[PATCH 5/5] slab: fix code formatting

From: Pekka Enberg
Date: Fri Nov 18 2005 - 12:27:40 EST



The slab allocator code is inconsistent in coding style and messy. For this
patch, I ran Lindent for mm/slab.c and fixed up goofs by hand.

Signed-off-by: Pekka Enberg <penberg@xxxxxxxxxxxxxx>
---

slab.c | 1089 ++++++++++++++++++++++++++++++++++-------------------------------
1 file changed, 571 insertions(+), 518 deletions(-)

Index: 2.6/mm/slab.c
===================================================================
--- 2.6.orig/mm/slab.c
+++ 2.6/mm/slab.c
@@ -130,7 +130,6 @@
#define FORCED_DEBUG 0
#endif

-
/* Shouldn't this be in a header file somewhere? */
#define BYTES_PER_WORD sizeof(void *)

@@ -217,12 +216,12 @@ static unsigned long offslab_limit;
* Slabs are chained into three list: fully used, partial, fully free slabs.
*/
struct slab {
- struct list_head list;
- unsigned long colouroff;
- void *s_mem; /* including colour offset */
- unsigned int inuse; /* num of objs active in slab */
- kmem_bufctl_t free;
- unsigned short nodeid;
+ struct list_head list;
+ unsigned long colouroff;
+ void *s_mem; /* including colour offset */
+ unsigned int inuse; /* num of objs active in slab */
+ kmem_bufctl_t free;
+ unsigned short nodeid;
};

/*
@@ -242,9 +241,9 @@ struct slab {
* We assume struct slab_rcu can overlay struct slab when destroying.
*/
struct slab_rcu {
- struct rcu_head head;
- kmem_cache_t *cachep;
- void *addr;
+ struct rcu_head head;
+ kmem_cache_t *cachep;
+ void *addr;
};

/*
@@ -279,23 +278,23 @@ struct array_cache {
#define BOOT_CPUCACHE_ENTRIES 1
struct arraycache_init {
struct array_cache cache;
- void * entries[BOOT_CPUCACHE_ENTRIES];
+ void *entries[BOOT_CPUCACHE_ENTRIES];
};

/*
* The slab lists for all objects.
*/
struct kmem_list3 {
- struct list_head slabs_partial; /* partial list first, better asm code */
- struct list_head slabs_full;
- struct list_head slabs_free;
- unsigned long free_objects;
- unsigned long next_reap;
- int free_touched;
- unsigned int free_limit;
- spinlock_t list_lock;
- struct array_cache *shared; /* shared per node */
- struct array_cache **alien; /* on other nodes */
+ struct list_head slabs_partial; /* partial list first, better asm code */
+ struct list_head slabs_full;
+ struct list_head slabs_free;
+ unsigned long free_objects;
+ unsigned long next_reap;
+ int free_touched;
+ unsigned int free_limit;
+ spinlock_t list_lock;
+ struct array_cache *shared; /* shared per node */
+ struct array_cache **alien; /* on other nodes */
};

/*
@@ -367,63 +366,63 @@ static inline void kmem_list3_init(struc
*
* manages a cache.
*/
-
+
struct kmem_cache {
/* 1) per-cpu data, touched during every alloc/free */
- struct array_cache *array[NR_CPUS];
- unsigned int batchcount;
- unsigned int limit;
- unsigned int shared;
- unsigned int objsize;
+ struct array_cache *array[NR_CPUS];
+ unsigned int batchcount;
+ unsigned int limit;
+ unsigned int shared;
+ unsigned int objsize;
/* 2) touched by every alloc & free from the backend */
- struct kmem_list3 *nodelists[MAX_NUMNODES];
- unsigned int flags; /* constant flags */
- unsigned int num; /* # of objs per slab */
- spinlock_t spinlock;
+ struct kmem_list3 *nodelists[MAX_NUMNODES];
+ unsigned int flags; /* constant flags */
+ unsigned int num; /* # of objs per slab */
+ spinlock_t spinlock;

/* 3) cache_grow/shrink */
/* order of pgs per slab (2^n) */
- unsigned int gfporder;
+ unsigned int gfporder;

/* force GFP flags, e.g. GFP_DMA */
- gfp_t gfpflags;
+ gfp_t gfpflags;

- size_t colour; /* cache colouring range */
- unsigned int colour_off; /* colour offset */
- unsigned int colour_next; /* cache colouring */
- kmem_cache_t *slabp_cache;
- unsigned int slab_size;
- unsigned int dflags; /* dynamic flags */
+ size_t colour; /* cache colouring range */
+ unsigned int colour_off; /* colour offset */
+ unsigned int colour_next; /* cache colouring */
+ kmem_cache_t *slabp_cache;
+ unsigned int slab_size;
+ unsigned int dflags; /* dynamic flags */

/* constructor func */
- void (*ctor)(void *, kmem_cache_t *, unsigned long);
+ void (*ctor) (void *, kmem_cache_t *, unsigned long);

/* de-constructor func */
- void (*dtor)(void *, kmem_cache_t *, unsigned long);
+ void (*dtor) (void *, kmem_cache_t *, unsigned long);

/* 4) cache creation/removal */
- const char *name;
- struct list_head next;
+ const char *name;
+ struct list_head next;

/* 5) statistics */
#if STATS
- unsigned long num_active;
- unsigned long num_allocations;
- unsigned long high_mark;
- unsigned long grown;
- unsigned long reaped;
- unsigned long errors;
- unsigned long max_freeable;
- unsigned long node_allocs;
- unsigned long node_frees;
- atomic_t allochit;
- atomic_t allocmiss;
- atomic_t freehit;
- atomic_t freemiss;
+ unsigned long num_active;
+ unsigned long num_allocations;
+ unsigned long high_mark;
+ unsigned long grown;
+ unsigned long reaped;
+ unsigned long errors;
+ unsigned long max_freeable;
+ unsigned long node_allocs;
+ unsigned long node_frees;
+ atomic_t allochit;
+ atomic_t allocmiss;
+ atomic_t freehit;
+ atomic_t freemiss;
#endif
#if DEBUG
- int dbghead;
- int reallen;
+ int dbghead;
+ int reallen;
#endif
};

@@ -503,41 +502,42 @@ struct kmem_cache {
* cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
* cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
*/
-static int obj_dbghead(kmem_cache_t *cachep)
+static int obj_dbghead(kmem_cache_t * cachep)
{
return cachep->dbghead;
}

-static int obj_size(kmem_cache_t *cachep)
+static int obj_size(kmem_cache_t * cachep)
{
return cachep->reallen;
}

-static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp)
+static unsigned long *dbg_redzone1(kmem_cache_t * cachep, void *objp)
{
BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
- return (unsigned long*) (objp+obj_dbghead(cachep)-BYTES_PER_WORD);
+ return (unsigned long *)(objp + obj_dbghead(cachep) - BYTES_PER_WORD);
}

-static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp)
+static unsigned long *dbg_redzone2(kmem_cache_t * cachep, void *objp)
{
BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
if (cachep->flags & SLAB_STORE_USER)
- return (unsigned long*) (objp+cachep->objsize-2*BYTES_PER_WORD);
- return (unsigned long*) (objp+cachep->objsize-BYTES_PER_WORD);
+ return (unsigned long *)(objp + cachep->objsize -
+ 2 * BYTES_PER_WORD);
+ return (unsigned long *)(objp + cachep->objsize - BYTES_PER_WORD);
}

-static void **dbg_userword(kmem_cache_t *cachep, void *objp)
+static void **dbg_userword(kmem_cache_t * cachep, void *objp)
{
BUG_ON(!(cachep->flags & SLAB_STORE_USER));
- return (void**)(objp+cachep->objsize-BYTES_PER_WORD);
+ return (void **)(objp + cachep->objsize - BYTES_PER_WORD);
}

