[PATCH] crypto: x86/aes - drop the avx10_256 AES-XTS and AES-CTR code

From: Eric Biggers
Date: Wed Mar 19 2025 - 15:20:22 EST


From: Eric Biggers <ebiggers@xxxxxxxxxx>

Intel made a late change to the AVX10 specification that removes support
for a 256-bit maximum vector length and enumeration of the maximum
vector length. AVX10 will imply a maximum vector length of 512 bits.
I.e. there won't be any such thing as AVX10/256 or AVX10/512; there will
just be AVX10, and it will essentially just consolidate AVX512 features.

As a result of this new development, my strategy of providing both
*_avx10_256 and *_avx10_512 functions didn't turn out to be that useful.
The only remaining motivation for the 256-bit AVX512 / AVX10 functions
is to avoid downclocking on older Intel CPUs. But in the case of
AES-XTS and AES-CTR, I already wrote *_avx2 code too (primarily to
support CPUs without AVX512), which performs almost as well as
*_avx10_256. So we should just use that.

Therefore, remove the *_avx10_256 AES-XTS and AES-CTR functions and
algorithms, and rename the *_avx10_512 AES-XTS and AES-CTR functions and
algorithms to *_avx512. Make Ice Lake and Tiger Lake use *_avx2 instead
of *_avx10_256 which they previously used.

I've left AES-GCM unchanged for now. There is no VAES+AVX2 optimized
AES-GCM in the kernel yet, so the path forward for that is not as clear.
However, I did wrote a VAES+AVX2 optimized AES-GCM for BoringSSL. So
one option is to port that to the kernel and then do the same cleanup.

Signed-off-by: Eric Biggers <ebiggers@xxxxxxxxxx>
---
arch/x86/crypto/aes-ctr-avx-x86_64.S | 47 ++++-------
arch/x86/crypto/aes-xts-avx-x86_64.S | 118 ++++++++++++---------------
arch/x86/crypto/aesni-intel_glue.c | 30 +++----
3 files changed, 74 insertions(+), 121 deletions(-)

diff --git a/arch/x86/crypto/aes-ctr-avx-x86_64.S b/arch/x86/crypto/aes-ctr-avx-x86_64.S
index 1685d8b24b2ca..bbbfd80f5a502 100644
--- a/arch/x86/crypto/aes-ctr-avx-x86_64.S
+++ b/arch/x86/crypto/aes-ctr-avx-x86_64.S
@@ -46,12 +46,11 @@
//
// This file contains x86_64 assembly implementations of AES-CTR and AES-XCTR
// using the following sets of CPU features:
// - AES-NI && AVX
// - VAES && AVX2
-// - VAES && (AVX10/256 || (AVX512BW && AVX512VL)) && BMI2
-// - VAES && (AVX10/512 || (AVX512BW && AVX512VL)) && BMI2
+// - VAES && AVX512BW && AVX512VL && BMI2
//
// See the function definitions at the bottom of the file for more information.

#include <linux/linkage.h>
#include <linux/cfi_types.h>
@@ -74,31 +73,29 @@
.quad 4, 0

.text

// Move a vector between memory and a register.
-// The register operand must be in the first 16 vector registers.
.macro _vmovdqu src, dst
.if VL < 64
vmovdqu \src, \dst
.else
vmovdqu8 \src, \dst
.endif
.endm

// Move a vector between registers.
-// The registers must be in the first 16 vector registers.
.macro _vmovdqa src, dst
.if VL < 64
vmovdqa \src, \dst
.else
vmovdqa64 \src, \dst
.endif
.endm

// Broadcast a 128-bit value from memory to all 128-bit lanes of a vector
-// register. The register operand must be in the first 16 vector registers.
+// register.
.macro _vbroadcast128 src, dst
.if VL == 16
vmovdqu \src, \dst
.elseif VL == 32
vbroadcasti128 \src, \dst
@@ -106,11 +103,10 @@
vbroadcasti32x4 \src, \dst
.endif
.endm

// XOR two vectors together.
-// Any register operands must be in the first 16 vector registers.
.macro _vpxor src1, src2, dst
.if VL < 64
vpxor \src1, \src2, \dst
.else
vpxord \src1, \src2, \dst
@@ -197,20 +193,20 @@

