On Mon, Oct 28, 2024 at 02:13:26PM +0000, Lorenzo Stoakes wrote:
Userland library functions such as allocators and threading implementations
often require regions of memory to act as 'guard pages' - mappings which,
when accessed, result in a fatal signal being sent to the accessing
process.
The current means by which these are implemented is via a PROT_NONE mmap()
mapping, which provides the required semantics however incur an overhead of
a VMA for each such region.
With a great many processes and threads, this can rapidly add up and incur
a significant memory penalty. It also has the added problem of preventing
merges that might otherwise be permitted.
This series takes a different approach - an idea suggested by Vlasimil
Babka (and before him David Hildenbrand and Jann Horn - perhaps more - the
provenance becomes a little tricky to ascertain after this - please forgive
any omissions!) - rather than locating the guard pages at the VMA layer,
instead placing them in page tables mapping the required ranges.
Early testing of the prototype version of this code suggests a 5 times
speed up in memory mapping invocations (in conjunction with use of
process_madvise()) and a 13% reduction in VMAs on an entirely idle android
system and unoptimised code.
We expect with optimisation and a loaded system with a larger number of
guard pages this could significantly increase, but in any case these
numbers are encouraging.
This way, rather than having separate VMAs specifying which parts of a
range are guard pages, instead we have a VMA spanning the entire range of
memory a user is permitted to access and including ranges which are to be
'guarded'.
After mapping this, a user can specify which parts of the range should
result in a fatal signal when accessed.
By restricting the ability to specify guard pages to memory mapped by
existing VMAs, we can rely on the mappings being torn down when the
mappings are ultimately unmapped and everything works simply as if the
memory were not faulted in, from the point of view of the containing VMAs.
This mechanism in effect poisons memory ranges similar to hardware memory
poisoning, only it is an entirely software-controlled form of poisoning.
The mechanism is implemented via madvise() behaviour - MADV_GUARD_INSTALL
which installs page table-level guard page markers - and
MADV_GUARD_REMOVE - which clears them.
Guard markers can be installed across multiple VMAs and any existing
mappings will be cleared, that is zapped, before installing the guard page
markers in the page tables.
There is no concept of 'nested' guard markers, multiple attempts to install
guard markers in a range will, after the first attempt, have no effect.
Importantly, removing guard markers over a range that contains both guard
markers and ordinary backed memory has no effect on anything but the guard
markers (including leaving huge pages un-split), so a user can safely
remove guard markers over a range of memory leaving the rest intact.
The actual mechanism by which the page table entries are specified makes
use of existing logic - PTE markers, which are used for the userfaultfd
UFFDIO_POISON mechanism.
Unfortunately PTE_MARKER_POISONED is not suited for the guard page
mechanism as it results in VM_FAULT_HWPOISON semantics in the fault
handler, so we add our own specific PTE_MARKER_GUARD and adapt existing
logic to handle it.
We also extend the generic page walk mechanism to allow for installation of
PTEs (carefully restricted to memory management logic only to prevent
unwanted abuse).
We ensure that zapping performed by MADV_DONTNEED and MADV_FREE do not
remove guard markers, nor does forking (except when VM_WIPEONFORK is
specified for a VMA which implies a total removal of memory
characteristics).
It's important to note that the guard page implementation is emphatically
NOT a security feature, so a user can remove the markers if they wish. We
simply implement it in such a way as to provide the least surprising
behaviour.
An extensive set of self-tests are provided which ensure behaviour is as
expected and additionally self-documents expected behaviour of guard
ranges.
Dear Lorenzo,
Dear colleagues,
sorry about raising an old thread.
It looks like this feature is now used in glibc [1]. And we noticed failures in CRIU [2]
CI on Fedora Rawhide userspace. Now a question is how we can properly detect such
"guarded" pages from user space. As I can see from MADV_GUARD_INSTALL implementation,
it does not modify VMA flags anyhow, but only page tables. It means that /proc/<pid>/maps
and /proc/<pid>/smaps interfaces are useless in this case. (Please, correct me if I'm missing
anything here.)
I wonder if you have any ideas / suggestions regarding Checkpoint/Restore here. We (CRIU devs) are happy
to develop some patches to bring some uAPI to expose MADV_GUARDs, but before going into this we decided
to raise this question in LKML.