#else

#define obj_dbghead(x) 0

-static int obj_size(kmem_cache_t *cachep)
+static int obj_size(kmem_cache_t * cachep)
{
return cachep->objsize;
}
@@ -601,6 +601,7 @@ struct cache_sizes malloc_sizes[] = {
CACHE(ULONG_MAX)
#undef CACHE
};
+
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
@@ -612,31 +613,31 @@ struct cache_names {
static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
- { NULL, }
+ {NULL,}
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
- { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
+ { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
static struct arraycache_init initarray_generic =
- { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
+ { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };

/* internal cache of cache description objs */
static kmem_cache_t cache_cache = {
- .batchcount = 1,
- .limit = BOOT_CPUCACHE_ENTRIES,
- .shared = 1,
- .objsize = sizeof(kmem_cache_t),
- .flags = SLAB_NO_REAP,
- .spinlock = SPIN_LOCK_UNLOCKED,
- .name = "kmem_cache",
+ .batchcount = 1,
+ .limit = BOOT_CPUCACHE_ENTRIES,
+ .shared = 1,
+ .objsize = sizeof(kmem_cache_t),
+ .flags = SLAB_NO_REAP,
+ .spinlock = SPIN_LOCK_UNLOCKED,
+ .name = "kmem_cache",
#if DEBUG
- .reallen = sizeof(kmem_cache_t),
+ .reallen = sizeof(kmem_cache_t),
#endif
};

/* Guard access to the cache-chain. */
-static struct semaphore cache_chain_sem;
+static struct semaphore cache_chain_sem;
static struct list_head cache_chain;

/*
@@ -660,12 +661,12 @@ static enum {

static DEFINE_PER_CPU(struct work_struct, reap_work);

-static void free_block(kmem_cache_t* cachep, void** objpp, int len, int node);
-static void enable_cpucache (kmem_cache_t *cachep);
-static void cache_reap (void *unused);
-static int __node_shrink(kmem_cache_t *cachep, int node);
+static void free_block(kmem_cache_t * cachep, void **objpp, int len, int node);
+static void enable_cpucache(kmem_cache_t * cachep);
+static void cache_reap(void *unused);
+static int __node_shrink(kmem_cache_t * cachep, int node);

-static inline struct array_cache *ac_data(kmem_cache_t *cachep)
+static inline struct array_cache *ac_data(kmem_cache_t * cachep)
{
return cachep->array[smp_processor_id()];
}
@@ -676,9 +677,9 @@ static inline kmem_cache_t *__find_gener

#if DEBUG
/* This happens if someone tries to call
- * kmem_cache_create(), or __kmalloc(), before
- * the generic caches are initialized.
- */
+ * kmem_cache_create(), or __kmalloc(), before
+ * the generic caches are initialized.
+ */
BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
#endif
while (size > csizep->cs_size)
@@ -698,14 +699,15 @@ kmem_cache_t *kmem_find_general_cachep(s
{
return __find_general_cachep(size, gfpflags);
}
+
EXPORT_SYMBOL(kmem_find_general_cachep);

/* Cal the num objs, wastage, and bytes left over for a given slab size. */
static void cache_estimate(unsigned long gfporder, size_t size, size_t align,
- int flags, size_t *left_over, unsigned int *num)
+ int flags, size_t * left_over, unsigned int *num)
{
int i;
- size_t wastage = PAGE_SIZE<<gfporder;
+ size_t wastage = PAGE_SIZE << gfporder;
size_t extra = 0;
size_t base = 0;

@@ -714,7 +716,7 @@ static void cache_estimate(unsigned long
extra = sizeof(kmem_bufctl_t);
}
i = 0;
- while (i*size + ALIGN(base+i*extra, align) <= wastage)
+ while (i * size + ALIGN(base + i * extra, align) <= wastage)
i++;
if (i > 0)
i--;
@@ -723,17 +725,17 @@ static void cache_estimate(unsigned long
i = SLAB_LIMIT;

*num = i;
- wastage -= i*size;
- wastage -= ALIGN(base+i*extra, align);
+ wastage -= i * size;
+ wastage -= ALIGN(base + i * extra, align);
*left_over = wastage;
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

-static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg)
+static void __slab_error(const char *function, kmem_cache_t * cachep, char *msg)
{
printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
- function, cachep->name, msg);
+ function, cachep->name, msg);
dump_stack();
}

@@ -760,9 +762,9 @@ static void __devinit start_cpu_timer(in
}

static struct array_cache *alloc_arraycache(int node, int entries,
- int batchcount)
+ int batchcount)
{
- int memsize = sizeof(void*)*entries+sizeof(struct array_cache);
+ int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
struct array_cache *nc = NULL;

nc = kmalloc_node(memsize, GFP_KERNEL, node);
@@ -780,7 +782,7 @@ static struct array_cache *alloc_arrayca
static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
struct array_cache **ac_ptr;
- int memsize = sizeof(void*)*MAX_NUMNODES;
+ int memsize = sizeof(void *) * MAX_NUMNODES;
int i;

if (limit > 1)
@@ -794,7 +796,7 @@ static inline struct array_cache **alloc
}
ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
if (!ac_ptr[i]) {
- for (i--; i <=0; i--)
+ for (i--; i <= 0; i--)
kfree(ac_ptr[i]);
kfree(ac_ptr);
return NULL;
@@ -812,12 +814,13 @@ static inline void free_alien_cache(stru
return;

for_each_node(i)
- kfree(ac_ptr[i]);
+ kfree(ac_ptr[i]);

kfree(ac_ptr);
}

-static inline void __drain_alien_cache(kmem_cache_t *cachep, struct array_cache *ac, int node)
+static inline void __drain_alien_cache(kmem_cache_t * cachep,
+ struct array_cache *ac, int node)
{
struct kmem_list3 *rl3 = cachep->nodelists[node];

@@ -829,9 +832,9 @@ static inline void __drain_alien_cache(k
}
}

-static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3)
+static void drain_alien_cache(kmem_cache_t * cachep, struct kmem_list3 *l3)
{
- int i=0;
+ int i = 0;
struct array_cache *ac;
unsigned long flags;

@@ -851,10 +854,10 @@ static void drain_alien_cache(kmem_cache
#endif

static int __devinit cpuup_callback(struct notifier_block *nfb,
- unsigned long action, void *hcpu)
+ unsigned long action, void *hcpu)
{
long cpu = (long)hcpu;
- kmem_cache_t* cachep;
+ kmem_cache_t *cachep;
struct kmem_list3 *l3 = NULL;
int node = cpu_to_node(cpu);
int memsize = sizeof(struct kmem_list3);
@@ -876,27 +879,27 @@ static int __devinit cpuup_callback(stru
*/
if (!cachep->nodelists[node]) {
if (!(l3 = kmalloc_node(memsize,
- GFP_KERNEL, node)))
+ GFP_KERNEL, node)))
goto bad;
kmem_list3_init(l3);
l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
- ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
+ ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

cachep->nodelists[node] = l3;
}

spin_lock_irq(&cachep->nodelists[node]->list_lock);
cachep->nodelists[node]->free_limit =
- (1 + nr_cpus_node(node)) *
- cachep->batchcount + cachep->num;
+ (1 + nr_cpus_node(node)) *
+ cachep->batchcount + cachep->num;
spin_unlock_irq(&cachep->nodelists[node]->list_lock);
}

/* Now we can go ahead with allocating the shared array's
- & array cache's */
+ & array cache's */
list_for_each_entry(cachep, &cache_chain, next) {
nc = alloc_arraycache(node, cachep->limit,
- cachep->batchcount);
+ cachep->batchcount);
if (!nc)
goto bad;
cachep->array[cpu] = nc;
@@ -905,12 +908,13 @@ static int __devinit cpuup_callback(stru
BUG_ON(!l3);
if (!l3->shared) {
if (!(nc = alloc_arraycache(node,
- cachep->shared*cachep->batchcount,
- 0xbaadf00d)))
- goto bad;
+ cachep->shared *
+ cachep->batchcount,
+ 0xbaadf00d)))
+ goto bad;