// Prepare the next two vectors of AES inputs in AESDATA\i0 and AESDATA\i1, and
// XOR each with the zero-th round key. Also update LE_CTR if !\final.
.macro _prepare_2_ctr_vecs is_xctr, i0, i1, final=0
.if \is_xctr
- .if USE_AVX10
- _vmovdqa LE_CTR, AESDATA\i0
+ .if USE_AVX512
+ vmovdqa64 LE_CTR, AESDATA\i0
vpternlogd $0x96, XCTR_IV, RNDKEY0, AESDATA\i0
.else
vpxor XCTR_IV, LE_CTR, AESDATA\i0
vpxor RNDKEY0, AESDATA\i0, AESDATA\i0
.endif
vpaddq LE_CTR_INC1, LE_CTR, AESDATA\i1

- .if USE_AVX10
+ .if USE_AVX512
vpternlogd $0x96, XCTR_IV, RNDKEY0, AESDATA\i1
.else
vpxor XCTR_IV, AESDATA\i1, AESDATA\i1
vpxor RNDKEY0, AESDATA\i1, AESDATA\i1
.endif
@@ -479,22 +475,16 @@
_vmovdqa AESDATA3, AESDATA0

.Lxor_tail_partial_vec_0\@:
// XOR the remaining 1 <= LEN < VL bytes. It's easy if masked
// loads/stores are available; otherwise it's a bit harder...
-.if USE_AVX10
- .if VL <= 32
- mov $-1, %eax
- bzhi LEN, %eax, %eax
- kmovd %eax, %k1
- .else
+.if USE_AVX512
mov $-1, %rax
bzhi LEN64, %rax, %rax
kmovq %rax, %k1
- .endif
vmovdqu8 (SRC), AESDATA1{%k1}{z}
- _vpxor AESDATA1, AESDATA0, AESDATA0
+ vpxord AESDATA1, AESDATA0, AESDATA0
vmovdqu8 AESDATA0, (DST){%k1}
.else
.if VL == 32
cmp $16, LEN
jl 1f
@@ -552,41 +542,32 @@
// with HCTR2" (https://eprint.iacr.org/2021/1441.pdf). XCTR is an
// easier-to-implement variant of CTR that uses little endian byte order and
// eliminates carries. |ctr| is the per-message block counter starting at 1.

.set VL, 16
-.set USE_AVX10, 0
+.set USE_AVX512, 0
SYM_TYPED_FUNC_START(aes_ctr64_crypt_aesni_avx)
_aes_ctr_crypt 0
SYM_FUNC_END(aes_ctr64_crypt_aesni_avx)
SYM_TYPED_FUNC_START(aes_xctr_crypt_aesni_avx)
_aes_ctr_crypt 1
SYM_FUNC_END(aes_xctr_crypt_aesni_avx)

#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
.set VL, 32
-.set USE_AVX10, 0
+.set USE_AVX512, 0
SYM_TYPED_FUNC_START(aes_ctr64_crypt_vaes_avx2)
_aes_ctr_crypt 0
SYM_FUNC_END(aes_ctr64_crypt_vaes_avx2)
SYM_TYPED_FUNC_START(aes_xctr_crypt_vaes_avx2)
_aes_ctr_crypt 1
SYM_FUNC_END(aes_xctr_crypt_vaes_avx2)

