self,
> + ) -> (
> + ARef<Device>,
> + *mut T,
> + bindings::dma_addr_t,
> + crate::ffi::c_ulong,
> + usize,
> + ) {
> + let size = self.count * core::mem::size_of::<T>();
> + let ret = (
> + self.dev.clone(),
Calling clone here increments the refcount, but you don't want to do
that since it leaks a count.
otherwise lgtm
Alice