/* we are serialised from CPU_DEAD or
- CPU_UP_CANCELLED by the cpucontrol lock */
+ CPU_UP_CANCELLED by the cpucontrol lock */
l3->shared = nc;
}
}
@@ -947,13 +951,13 @@ static int __devinit cpuup_callback(stru
free_block(cachep, nc->entry, nc->avail, node);

if (!cpus_empty(mask)) {
- spin_unlock(&l3->list_lock);
- goto unlock_cache;
- }
+ spin_unlock(&l3->list_lock);
+ goto unlock_cache;
+ }

if (l3->shared) {
free_block(cachep, l3->shared->entry,
- l3->shared->avail, node);
+ l3->shared->avail, node);
kfree(l3->shared);
l3->shared = NULL;
}
@@ -971,7 +975,7 @@ static int __devinit cpuup_callback(stru
} else {
spin_unlock(&l3->list_lock);
}
-unlock_cache:
+ unlock_cache:
spin_unlock_irq(&cachep->spinlock);
kfree(nc);
}
@@ -980,7 +984,7 @@ unlock_cache:
#endif
}
return NOTIFY_OK;
-bad:
+ bad:
up(&cache_chain_sem);
return NOTIFY_BAD;
}
@@ -990,8 +994,8 @@ static struct notifier_block cpucache_no
/*
* swap the static kmem_list3 with kmalloced memory
*/
-static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list,
- int nodeid)
+static void init_list(kmem_cache_t * cachep, struct kmem_list3 *list,
+ int nodeid)
{
struct kmem_list3 *ptr;

@@ -1060,14 +1064,14 @@ void __init kmem_cache_init(void)
cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size());

cache_estimate(0, cache_cache.objsize, cache_line_size(), 0,
- &left_over, &cache_cache.num);
+ &left_over, &cache_cache.num);
if (!cache_cache.num)
BUG();

- cache_cache.colour = left_over/cache_cache.colour_off;
+ cache_cache.colour = left_over / cache_cache.colour_off;
cache_cache.colour_next = 0;
- cache_cache.slab_size = ALIGN(cache_cache.num*sizeof(kmem_bufctl_t) +
- sizeof(struct slab), cache_line_size());
+ cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
+ sizeof(struct slab), cache_line_size());

/* 2+3) create the kmalloc caches */
sizes = malloc_sizes;
@@ -1079,14 +1083,18 @@ void __init kmem_cache_init(void)
*/

sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
- sizes[INDEX_AC].cs_size, ARCH_KMALLOC_MINALIGN,
- (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
+ sizes[INDEX_AC].cs_size,
+ ARCH_KMALLOC_MINALIGN,
+ (ARCH_KMALLOC_FLAGS |
+ SLAB_PANIC), NULL, NULL);

if (INDEX_AC != INDEX_L3)
sizes[INDEX_L3].cs_cachep =
- kmem_cache_create(names[INDEX_L3].name,
- sizes[INDEX_L3].cs_size, ARCH_KMALLOC_MINALIGN,
- (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
+ kmem_cache_create(names[INDEX_L3].name,
+ sizes[INDEX_L3].cs_size,
+ ARCH_KMALLOC_MINALIGN,
+ (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
+ NULL);

while (sizes->cs_size != ULONG_MAX) {
/*
@@ -1096,35 +1104,41 @@ void __init kmem_cache_init(void)
* Note for systems short on memory removing the alignment will
* allow tighter packing of the smaller caches.
*/
- if(!sizes->cs_cachep)
+ if (!sizes->cs_cachep)
sizes->cs_cachep = kmem_cache_create(names->name,
- sizes->cs_size, ARCH_KMALLOC_MINALIGN,
- (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
+ sizes->cs_size,
+ ARCH_KMALLOC_MINALIGN,
+ (ARCH_KMALLOC_FLAGS
+ | SLAB_PANIC),
+ NULL, NULL);

/* Inc off-slab bufctl limit until the ceiling is hit. */
if (!(OFF_SLAB(sizes->cs_cachep))) {
- offslab_limit = sizes->cs_size-sizeof(struct slab);
+ offslab_limit = sizes->cs_size - sizeof(struct slab);
offslab_limit /= sizeof(kmem_bufctl_t);
}

sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
- sizes->cs_size, ARCH_KMALLOC_MINALIGN,
- (ARCH_KMALLOC_FLAGS | SLAB_CACHE_DMA | SLAB_PANIC),
- NULL, NULL);
+ sizes->cs_size,
+ ARCH_KMALLOC_MINALIGN,
+ (ARCH_KMALLOC_FLAGS |
+ SLAB_CACHE_DMA |
+ SLAB_PANIC), NULL,
+ NULL);

sizes++;
names++;
}
/* 4) Replace the bootstrap head arrays */
{
- void * ptr;
+ void *ptr;

ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

local_irq_disable();
BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache);
memcpy(ptr, ac_data(&cache_cache),
- sizeof(struct arraycache_init));
+ sizeof(struct arraycache_init));
cache_cache.array[smp_processor_id()] = ptr;
local_irq_enable();

@@ -1132,11 +1146,11 @@ void __init kmem_cache_init(void)

local_irq_disable();
BUG_ON(ac_data(malloc_sizes[INDEX_AC].cs_cachep)
- != &initarray_generic.cache);
+ != &initarray_generic.cache);
memcpy(ptr, ac_data(malloc_sizes[INDEX_AC].cs_cachep),
- sizeof(struct arraycache_init));
+ sizeof(struct arraycache_init));
malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
- ptr;
+ ptr;
local_irq_enable();
}
/* 5) Replace the bootstrap kmem_list3's */
@@ -1144,16 +1158,16 @@ void __init kmem_cache_init(void)
int node;
/* Replace the static kmem_list3 structures for the boot cpu */
init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
- numa_node_id());
+ numa_node_id());

for_each_online_node(node) {
init_list(malloc_sizes[INDEX_AC].cs_cachep,
- &initkmem_list3[SIZE_AC+node], node);
+ &initkmem_list3[SIZE_AC + node], node);

if (INDEX_AC != INDEX_L3) {
init_list(malloc_sizes[INDEX_L3].cs_cachep,
- &initkmem_list3[SIZE_L3+node],
- node);
+ &initkmem_list3[SIZE_L3 + node],
+ node);
}
}
}
@@ -1163,7 +1177,7 @@ void __init kmem_cache_init(void)
kmem_cache_t *cachep;
down(&cache_chain_sem);
list_for_each_entry(cachep, &cache_chain, next)
- enable_cpucache(cachep);
+ enable_cpucache(cachep);
up(&cache_chain_sem);
}

@@ -1189,7 +1203,7 @@ static int __init cpucache_init(void)
* pages to gfp.
*/
for_each_online_cpu(cpu)
- start_cpu_timer(cpu);
+ start_cpu_timer(cpu);

return 0;
}
@@ -1203,7 +1217,7 @@ __initcall(cpucache_init);
* did not request dmaable memory, we might get it, but that
* would be relatively rare and ignorable.
*/
-static void *kmem_getpages(kmem_cache_t *cachep, gfp_t flags, int nodeid)
+static void *kmem_getpages(kmem_cache_t * cachep, gfp_t flags, int nodeid)
{
struct page *page;
void *addr;
@@ -1229,9 +1243,9 @@ static void *kmem_getpages(kmem_cache_t
/*
* Interface to system's page release.
*/
-static void kmem_freepages(kmem_cache_t *cachep, void *addr)
+static void kmem_freepages(kmem_cache_t * cachep, void *addr)
{
- unsigned long i = (1<<cachep->gfporder);
+ unsigned long i = (1 << cachep->gfporder);
struct page *page = virt_to_page(addr);
const unsigned long nr_freed = i;