-.set VL, 32
-.set USE_AVX10, 1
-SYM_TYPED_FUNC_START(aes_ctr64_crypt_vaes_avx10_256)
- _aes_ctr_crypt 0
-SYM_FUNC_END(aes_ctr64_crypt_vaes_avx10_256)
-SYM_TYPED_FUNC_START(aes_xctr_crypt_vaes_avx10_256)
- _aes_ctr_crypt 1
-SYM_FUNC_END(aes_xctr_crypt_vaes_avx10_256)
-
.set VL, 64
-.set USE_AVX10, 1
-SYM_TYPED_FUNC_START(aes_ctr64_crypt_vaes_avx10_512)
+.set USE_AVX512, 1
+SYM_TYPED_FUNC_START(aes_ctr64_crypt_vaes_avx512)
_aes_ctr_crypt 0
-SYM_FUNC_END(aes_ctr64_crypt_vaes_avx10_512)
-SYM_TYPED_FUNC_START(aes_xctr_crypt_vaes_avx10_512)
+SYM_FUNC_END(aes_ctr64_crypt_vaes_avx512)
+SYM_TYPED_FUNC_START(aes_xctr_crypt_vaes_avx512)
_aes_ctr_crypt 1
-SYM_FUNC_END(aes_xctr_crypt_vaes_avx10_512)
+SYM_FUNC_END(aes_xctr_crypt_vaes_avx512)
#endif // CONFIG_AS_VAES && CONFIG_AS_VPCLMULQDQ
diff --git a/arch/x86/crypto/aes-xts-avx-x86_64.S b/arch/x86/crypto/aes-xts-avx-x86_64.S
index 93ba0ddbe0092..cbe7a2e3dad4f 100644
--- a/arch/x86/crypto/aes-xts-avx-x86_64.S
+++ b/arch/x86/crypto/aes-xts-avx-x86_64.S
@@ -50,36 +50,29 @@
* This file implements AES-XTS for modern x86_64 CPUs. To handle the
* complexities of coding for x86 SIMD, e.g. where every vector length needs
* different code, it uses a macro to generate several implementations that
* share similar source code but are targeted at different CPUs, listed below:
*
- * AES-NI + AVX
+ * AES-NI && AVX
* - 128-bit vectors (1 AES block per vector)
* - VEX-coded instructions
* - xmm0-xmm15
* - This is for older CPUs that lack VAES but do have AVX.
*
- * VAES + VPCLMULQDQ + AVX2
+ * VAES && VPCLMULQDQ && AVX2
* - 256-bit vectors (2 AES blocks per vector)
* - VEX-coded instructions
* - ymm0-ymm15
- * - This is for CPUs that have VAES but lack AVX512 or AVX10,
- * e.g. Intel's Alder Lake and AMD's Zen 3.
+ * - This is for CPUs that have VAES but either lack AVX512 (e.g. Intel's
+ * Alder Lake and AMD's Zen 3) or downclock too eagerly when using zmm
+ * registers (e.g. Intel's Ice Lake).
*
- * VAES + VPCLMULQDQ + AVX10/256 + BMI2
- * - 256-bit vectors (2 AES blocks per vector)
+ * VAES && VPCLMULQDQ && AVX512BW && AVX512VL
+ * - 512-bit vectors (4 AES blocks per vector)
* - EVEX-coded instructions
- * - ymm0-ymm31
- * - This is for CPUs that have AVX512 but where using zmm registers causes
- * downclocking, and for CPUs that have AVX10/256 but not AVX10/512.
- * - By "AVX10/256" we really mean (AVX512BW + AVX512VL) || AVX10/256.
- * To avoid confusion with 512-bit, we just write AVX10/256.
- *
- * VAES + VPCLMULQDQ + AVX10/512 + BMI2
- * - Same as the previous one, but upgrades to 512-bit vectors
- * (4 AES blocks per vector) in zmm0-zmm31.
- * - This is for CPUs that have good AVX512 or AVX10/512 support.
+ * - zmm0-zmm31
+ * - This is for CPUs that have good AVX512 support.
*
* This file doesn't have an implementation for AES-NI alone (without AVX), as
* the lack of VEX would make all the assembly code different.
*
* When we use VAES, we also use VPCLMULQDQ to parallelize the computation of
@@ -107,11 +100,11 @@
// exists when there's a carry out of the low 64 bits of the tweak.
.quad 0x87, 1

// This table contains constants for vpshufb and vpblendvb, used to
// handle variable byte shifts and blending during ciphertext stealing
- // on CPUs that don't support AVX10-style masking.
+ // on CPUs that don't support AVX512-style masking.
.Lcts_permute_table:
.byte 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80
.byte 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80
.byte 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07
.byte 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f
@@ -136,11 +129,11 @@
// are available, that map to the xmm, ymm, or zmm registers according
// to the selected Vector Length (VL).
.irp i, 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
_define_Vi \i
.endr
-.if USE_AVX10
+.if USE_AVX512
.irp i, 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
_define_Vi \i
.endr
.endif

@@ -191,11 +184,11 @@
// AES-128, AES-192, and AES-256 use different numbers of round keys.
// To allow handling all three variants efficiently, we align the round
// keys to the *end* of this register range. I.e., AES-128 uses
// KEY5-KEY14, AES-192 uses KEY3-KEY14, and AES-256 uses KEY1-KEY14.
// (All also use KEY0 for the XOR-only "round" at the beginning.)
-.if USE_AVX10
+.if USE_AVX512
.set KEY1_XMM, %xmm16
.set KEY1, V16
.set KEY2_XMM, %xmm17
.set KEY2, V17
.set KEY3_XMM, %xmm18
@@ -225,43 +218,41 @@
.endif
// V30-V31 are currently unused.
.endm

