+static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags);
static void throttle_cfs_rq_work(struct callback_head *work)
{
+ struct task_struct *p = container_of(work, struct task_struct,
sched_throttle_work);
+ struct sched_entity *se;
+ struct cfs_rq *cfs_rq;
+ struct rq *rq;
+ struct rq_flags rf;
+
+ WARN_ON_ONCE(p != current);
+ p->sched_throttle_work.next = &p->sched_throttle_work;
+
+ /*
+ * If task is exiting, then there won't be a return to userspace, so we
+ * don't have to bother with any of this.
+ */
+ if ((p->flags & PF_EXITING))
+ return;
+
+ rq = task_rq_lock(p, &rf);
+
+ se = &p->se;
+ cfs_rq = cfs_rq_of(se);
+
+ /* Raced, forget */
+ if (p->sched_class != &fair_sched_class)
+ goto out_unlock;
+
+ /*
+ * If not in limbo, then either replenish has happened or this task got
+ * migrated out of the throttled cfs_rq, move along
+ */
+ if (!cfs_rq->throttle_count)
+ goto out_unlock;
+
+ update_rq_clock(rq);
+ WARN_ON_ONCE(!list_empty(&p->throttle_node));
+ list_add(&p->throttle_node, &cfs_rq->throttled_limbo_list);
+ dequeue_task_fair(rq, p, DEQUEUE_SLEEP | DEQUEUE_SPECIAL);> + resched_curr(rq);
+
+out_unlock:
+ task_rq_unlock(rq, p, &rf);
}
void init_cfs_throttle_work(struct task_struct *p)
@@ -5873,32 +5914,81 @@ static int tg_unthrottle_up(struct task_group
*tg, void *data)
return 0;
}
+static inline bool task_has_throttle_work(struct task_struct *p)
+{
+ return p->sched_throttle_work.next != &p->sched_throttle_work;
+}
+
+static inline void task_throttle_setup_work(struct task_struct *p)
+{
+ /*
+ * Kthreads and exiting tasks don't return to userspace, so adding the
+ * work is pointless
+ */
+ if ((p->flags & (PF_EXITING | PF_KTHREAD)))
+ return;
+
+ if (task_has_throttle_work(p))
+ return;
+
+ task_work_add(p, &p->sched_throttle_work, TWA_RESUME);
+}
+
static int tg_throttle_down(struct task_group *tg, void *data)
{
struct rq *rq = data;
struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
+ struct task_struct *p;
+ struct rb_node *node;
+
+ cfs_rq->throttle_count++;
+ if (cfs_rq->throttle_count > 1)
+ return 0;
/* group is entering throttled state, stop time */
- if (!cfs_rq->throttle_count) {
- cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
- list_del_leaf_cfs_rq(cfs_rq);
+ cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
+ list_del_leaf_cfs_rq(cfs_rq);
- SCHED_WARN_ON(cfs_rq->throttled_clock_self);
- if (cfs_rq->nr_queued)
- cfs_rq->throttled_clock_self = rq_clock(rq);
+ SCHED_WARN_ON(cfs_rq->throttled_clock_self);
+ if (cfs_rq->nr_queued)
+ cfs_rq->throttled_clock_self = rq_clock(rq);
+
+ WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_limbo_list));
+ /*
+ * rq_lock is held, current is (obviously) executing this in kernelspace.
+ *
+ * All other tasks enqueued on this rq have their saved PC at the
+ * context switch, so they will go through the kernel before returning
+ * to userspace. Thus, there are no tasks-in-userspace to handle, just
+ * install the task_work on all of them.
+ */
+ node = rb_first(&cfs_rq->tasks_timeline.rb_root);
+ while (node) {
+ struct sched_entity *se = __node_2_se(node);
+
+ if (!entity_is_task(se))
+ goto next;
+
+ p = task_of(se);
+ task_throttle_setup_work(p);
+next:
+ node = rb_next(node);
+ }
+
+ /* curr is not in the timeline tree */
+ if (cfs_rq->curr && entity_is_task(cfs_rq->curr)) {
+ p = task_of(cfs_rq->curr);
+ task_throttle_setup_work(p);
}
- cfs_rq->throttle_count++;
return 0;
}