@@ -1244,13 +1258,13 @@ static void kmem_freepages(kmem_cache_t
if (current->reclaim_state)
current->reclaim_state->reclaimed_slab += nr_freed;
free_pages((unsigned long)addr, cachep->gfporder);
- if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
- atomic_sub(1<<cachep->gfporder, &slab_reclaim_pages);
+ if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
+ atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
}

static void kmem_rcu_free(struct rcu_head *head)
{
- struct slab_rcu *slab_rcu = (struct slab_rcu *) head;
+ struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
kmem_cache_t *cachep = slab_rcu->cachep;

kmem_freepages(cachep, slab_rcu->addr);
@@ -1261,20 +1275,20 @@ static void kmem_rcu_free(struct rcu_hea
#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
-static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr,
- unsigned long caller)
+static void store_stackinfo(kmem_cache_t * cachep, unsigned long *addr,
+ unsigned long caller)
{
int size = obj_size(cachep);

- addr = (unsigned long *)&((char*)addr)[obj_dbghead(cachep)];
+ addr = (unsigned long *)&((char *)addr)[obj_dbghead(cachep)];

- if (size < 5*sizeof(unsigned long))
+ if (size < 5 * sizeof(unsigned long))
return;

- *addr++=0x12345678;
- *addr++=caller;
- *addr++=smp_processor_id();
- size -= 3*sizeof(unsigned long);
+ *addr++ = 0x12345678;
+ *addr++ = caller;
+ *addr++ = smp_processor_id();
+ size -= 3 * sizeof(unsigned long);
{
unsigned long *sptr = &caller;
unsigned long svalue;
@@ -1282,7 +1296,7 @@ static void store_stackinfo(kmem_cache_t
while (!kstack_end(sptr)) {
svalue = *sptr++;
if (kernel_text_address(svalue)) {
- *addr++=svalue;
+ *addr++ = svalue;
size -= sizeof(unsigned long);
if (size <= sizeof(unsigned long))
break;
@@ -1290,25 +1304,25 @@ static void store_stackinfo(kmem_cache_t
}

}
- *addr++=0x87654321;
+ *addr++ = 0x87654321;
}
#endif

-static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val)
+static void poison_obj(kmem_cache_t * cachep, void *addr, unsigned char val)
{
int size = obj_size(cachep);
- addr = &((char*)addr)[obj_dbghead(cachep)];
+ addr = &((char *)addr)[obj_dbghead(cachep)];

memset(addr, val, size);
- *(unsigned char *)(addr+size-1) = POISON_END;
+ *(unsigned char *)(addr + size - 1) = POISON_END;
}

static void dump_line(char *data, int offset, int limit)
{
int i;
printk(KERN_ERR "%03x:", offset);
- for (i=0;i<limit;i++) {
- printk(" %02x", (unsigned char)data[offset+i]);
+ for (i = 0; i < limit; i++) {
+ printk(" %02x", (unsigned char)data[offset + i]);
}
printk("\n");
}
@@ -1316,62 +1330,63 @@ static void dump_line(char *data, int of

#if DEBUG

-static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines)
+static void print_objinfo(kmem_cache_t * cachep, void *objp, int lines)
{
int i, size;
char *realobj;

if (cachep->flags & SLAB_RED_ZONE) {
printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
- *dbg_redzone1(cachep, objp),
- *dbg_redzone2(cachep, objp));
+ *dbg_redzone1(cachep, objp),
+ *dbg_redzone2(cachep, objp));
}

if (cachep->flags & SLAB_STORE_USER) {
printk(KERN_ERR "Last user: [<%p>]",
- *dbg_userword(cachep, objp));
+ *dbg_userword(cachep, objp));
print_symbol("(%s)",
- (unsigned long)*dbg_userword(cachep, objp));
+ (unsigned long)*dbg_userword(cachep, objp));
printk("\n");
}
- realobj = (char*)objp+obj_dbghead(cachep);
+ realobj = (char *)objp + obj_dbghead(cachep);
size = obj_size(cachep);
- for (i=0; i<size && lines;i+=16, lines--) {
+ for (i = 0; i < size && lines; i += 16, lines--) {
int limit;
limit = 16;
- if (i+limit > size)
- limit = size-i;
+ if (i + limit > size)
+ limit = size - i;
dump_line(realobj, i, limit);
}
}

-static void check_poison_obj(kmem_cache_t *cachep, void *objp)
+static void check_poison_obj(kmem_cache_t * cachep, void *objp)
{
char *realobj;
int size, i;
int lines = 0;

- realobj = (char*)objp+obj_dbghead(cachep);
+ realobj = (char *)objp + obj_dbghead(cachep);
size = obj_size(cachep);

- for (i=0;i<size;i++) {
+ for (i = 0; i < size; i++) {
char exp = POISON_FREE;
- if (i == size-1)
+ if (i == size - 1)
exp = POISON_END;
if (realobj[i] != exp) {
int limit;
/* Mismatch ! */
/* Print header */
if (lines == 0) {
- printk(KERN_ERR "Slab corruption: start=%p, len=%d\n",
- realobj, size);
+ printk(KERN_ERR
+ "Slab corruption: start=%p, len=%d\n",
+ realobj, size);
print_objinfo(cachep, objp, 0);
}
/* Hexdump the affected line */
- i = (i/16)*16;
+ i = (i / 16) * 16;
limit = 16;
- if (i+limit > size)
- limit = size-i;
+ if (i + limit > size)
+ limit = size - i;
dump_line(realobj, i, limit);
i += 16;
lines++;
@@ -1387,19 +1402,19 @@ static void check_poison_obj(kmem_cache_
struct slab *slabp = page_get_slab(virt_to_page(objp));
int objnr;

- objnr = (objp-slabp->s_mem)/cachep->objsize;
+ objnr = (objp - slabp->s_mem) / cachep->objsize;
if (objnr) {
- objp = slabp->s_mem+(objnr-1)*cachep->objsize;
- realobj = (char*)objp+obj_dbghead(cachep);
+ objp = slabp->s_mem + (objnr - 1) * cachep->objsize;
+ realobj = (char *)objp + obj_dbghead(cachep);
printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
- realobj, size);
+ realobj, size);
print_objinfo(cachep, objp, 2);
}
- if (objnr+1 < cachep->num) {
- objp = slabp->s_mem+(objnr+1)*cachep->objsize;
- realobj = (char*)objp+obj_dbghead(cachep);
+ if (objnr + 1 < cachep->num) {
+ objp = slabp->s_mem + (objnr + 1) * cachep->objsize;
+ realobj = (char *)objp + obj_dbghead(cachep);
printk(KERN_ERR "Next obj: start=%p, len=%d\n",
- realobj, size);
+ realobj, size);
print_objinfo(cachep, objp, 2);
}
}
@@ -1410,7 +1425,7 @@ static void check_poison_obj(kmem_cache_
* Before calling the slab must have been unlinked from the cache.
* The cache-lock is not held/needed.
*/
-static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp)
+static void slab_destroy(kmem_cache_t * cachep, struct slab *slabp)
{
void *addr = slabp->s_mem - slabp->colouroff;

@@ -1421,8 +1436,11 @@ static void slab_destroy (kmem_cache_t *

if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
- if ((cachep->objsize%PAGE_SIZE)==0 && OFF_SLAB(cachep))
- kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE,1);
+ if ((cachep->objsize % PAGE_SIZE) == 0
+ && OFF_SLAB(cachep))
+ kernel_map_pages(virt_to_page(objp),
+ cachep->objsize / PAGE_SIZE,
+ 1);
else
check_poison_obj(cachep, objp);
#else
@@ -1432,20 +1450,20 @@ static void slab_destroy (kmem_cache_t *
if (cachep->flags & SLAB_RED_ZONE) {
if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
slab_error(cachep, "start of a freed object "
- "was overwritten");
+ "was overwritten");
if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
slab_error(cachep, "end of a freed object "
- "was overwritten");
+ "was overwritten");
}
if (cachep->dtor && !(cachep->flags & SLAB_POISON))
- (cachep->dtor)(objp+obj_dbghead(cachep), cachep, 0);
+ (cachep->dtor) (objp + obj_dbghead(cachep), cachep, 0);
}
#else
if (cachep->dtor) {
int i;
for (i = 0; i < cachep->num; i++) {
- void* objp = slabp->s_mem+cachep->objsize*i;
- (cachep->dtor)(objp, cachep, 0);
+ void *objp = slabp->s_mem + cachep->objsize * i;
+ (cachep->dtor) (objp, cachep, 0);
}
}
#endif
@@ -1453,7 +1471,7 @@ static void slab_destroy (kmem_cache_t *
if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
struct slab_rcu *slab_rcu;