// Move a vector between memory and a register.
-// The register operand must be in the first 16 vector registers.
.macro _vmovdqu src, dst
.if VL < 64
vmovdqu \src, \dst
.else
vmovdqu8 \src, \dst
.endif
.endm

// Broadcast a 128-bit value into a vector.
.macro _vbroadcast128 src, dst
-.if VL == 16 && !USE_AVX10
+.if VL == 16
vmovdqu \src, \dst
-.elseif VL == 32 && !USE_AVX10
+.elseif VL == 32
vbroadcasti128 \src, \dst
.else
vbroadcasti32x4 \src, \dst
.endif
.endm

// XOR two vectors together.
-// Any register operands must be in the first 16 vector registers.
.macro _vpxor src1, src2, dst
.if VL < 64
vpxor \src1, \src2, \dst
.else
vpxord \src1, \src2, \dst
.endif
.endm

// XOR three vectors together.
.macro _xor3 src1, src2, src3_and_dst
-.if USE_AVX10
+.if USE_AVX512
// vpternlogd with immediate 0x96 is a three-argument XOR.
vpternlogd $0x96, \src1, \src2, \src3_and_dst
.else
vpxor \src1, \src3_and_dst, \src3_and_dst
vpxor \src2, \src3_and_dst, \src3_and_dst
@@ -272,11 +263,11 @@
// (by multiplying by the polynomial 'x') and write it to \dst.
.macro _next_tweak src, tmp, dst
vpshufd $0x13, \src, \tmp
vpaddq \src, \src, \dst
vpsrad $31, \tmp, \tmp
-.if USE_AVX10
+.if USE_AVX512
vpternlogd $0x78, GF_POLY_XMM, \tmp, \dst
.else
vpand GF_POLY_XMM, \tmp, \tmp
vpxor \tmp, \dst, \dst
.endif
@@ -335,11 +326,11 @@
vpslldq $8, V2, V2
vpslldq $8, V4, V4
vpsllq $1*VL/16, TWEAK0, TWEAK1
vpsllq $2*VL/16, TWEAK0, TWEAK2
vpsllq $3*VL/16, TWEAK0, TWEAK3
-.if USE_AVX10
+.if USE_AVX512
vpternlogd $0x96, V0, V1, TWEAK1
vpternlogd $0x96, V2, V3, TWEAK2
vpternlogd $0x96, V4, V5, TWEAK3
.else
vpxor V0, TWEAK1, TWEAK1
@@ -472,30 +463,30 @@
// interleave the AES rounds with the XTS tweak computation, and (c) it
// seems unwise to rely *too* heavily on the CPU's branch predictor.
lea OFFS-16(KEY, KEYLEN64, 4), KEY

// If all 32 SIMD registers are available, cache all the round keys.
-.if USE_AVX10
+.if USE_AVX512
cmp $24, KEYLEN
jl .Laes128\@
je .Laes192\@
- _vbroadcast128 -6*16(KEY), KEY1
- _vbroadcast128 -5*16(KEY), KEY2
+ vbroadcasti32x4 -6*16(KEY), KEY1
+ vbroadcasti32x4 -5*16(KEY), KEY2
.Laes192\@:
- _vbroadcast128 -4*16(KEY), KEY3
- _vbroadcast128 -3*16(KEY), KEY4
+ vbroadcasti32x4 -4*16(KEY), KEY3
+ vbroadcasti32x4 -3*16(KEY), KEY4
.Laes128\@:
- _vbroadcast128 -2*16(KEY), KEY5
- _vbroadcast128 -1*16(KEY), KEY6
- _vbroadcast128 0*16(KEY), KEY7
- _vbroadcast128 1*16(KEY), KEY8
- _vbroadcast128 2*16(KEY), KEY9
- _vbroadcast128 3*16(KEY), KEY10
- _vbroadcast128 4*16(KEY), KEY11
- _vbroadcast128 5*16(KEY), KEY12
- _vbroadcast128 6*16(KEY), KEY13
- _vbroadcast128 7*16(KEY), KEY14
+ vbroadcasti32x4 -2*16(KEY), KEY5
+ vbroadcasti32x4 -1*16(KEY), KEY6
+ vbroadcasti32x4 0*16(KEY), KEY7
+ vbroadcasti32x4 1*16(KEY), KEY8
+ vbroadcasti32x4 2*16(KEY), KEY9
+ vbroadcasti32x4 3*16(KEY), KEY10
+ vbroadcasti32x4 4*16(KEY), KEY11
+ vbroadcasti32x4 5*16(KEY), KEY12
+ vbroadcasti32x4 6*16(KEY), KEY13
+ vbroadcasti32x4 7*16(KEY), KEY14
.endif
.endm

// Do a single non-last round of AES encryption (if \enc==1) or decryption (if
// \enc==0) on the block(s) in \data using the round key(s) in \key. The
@@ -519,11 +510,11 @@

// Do a single non-last round of AES en/decryption on the block(s) in \data,
// using the same key for all block(s). The round key is loaded from the
// appropriate register or memory location for round \i. May clobber \tmp.
.macro _vaes_1x enc, i, xmm_suffix, data, tmp
-.if USE_AVX10
+.if USE_AVX512
_vaes \enc, KEY\i\xmm_suffix, \data
.else
.ifnb \xmm_suffix
_vaes \enc, (\i-7)*16(KEY), \data
.else
@@ -536,11 +527,11 @@
// Do a single non-last round of AES en/decryption on the blocks in registers
// V0-V3, using the same key for all blocks. The round key is loaded from the
// appropriate register or memory location for round \i. In addition, does two
// steps of the computation of the next set of tweaks. May clobber V4 and V5.
.macro _vaes_4x enc, i
-.if USE_AVX10
+.if USE_AVX512
_tweak_step (2*(\i-5))
_vaes \enc, KEY\i, V0
_vaes \enc, KEY\i, V1
_tweak_step (2*(\i-5) + 1)
_vaes \enc, KEY\i, V2
@@ -572,11 +563,11 @@
_vaes_1x \enc, 4, \xmm_suffix, \data, tmp=\tmp
.Laes128\@:
.irp i, 5,6,7,8,9,10,11,12,13
_vaes_1x \enc, \i, \xmm_suffix, \data, tmp=\tmp
.endr
-.if USE_AVX10
+.if USE_AVX512
vpxord KEY14\xmm_suffix, \tweak, \tmp
.else
.ifnb \xmm_suffix
vpxor 7*16(KEY), \tweak, \tmp
.else
@@ -615,15 +606,15 @@

.Lmain_loop\@:
// This is the main loop, en/decrypting 4*VL bytes per iteration.

// XOR each source block with its tweak and the zero-th round key.
-.if USE_AVX10
- _vmovdqu 0*VL(SRC), V0
- _vmovdqu 1*VL(SRC), V1
- _vmovdqu 2*VL(SRC), V2
- _vmovdqu 3*VL(SRC), V3
+.if USE_AVX512
+ vmovdqu8 0*VL(SRC), V0
+ vmovdqu8 1*VL(SRC), V1
+ vmovdqu8 2*VL(SRC), V2
+ vmovdqu8 3*VL(SRC), V3
vpternlogd $0x96, TWEAK0, KEY0, V0
vpternlogd $0x96, TWEAK1, KEY0, V1
vpternlogd $0x96, TWEAK2, KEY0, V2
vpternlogd $0x96, TWEAK3, KEY0, V3
.else
@@ -652,11 +643,11 @@
.endr
// Do the last AES round, then XOR the results with the tweaks again.
// Reduce latency by doing the XOR before the vaesenclast, utilizing the
// property vaesenclast(key, a) ^ b == vaesenclast(key ^ b, a)
// (and likewise for vaesdeclast).
-.if USE_AVX10
+.if USE_AVX512
_tweak_step 18
_tweak_step 19
vpxord TWEAK0, KEY14, V4
vpxord TWEAK1, KEY14, V5
_vaeslast \enc, V4, V0
@@ -760,11 +751,11 @@
_next_tweak TWEAK0_XMM, %xmm0, TWEAK1_XMM
vmovdqu (SRC), %xmm0
_aes_crypt \enc, _XMM, TWEAK1_XMM, %xmm0, tmp=%xmm1
.endif

-.if USE_AVX10
+.if USE_AVX512
// Create a mask that has the first LEN bits set.
mov $-1, %r9d
bzhi LEN, %r9d, %r9d
kmovd %r9d, %k1