- slab_rcu = (struct slab_rcu *) slabp;
+ slab_rcu = (struct slab_rcu *)slabp;
slab_rcu->cachep = cachep;
slab_rcu->addr = addr;
call_rcu(&slab_rcu->head, kmem_rcu_free);
@@ -1466,15 +1484,15 @@ static void slab_destroy (kmem_cache_t *

/* For setting up all the kmem_list3s for cache whose objsize is same
as size of kmem_list3. */
-static inline void set_up_list3s(kmem_cache_t *cachep, int index)
+static inline void set_up_list3s(kmem_cache_t * cachep, int index)
{
int node;

for_each_online_node(node) {
- cachep->nodelists[node] = &initkmem_list3[index+node];
+ cachep->nodelists[node] = &initkmem_list3[index + node];
cachep->nodelists[node]->next_reap = jiffies +
- REAPTIMEOUT_LIST3 +
- ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
+ REAPTIMEOUT_LIST3 +
+ ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
}
}

@@ -1486,12 +1504,12 @@ static inline void set_up_list3s(kmem_ca
* high order pages for slabs. When the gfp() functions are more friendly
* towards high-order requests, this should be changed.
*/
-static inline size_t calculate_slab_order(kmem_cache_t *cachep, size_t size,
+static inline size_t calculate_slab_order(kmem_cache_t * cachep, size_t size,
size_t align, gfp_t flags)
{
size_t left_over = 0;

- for ( ; ; cachep->gfporder++) {
+ for (;; cachep->gfporder++) {
unsigned int num;
size_t remainder;

@@ -1571,14 +1593,13 @@ kmem_cache_create (const char *name, siz
* Sanity checks... these are all serious usage bugs.
*/
if ((!name) ||
- in_interrupt() ||
- (size < BYTES_PER_WORD) ||
- (size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) ||
- (dtor && !ctor)) {
- printk(KERN_ERR "%s: Early error in slab %s\n",
- __FUNCTION__, name);
- BUG();
- }
+ in_interrupt() ||
+ (size < BYTES_PER_WORD) ||
+ (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
+ printk(KERN_ERR "%s: Early error in slab %s\n",
+ __FUNCTION__, name);
+ BUG();
+ }

down(&cache_chain_sem);

@@ -1598,11 +1619,11 @@ kmem_cache_create (const char *name, siz
set_fs(old_fs);
if (res) {
printk("SLAB: cache with size %d has lost its name\n",
- pc->objsize);
+ pc->objsize);
continue;
}

- if (!strcmp(pc->name,name)) {
+ if (!strcmp(pc->name, name)) {
printk("kmem_cache_create: duplicate cache %s\n", name);
dump_stack();
goto oops;
@@ -1614,10 +1635,9 @@ kmem_cache_create (const char *name, siz
if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
/* No constructor, but inital state check requested */
printk(KERN_ERR "%s: No con, but init state check "
- "requested - %s\n", __FUNCTION__, name);
+ "requested - %s\n", __FUNCTION__, name);
flags &= ~SLAB_DEBUG_INITIAL;
}
-
#if FORCED_DEBUG
/*
* Enable redzoning and last user accounting, except for caches with
@@ -1625,8 +1645,9 @@ kmem_cache_create (const char *name, siz
* above the next power of two: caches with object sizes just above a
* power of two have a significant amount of internal fragmentation.
*/
- if ((size < 4096 || fls(size-1) == fls(size-1+3*BYTES_PER_WORD)))
- flags |= SLAB_RED_ZONE|SLAB_STORE_USER;
+ if ((size < 4096
+ || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
+ flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
if (!(flags & SLAB_DESTROY_BY_RCU))
flags |= SLAB_POISON;
#endif
@@ -1647,9 +1668,9 @@ kmem_cache_create (const char *name, siz
* unaligned accesses for some archs when redzoning is used, and makes
* sure any on-slab bufctl's are also correctly aligned.
*/
- if (size & (BYTES_PER_WORD-1)) {
- size += (BYTES_PER_WORD-1);
- size &= ~(BYTES_PER_WORD-1);
+ if (size & (BYTES_PER_WORD - 1)) {
+ size += (BYTES_PER_WORD - 1);
+ size &= ~(BYTES_PER_WORD - 1);
}

/* calculate out the final buffer alignment: */
@@ -1660,7 +1681,7 @@ kmem_cache_create (const char *name, siz
* objects into one cacheline.
*/
ralign = cache_line_size();
- while (size <= ralign/2)
+ while (size <= ralign / 2)
ralign /= 2;
} else {
ralign = BYTES_PER_WORD;
@@ -1669,13 +1690,13 @@ kmem_cache_create (const char *name, siz
if (ralign < ARCH_SLAB_MINALIGN) {
ralign = ARCH_SLAB_MINALIGN;
if (ralign > BYTES_PER_WORD)
- flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER);
+ flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
}
/* 3) caller mandated alignment: disables debug if necessary */
if (ralign < align) {
ralign = align;
if (ralign > BYTES_PER_WORD)
- flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER);
+ flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
}
/* 4) Store it. Note that the debug code below can reduce
* the alignment to BYTES_PER_WORD.
@@ -1697,7 +1718,7 @@ kmem_cache_create (const char *name, siz

/* add space for red zone words */
cachep->dbghead += BYTES_PER_WORD;
- size += 2*BYTES_PER_WORD;
+ size += 2 * BYTES_PER_WORD;
}
if (flags & SLAB_STORE_USER) {
/* user store requires word alignment and
@@ -1708,7 +1729,8 @@ kmem_cache_create (const char *name, siz
size += BYTES_PER_WORD;
}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
- if (size >= malloc_sizes[INDEX_L3+1].cs_size && cachep->reallen > cache_line_size() && size < PAGE_SIZE) {
+ if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
+ && cachep->reallen > cache_line_size() && size < PAGE_SIZE) {
cachep->dbghead += PAGE_SIZE - size;
size = PAGE_SIZE;
}
@@ -1716,7 +1738,7 @@ kmem_cache_create (const char *name, siz
#endif

/* Determine if the slab management is 'on' or 'off' slab. */
- if (size >= (PAGE_SIZE>>3))
+ if (size >= (PAGE_SIZE >> 3))
/*
* Size is large, assume best to place the slab management obj
* off-slab (should allow better packing of objs).
@@ -1733,7 +1755,7 @@ kmem_cache_create (const char *name, siz
*/
cachep->gfporder = 0;
cache_estimate(cachep->gfporder, size, align, flags,
- &left_over, &cachep->num);
+ &left_over, &cachep->num);
} else
left_over = calculate_slab_order(cachep, size, align, flags);

@@ -1743,8 +1765,8 @@ kmem_cache_create (const char *name, siz
cachep = NULL;
goto oops;
}
- slab_size = ALIGN(cachep->num*sizeof(kmem_bufctl_t)
- + sizeof(struct slab), align);
+ slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
+ + sizeof(struct slab), align);

/*
* If the slab has been placed off-slab, and we have enough space then
@@ -1757,14 +1779,15 @@ kmem_cache_create (const char *name, siz

if (flags & CFLGS_OFF_SLAB) {
/* really off slab. No need for manual alignment */
- slab_size = cachep->num*sizeof(kmem_bufctl_t)+sizeof(struct slab);
+ slab_size =
+ cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
}

cachep->colour_off = cache_line_size();
/* Offset must be a multiple of the alignment. */
if (cachep->colour_off < align)
cachep->colour_off = align;
- cachep->colour = left_over/cachep->colour_off;
+ cachep->colour = left_over / cachep->colour_off;
cachep->slab_size = slab_size;
cachep->flags = flags;
cachep->gfpflags = 0;
@@ -1791,7 +1814,7 @@ kmem_cache_create (const char *name, siz
* the creation of further caches will BUG().
*/
cachep->array[smp_processor_id()] =
- &initarray_generic.cache;
+ &initarray_generic.cache;