@@ -809,11 +800,11 @@

// void aes_xts_encrypt_iv(const struct crypto_aes_ctx *tweak_key,
// u8 iv[AES_BLOCK_SIZE]);
//
// Encrypt |iv| using the AES key |tweak_key| to get the first tweak. Assumes
-// that the CPU supports AES-NI and AVX, but not necessarily VAES or AVX10.
+// that the CPU supports AES-NI and AVX, but not necessarily VAES or AVX512.
SYM_TYPED_FUNC_START(aes_xts_encrypt_iv)
.set TWEAK_KEY, %rdi
.set IV, %rsi
.set KEYLEN, %eax
.set KEYLEN64, %rax
@@ -851,41 +842,32 @@ SYM_FUNC_END(aes_xts_encrypt_iv)
// incremental computation, but |len| must always be >= 16 (AES_BLOCK_SIZE), and
// |len| must be a multiple of 16 except on the last call. If |len| is a
// multiple of 16, then this function updates |tweak| to contain the next tweak.

.set VL, 16
-.set USE_AVX10, 0
+.set USE_AVX512, 0
SYM_TYPED_FUNC_START(aes_xts_encrypt_aesni_avx)
_aes_xts_crypt 1
SYM_FUNC_END(aes_xts_encrypt_aesni_avx)
SYM_TYPED_FUNC_START(aes_xts_decrypt_aesni_avx)
_aes_xts_crypt 0
SYM_FUNC_END(aes_xts_decrypt_aesni_avx)

#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
.set VL, 32
-.set USE_AVX10, 0
+.set USE_AVX512, 0
SYM_TYPED_FUNC_START(aes_xts_encrypt_vaes_avx2)
_aes_xts_crypt 1
SYM_FUNC_END(aes_xts_encrypt_vaes_avx2)
SYM_TYPED_FUNC_START(aes_xts_decrypt_vaes_avx2)
_aes_xts_crypt 0
SYM_FUNC_END(aes_xts_decrypt_vaes_avx2)

-.set VL, 32
-.set USE_AVX10, 1
-SYM_TYPED_FUNC_START(aes_xts_encrypt_vaes_avx10_256)
- _aes_xts_crypt 1
-SYM_FUNC_END(aes_xts_encrypt_vaes_avx10_256)
-SYM_TYPED_FUNC_START(aes_xts_decrypt_vaes_avx10_256)
- _aes_xts_crypt 0
-SYM_FUNC_END(aes_xts_decrypt_vaes_avx10_256)
-
.set VL, 64
-.set USE_AVX10, 1
-SYM_TYPED_FUNC_START(aes_xts_encrypt_vaes_avx10_512)
+.set USE_AVX512, 1
+SYM_TYPED_FUNC_START(aes_xts_encrypt_vaes_avx512)
_aes_xts_crypt 1
-SYM_FUNC_END(aes_xts_encrypt_vaes_avx10_512)
-SYM_TYPED_FUNC_START(aes_xts_decrypt_vaes_avx10_512)
+SYM_FUNC_END(aes_xts_encrypt_vaes_avx512)
+SYM_TYPED_FUNC_START(aes_xts_decrypt_vaes_avx512)
_aes_xts_crypt 0
-SYM_FUNC_END(aes_xts_decrypt_vaes_avx10_512)
+SYM_FUNC_END(aes_xts_decrypt_vaes_avx512)
#endif /* CONFIG_AS_VAES && CONFIG_AS_VPCLMULQDQ */
diff --git a/arch/x86/crypto/aesni-intel_glue.c b/arch/x86/crypto/aesni-intel_glue.c
index e141b7995304d..d9194863e412f 100644
--- a/arch/x86/crypto/aesni-intel_glue.c
+++ b/arch/x86/crypto/aesni-intel_glue.c
@@ -842,12 +842,11 @@ static struct simd_skcipher_alg * \
simd_skcipher_algs_##suffix[ARRAY_SIZE(skcipher_algs_##suffix)]

DEFINE_AVX_SKCIPHER_ALGS(aesni_avx, "aesni-avx", 500);
#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
DEFINE_AVX_SKCIPHER_ALGS(vaes_avx2, "vaes-avx2", 600);
-DEFINE_AVX_SKCIPHER_ALGS(vaes_avx10_256, "vaes-avx10_256", 700);
-DEFINE_AVX_SKCIPHER_ALGS(vaes_avx10_512, "vaes-avx10_512", 800);
+DEFINE_AVX_SKCIPHER_ALGS(vaes_avx512, "vaes-avx512", 800);
#endif