/* If the cache that's used by
* kmalloc(sizeof(kmem_list3)) is the first cache,
@@ -1805,8 +1828,7 @@ kmem_cache_create (const char *name, siz
g_cpucache_up = PARTIAL_AC;
} else {
cachep->array[smp_processor_id()] =
- kmalloc(sizeof(struct arraycache_init),
- GFP_KERNEL);
+ kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

if (g_cpucache_up == PARTIAL_AC) {
set_up_list3s(cachep, SIZE_L3);
@@ -1816,16 +1838,18 @@ kmem_cache_create (const char *name, siz
for_each_online_node(node) {

cachep->nodelists[node] =
- kmalloc_node(sizeof(struct kmem_list3),
- GFP_KERNEL, node);
+ kmalloc_node(sizeof
+ (struct kmem_list3),
+ GFP_KERNEL, node);
BUG_ON(!cachep->nodelists[node]);
- kmem_list3_init(cachep->nodelists[node]);
+ kmem_list3_init(cachep->
+ nodelists[node]);
}
}
}
cachep->nodelists[numa_node_id()]->next_reap =
- jiffies + REAPTIMEOUT_LIST3 +
- ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
+ jiffies + REAPTIMEOUT_LIST3 +
+ ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

BUG_ON(!ac_data(cachep));
ac_data(cachep)->avail = 0;
@@ -1834,18 +1858,19 @@ kmem_cache_create (const char *name, siz
ac_data(cachep)->touched = 0;
cachep->batchcount = 1;
cachep->limit = BOOT_CPUCACHE_ENTRIES;
- }
+ }

/* cache setup completed, link it into the list */
list_add(&cachep->next, &cache_chain);
unlock_cpu_hotplug();
-oops:
+ oops:
if (!cachep && (flags & SLAB_PANIC))
panic("kmem_cache_create(): failed to create slab `%s'\n",
- name);
+ name);
up(&cache_chain_sem);
return cachep;
}
+
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
@@ -1859,7 +1884,7 @@ static void check_irq_on(void)
BUG_ON(irqs_disabled());
}

-static void check_spinlock_acquired(kmem_cache_t *cachep)
+static void check_spinlock_acquired(kmem_cache_t * cachep)
{
#ifdef CONFIG_SMP
check_irq_off();
@@ -1867,7 +1892,7 @@ static void check_spinlock_acquired(kmem
#endif
}

-static inline void check_spinlock_acquired_node(kmem_cache_t *cachep, int node)
+static inline void check_spinlock_acquired_node(kmem_cache_t * cachep, int node)
{
#ifdef CONFIG_SMP
check_irq_off();
@@ -1900,12 +1925,12 @@ static void smp_call_function_all_cpus(v
preempt_enable();
}

-static void drain_array_locked(kmem_cache_t* cachep,
- struct array_cache *ac, int force, int node);
+static void drain_array_locked(kmem_cache_t * cachep,
+ struct array_cache *ac, int force, int node);

static void do_drain(void *arg)
{
- kmem_cache_t *cachep = (kmem_cache_t*)arg;
+ kmem_cache_t *cachep = (kmem_cache_t *) arg;
struct array_cache *ac;
int node = numa_node_id();

@@ -1917,7 +1942,7 @@ static void do_drain(void *arg)
ac->avail = 0;
}

-static void drain_cpu_caches(kmem_cache_t *cachep)
+static void drain_cpu_caches(kmem_cache_t * cachep)
{
struct kmem_list3 *l3;
int node;
@@ -1925,7 +1950,7 @@ static void drain_cpu_caches(kmem_cache_
smp_call_function_all_cpus(do_drain, cachep);
check_irq_on();
spin_lock_irq(&cachep->spinlock);
- for_each_online_node(node) {
+ for_each_online_node(node) {
l3 = cachep->nodelists[node];
if (l3) {
spin_lock(&l3->list_lock);
@@ -1938,7 +1963,7 @@ static void drain_cpu_caches(kmem_cache_
spin_unlock_irq(&cachep->spinlock);
}

-static int __node_shrink(kmem_cache_t *cachep, int node)
+static int __node_shrink(kmem_cache_t * cachep, int node)
{
struct slab *slabp;
struct kmem_list3 *l3 = cachep->nodelists[node];
@@ -1963,12 +1988,11 @@ static int __node_shrink(kmem_cache_t *c
slab_destroy(cachep, slabp);
spin_lock_irq(&l3->list_lock);
}
- ret = !list_empty(&l3->slabs_full) ||
- !list_empty(&l3->slabs_partial);
+ ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
return ret;
}

-static int __cache_shrink(kmem_cache_t *cachep)
+static int __cache_shrink(kmem_cache_t * cachep)
{
int ret = 0, i = 0;
struct kmem_list3 *l3;
@@ -1994,13 +2018,14 @@ static int __cache_shrink(kmem_cache_t *
* Releases as many slabs as possible for a cache.
* To help debugging, a zero exit status indicates all slabs were released.
*/
-int kmem_cache_shrink(kmem_cache_t *cachep)
+int kmem_cache_shrink(kmem_cache_t * cachep)
{
if (!cachep || in_interrupt())
BUG();

return __cache_shrink(cachep);
}
+
EXPORT_SYMBOL(kmem_cache_shrink);

/**
@@ -2042,7 +2067,7 @@ int kmem_cache_destroy(kmem_cache_t * ca
if (__cache_shrink(cachep)) {
slab_error(cachep, "Can't free all objects");
down(&cache_chain_sem);
- list_add(&cachep->next,&cache_chain);
+ list_add(&cachep->next, &cache_chain);
up(&cache_chain_sem);
unlock_cpu_hotplug();
return 1;
@@ -2052,7 +2077,7 @@ int kmem_cache_destroy(kmem_cache_t * ca
synchronize_rcu();

for_each_online_cpu(i)
- kfree(cachep->array[i]);
+ kfree(cachep->array[i]);

/* NUMA: free the list3 structures */
for_each_online_node(i) {
@@ -2068,42 +2093,43 @@ int kmem_cache_destroy(kmem_cache_t * ca

return 0;
}
+
EXPORT_SYMBOL(kmem_cache_destroy);

/* Get the memory for a slab management obj. */
-static struct slab* alloc_slabmgmt(kmem_cache_t *cachep, void *objp,
- int colour_off, gfp_t local_flags)
+static struct slab *alloc_slabmgmt(kmem_cache_t * cachep, void *objp,
+ int colour_off, gfp_t local_flags)
{
struct slab *slabp;
-
+
if (OFF_SLAB(cachep)) {
/* Slab management obj is off-slab. */
slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
if (!slabp)
return NULL;
} else {
- slabp = objp+colour_off;
+ slabp = objp + colour_off;
colour_off += cachep->slab_size;
}
slabp->inuse = 0;
slabp->colouroff = colour_off;
- slabp->s_mem = objp+colour_off;
+ slabp->s_mem = objp + colour_off;

return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
- return (kmem_bufctl_t *)(slabp+1);
+ return (kmem_bufctl_t *) (slabp + 1);
}

-static void cache_init_objs(kmem_cache_t *cachep,
- struct slab *slabp, unsigned long ctor_flags)
+static void cache_init_objs(kmem_cache_t * cachep,
+ struct slab *slabp, unsigned long ctor_flags)
{
int i;

for (i = 0; i < cachep->num; i++) {
- void *objp = slabp->s_mem+cachep->objsize*i;
+ void *objp = slabp->s_mem + cachep->objsize * i;
#if DEBUG
/* need to poison the objs? */
if (cachep->flags & SLAB_POISON)
@@ -2121,29 +2147,32 @@ static void cache_init_objs(kmem_cache_t
* Otherwise, deadlock. They must also be threaded.
*/
if (cachep->ctor && !(cachep->flags & SLAB_POISON))
- cachep->ctor(objp+obj_dbghead(cachep), cachep, ctor_flags);
+ cachep->ctor(objp + obj_dbghead(cachep), cachep,
+ ctor_flags);

if (cachep->flags & SLAB_RED_ZONE) {
if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
slab_error(cachep, "constructor overwrote the"
- " end of an object");
+ " end of an object");
if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
slab_error(cachep, "constructor overwrote the"
- " start of an object");
+ " start of an object");
}
- if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
- kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
+ if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
+ && cachep->flags & SLAB_POISON)
+ kernel_map_pages(virt_to_page(objp),
+ cachep->objsize / PAGE_SIZE, 0);
#else
if (cachep->ctor)
cachep->ctor(objp, cachep, ctor_flags);
#endif
- slab_bufctl(slabp)[i] = i+1;
+ slab_bufctl(slabp)[i] = i + 1;
}
- slab_bufctl(slabp)[i-1] = BUFCTL_END;
+ slab_bufctl(slabp)[i - 1] = BUFCTL_END;
slabp->free = 0;
}

-static void kmem_flagcheck(kmem_cache_t *cachep, gfp_t flags)
+static void kmem_flagcheck(kmem_cache_t * cachep, gfp_t flags)
{
if (flags & SLAB_DMA) {
if (!(cachep->gfpflags & GFP_DMA))
@@ -2154,7 +2183,7 @@ static void kmem_flagcheck(kmem_cache_t
}
}

-static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp)
+static void set_slab_attr(kmem_cache_t * cachep, struct slab *slabp, void *objp)
{
int i;
struct page *page;
@@ -2173,19 +2202,19 @@ static void set_slab_attr(kmem_cache_t *
* Grow (by 1) the number of slabs within a cache. This is called by
* kmem_cache_alloc() when there are no active objs left in a cache.
*/
-static int cache_grow(kmem_cache_t *cachep, gfp_t flags, int nodeid)
+static int cache_grow(kmem_cache_t * cachep, gfp_t flags, int nodeid)
{
- struct slab *slabp;
- void *objp;
- size_t offset;
- gfp_t local_flags;
- unsigned long ctor_flags;
+ struct slab *slabp;
+ void *objp;
+ size_t offset;
+ gfp_t local_flags;
+ unsigned long ctor_flags;
struct kmem_list3 *l3;

/* Be lazy and only check for valid flags here,
- * keeping it out of the critical path in kmem_cache_alloc().
+ * keeping it out of the critical path in kmem_cache_alloc().
*/
- if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW))
+ if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
BUG();
if (flags & SLAB_NO_GROW)
return 0;
@@ -2251,9 +2280,9 @@ static int cache_grow(kmem_cache_t *cach
l3->free_objects += cachep->num;
spin_unlock(&l3->list_lock);
return 1;
-opps1:
+ opps1:
kmem_freepages(cachep, objp);
-failed:
+ failed:
if (local_flags & __GFP_WAIT)
local_irq_disable();
return 0;
@@ -2273,18 +2302,19 @@ static void kfree_debugcheck(const void

if (!virt_addr_valid(objp)) {
printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
- (unsigned long)objp);
- BUG();
+ (unsigned long)objp);
+ BUG();
}
page = virt_to_page(objp);
if (!PageSlab(page)) {
- printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp);
+ printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
+ (unsigned long)objp);
BUG();
}
}

-static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp,
- void *caller)
+static void *cache_free_debugcheck(kmem_cache_t * cachep, void *objp,
+ void *caller)
{
struct page *page;
unsigned int objnr;
@@ -2295,20 +2325,26 @@ static void *cache_free_debugcheck(kmem_
page = virt_to_page(objp);

if (page_get_cache(page) != cachep) {
- printk(KERN_ERR "mismatch in kmem_cache_free: expected cache %p, got %p\n",
- page_get_cache(page),cachep);
+ printk(KERN_ERR
+ "mismatch in kmem_cache_free: expected cache %p, got %p\n",
+ page_get_cache(page), cachep);
printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
- printk(KERN_ERR "%p is %s.\n", page_get_cache(page), page_get_cache(page)->name);
+ printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
+ page_get_cache(page)->name);
WARN_ON(1);
}
slabp = page_get_slab(page);

if (cachep->flags & SLAB_RED_ZONE) {
- if (*dbg_redzone1(cachep, objp) != RED_ACTIVE || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
- slab_error(cachep, "double free, or memory outside"
- " object was overwritten");
- printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
- objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp));
+ if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
+ || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
+ slab_error(cachep,
+ "double free, or memory outside"
+ " object was overwritten");
+ printk(KERN_ERR
+ "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
+ objp, *dbg_redzone1(cachep, objp),
+ *dbg_redzone2(cachep, objp));
}
*dbg_redzone1(cachep, objp) = RED_INACTIVE;
*dbg_redzone2(cachep, objp) = RED_INACTIVE;
@@ -2316,30 +2352,31 @@ static void *cache_free_debugcheck(kmem_
if (cachep->flags & SLAB_STORE_USER)
*dbg_userword(cachep, objp) = caller;

- objnr = (objp-slabp->s_mem)/cachep->objsize;
+ objnr = (objp - slabp->s_mem) / cachep->objsize;

BUG_ON(objnr >= cachep->num);
- BUG_ON(objp != slabp->s_mem + objnr*cachep->objsize);
+ BUG_ON(objp != slabp->s_mem + objnr * cachep->objsize);

if (cachep->flags & SLAB_DEBUG_INITIAL) {
/* Need to call the slab's constructor so the
* caller can perform a verify of its state (debugging).
* Called without the cache-lock held.
*/
- cachep->ctor(objp+obj_dbghead(cachep),
- cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);
+ cachep->ctor(objp + obj_dbghead(cachep),
+ cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
}
if (cachep->flags & SLAB_POISON && cachep->dtor) {
/* we want to cache poison the object,
* call the destruction callback
*/
- cachep->dtor(objp+obj_dbghead(cachep), cachep, 0);
+ cachep->dtor(objp + obj_dbghead(cachep), cachep, 0);
}
if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
store_stackinfo(cachep, objp, (unsigned long)caller);
- kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
+ kernel_map_pages(virt_to_page(objp),
+ cachep->objsize / PAGE_SIZE, 0);
} else {
poison_obj(cachep, objp, POISON_FREE);
}
@@ -2350,11 +2387,11 @@ static void *cache_free_debugcheck(kmem_
return objp;
}

-static void check_slabp(kmem_cache_t *cachep, struct slab *slabp)
+static void check_slabp(kmem_cache_t * cachep, struct slab *slabp)
{
kmem_bufctl_t i;
int entries = 0;
-
+
/* Check slab's freelist to see if this obj is there. */
for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
entries++;
@@ -2362,13 +2399,16 @@ static void check_slabp(kmem_cache_t *ca
goto bad;
}
if (entries != cachep->num - slabp->inuse) {
-bad:
- printk(KERN_ERR "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
- cachep->name, cachep->num, slabp, slabp->inuse);
- for (i=0;i<sizeof(slabp)+cachep->num*sizeof(kmem_bufctl_t);i++) {
- if ((i%16)==0)
+ bad:
+ printk(KERN_ERR
+ "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
+ cachep->name, cachep->num, slabp, slabp->inuse);
+ for (i = 0;
+ i < sizeof(slabp) + cachep->num * sizeof(kmem_bufctl_t);
+ i++) {
+ if ((i % 16) == 0)
printk("\n%03x:", i);
- printk(" %02x", ((unsigned char*)slabp)[i]);
+ printk(" %02x", ((unsigned char *)slabp)[i]);
}
printk("\n");
BUG();
@@ -2380,7 +2420,7 @@ bad:
#define check_slabp(x,y) do { } while(0)
#endif