/* The common part of the x86_64 AES-GCM key struct */
struct aes_gcm_key {
/* Expanded AES key and the AES key length in bytes */
@@ -1610,33 +1609,28 @@ static int __init register_avx_algs(void)
!boot_cpu_has(X86_FEATURE_BMI2) ||
!cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM |
XFEATURE_MASK_AVX512, NULL))
return 0;

- err = simd_register_skciphers_compat(skcipher_algs_vaes_avx10_256,
- ARRAY_SIZE(skcipher_algs_vaes_avx10_256),
- simd_skcipher_algs_vaes_avx10_256);
- if (err)
- return err;
err = simd_register_aeads_compat(aes_gcm_algs_vaes_avx10_256,
ARRAY_SIZE(aes_gcm_algs_vaes_avx10_256),
aes_gcm_simdalgs_vaes_avx10_256);
if (err)
return err;

if (x86_match_cpu(zmm_exclusion_list)) {
int i;

- for (i = 0; i < ARRAY_SIZE(skcipher_algs_vaes_avx10_512); i++)
- skcipher_algs_vaes_avx10_512[i].base.cra_priority = 1;
+ for (i = 0; i < ARRAY_SIZE(skcipher_algs_vaes_avx512); i++)
+ skcipher_algs_vaes_avx512[i].base.cra_priority = 1;
for (i = 0; i < ARRAY_SIZE(aes_gcm_algs_vaes_avx10_512); i++)
aes_gcm_algs_vaes_avx10_512[i].base.cra_priority = 1;
}

- err = simd_register_skciphers_compat(skcipher_algs_vaes_avx10_512,
- ARRAY_SIZE(skcipher_algs_vaes_avx10_512),
- simd_skcipher_algs_vaes_avx10_512);
+ err = simd_register_skciphers_compat(skcipher_algs_vaes_avx512,
+ ARRAY_SIZE(skcipher_algs_vaes_avx512),
+ simd_skcipher_algs_vaes_avx512);
if (err)
return err;
err = simd_register_aeads_compat(aes_gcm_algs_vaes_avx10_512,
ARRAY_SIZE(aes_gcm_algs_vaes_avx10_512),
aes_gcm_simdalgs_vaes_avx10_512);
@@ -1659,22 +1653,18 @@ static void unregister_avx_algs(void)
#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
if (simd_skcipher_algs_vaes_avx2[0])
simd_unregister_skciphers(skcipher_algs_vaes_avx2,
ARRAY_SIZE(skcipher_algs_vaes_avx2),
simd_skcipher_algs_vaes_avx2);
- if (simd_skcipher_algs_vaes_avx10_256[0])
- simd_unregister_skciphers(skcipher_algs_vaes_avx10_256,
- ARRAY_SIZE(skcipher_algs_vaes_avx10_256),
- simd_skcipher_algs_vaes_avx10_256);
if (aes_gcm_simdalgs_vaes_avx10_256[0])
simd_unregister_aeads(aes_gcm_algs_vaes_avx10_256,
ARRAY_SIZE(aes_gcm_algs_vaes_avx10_256),
aes_gcm_simdalgs_vaes_avx10_256);
- if (simd_skcipher_algs_vaes_avx10_512[0])
- simd_unregister_skciphers(skcipher_algs_vaes_avx10_512,
- ARRAY_SIZE(skcipher_algs_vaes_avx10_512),
- simd_skcipher_algs_vaes_avx10_512);
+ if (simd_skcipher_algs_vaes_avx512[0])
+ simd_unregister_skciphers(skcipher_algs_vaes_avx512,
+ ARRAY_SIZE(skcipher_algs_vaes_avx512),
+ simd_skcipher_algs_vaes_avx512);
if (aes_gcm_simdalgs_vaes_avx10_512[0])
simd_unregister_aeads(aes_gcm_algs_vaes_avx10_512,
ARRAY_SIZE(aes_gcm_algs_vaes_avx10_512),
aes_gcm_simdalgs_vaes_avx10_512);
#endif

base-commit: d2d072a313c1817a0d72d7b8301eaf29ce7f83fc
--
2.49.0