-static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags)
+static void *cache_alloc_refill(kmem_cache_t * cachep, gfp_t flags)
{
int batchcount;
struct kmem_list3 *l3;
@@ -2388,7 +2428,7 @@ static void *cache_alloc_refill(kmem_cac

check_irq_off();
ac = ac_data(cachep);
-retry:
+ retry:
batchcount = ac->batchcount;
if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
/* if there was little recent activity on this
@@ -2410,8 +2450,8 @@ retry:
shared_array->avail -= batchcount;
ac->avail = batchcount;
memcpy(ac->entry,
- &(shared_array->entry[shared_array->avail]),
- sizeof(void*)*batchcount);
+ &(shared_array->entry[shared_array->avail]),
+ sizeof(void *) * batchcount);
shared_array->touched = 1;
goto alloc_done;
}
@@ -2439,7 +2479,7 @@ retry:

/* get obj pointer */
ac->entry[ac->avail++] = slabp->s_mem +
- slabp->free*cachep->objsize;
+ slabp->free * cachep->objsize;

slabp->inuse++;
next = slab_bufctl(slabp)[slabp->free];
@@ -2447,7 +2487,7 @@ retry:
slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
WARN_ON(numa_node_id() != slabp->nodeid);
#endif
- slabp->free = next;
+ slabp->free = next;
}
check_slabp(cachep, slabp);

@@ -2459,9 +2499,9 @@ retry:
list_add(&slabp->list, &l3->slabs_partial);
}

-must_grow:
+ must_grow:
l3->free_objects -= ac->avail;
-alloc_done:
+ alloc_done:
spin_unlock(&l3->list_lock);

if (unlikely(!ac->avail)) {
@@ -2473,7 +2513,7 @@ alloc_done:
if (!x && ac->avail == 0) // no objects in sight? abort
return NULL;

- if (!ac->avail) // objects refilled by interrupt?
+ if (!ac->avail) // objects refilled by interrupt?
goto retry;
}
ac->touched = 1;
@@ -2481,7 +2521,7 @@ alloc_done:
}

static inline void
-cache_alloc_debugcheck_before(kmem_cache_t *cachep, gfp_t flags)
+cache_alloc_debugcheck_before(kmem_cache_t * cachep, gfp_t flags)
{
might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
@@ -2490,16 +2530,16 @@ cache_alloc_debugcheck_before(kmem_cache
}

#if DEBUG
-static void *
-cache_alloc_debugcheck_after(kmem_cache_t *cachep,
- gfp_t flags, void *objp, void *caller)
+static void *cache_alloc_debugcheck_after(kmem_cache_t * cachep,
+ gfp_t flags, void *objp, void *caller)
{
- if (!objp)
+ if (!objp)
return objp;
- if (cachep->flags & SLAB_POISON) {
+ if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
- kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 1);
+ kernel_map_pages(virt_to_page(objp),
+ cachep->objsize / PAGE_SIZE, 1);
else
check_poison_obj(cachep, objp);
#else
@@ -2511,33 +2551,37 @@ cache_alloc_debugcheck_after(kmem_cache_
*dbg_userword(cachep, objp) = caller;

if (cachep->flags & SLAB_RED_ZONE) {
- if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
- slab_error(cachep, "double free, or memory outside"
- " object was overwritten");
- printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
- objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp));
+ if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
+ || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
+ slab_error(cachep,
+ "double free, or memory outside"
+ " object was overwritten");
+ printk(KERN_ERR
+ "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
+ objp, *dbg_redzone1(cachep, objp),
+ *dbg_redzone2(cachep, objp));
}
*dbg_redzone1(cachep, objp) = RED_ACTIVE;
*dbg_redzone2(cachep, objp) = RED_ACTIVE;
}
objp += obj_dbghead(cachep);
if (cachep->ctor && cachep->flags & SLAB_POISON) {
- unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
+ unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;

if (!(flags & __GFP_WAIT))
ctor_flags |= SLAB_CTOR_ATOMIC;

cachep->ctor(objp, cachep, ctor_flags);
- }
+ }
return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

-static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags)
+static inline void *____cache_alloc(kmem_cache_t * cachep, gfp_t flags)
{
- void* objp;
+ void *objp;
struct array_cache *ac;

check_irq_off();
@@ -2553,10 +2597,10 @@ static inline void *____cache_alloc(kmem
return objp;
}

-static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags)
+static inline void *__cache_alloc(kmem_cache_t * cachep, gfp_t flags)
{
unsigned long save_flags;
- void* objp;
+ void *objp;

cache_alloc_debugcheck_before(cachep, flags);

@@ -2564,7 +2608,7 @@ static inline void *__cache_alloc(kmem_c
objp = ____cache_alloc(cachep, flags);
local_irq_restore(save_flags);
objp = cache_alloc_debugcheck_after(cachep, flags, objp,
- __builtin_return_address(0));
+ __builtin_return_address(0));
prefetchw(objp);
return objp;
}
@@ -2573,77 +2617,78 @@ static inline void *__cache_alloc(kmem_c
/*
* A interface to enable slab creation on nodeid
*/
-static void *__cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
+static void *__cache_alloc_node(kmem_cache_t * cachep, gfp_t flags, int nodeid)
{
struct list_head *entry;
- struct slab *slabp;
- struct kmem_list3 *l3;
- void *obj;
- kmem_bufctl_t next;
- int x;
-
- l3 = cachep->nodelists[nodeid];
- BUG_ON(!l3);
-
-retry:
- spin_lock(&l3->list_lock);
- entry = l3->slabs_partial.next;
- if (entry == &l3->slabs_partial) {
- l3->free_touched = 1;
- entry = l3->slabs_free.next;
- if (entry == &l3->slabs_free)
- goto must_grow;
- }
-
- slabp = list_entry(entry, struct slab, list);
- check_spinlock_acquired_node(cachep, nodeid);
- check_slabp(cachep, slabp);
-
- STATS_INC_NODEALLOCS(cachep);
- STATS_INC_ACTIVE(cachep);
- STATS_SET_HIGH(cachep);
-
- BUG_ON(slabp->inuse == cachep->num);
-
- /* get obj pointer */
- obj = slabp->s_mem + slabp->free*cachep->objsize;
- slabp->inuse++;
- next = slab_bufctl(slabp)[slabp->free];
-#if DEBUG
- slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
-#endif
- slabp->free = next;
- check_slabp(cachep, slabp);
- l3->free_objects--;
- /* move slabp to correct slabp list: */
- list_del(&slabp->list);
-
- if (slabp->free == BUFCTL_END) {
- list_add(&slabp->list, &l3->slabs_full);
- } else {
- list_add(&slabp->list, &l3->slabs_partial);
- }
-
- spin_unlock(&l3->list_lock);
- goto done;
-
-must_grow:
- spin_unlock(&l3->list_lock);
- x = cache_grow(cachep, flags, nodeid);
-
- if (!x)
- return NULL;
-
- goto retry;
-done:
- return obj;
+ struct slab *slabp;
+ struct kmem_list3 *l3;
+ void *obj;
+ kmem_bufctl_t next;
+ int x;
+
+ l3 = cachep->nodelists[nodeid];
+ BUG_ON(!l3);
+
+ retry:
+ spin_lock(&l3->list_lock);
+ entry = l3->slabs_partial.next;
+ if (entry == &l3->slabs_partial) {
+ l3->free_touched = 1;
+ entry = l3->slabs_free.next;
+ if (entry == &l3->slabs_free)
+ goto must_grow;
+ }
+
+ slabp = list_entry(entry, struct slab, list);
+ check_spinlock_acquired_node(cachep, nodeid);
+ check_slabp(cachep, slabp);
+
+ STATS_INC_NODEALLOCS(cachep);
+ STATS_INC_ACTIVE(cachep);
+ STATS_SET_HIGH(cachep);
+
+ BUG_ON(slabp->inuse == cachep->num);
+
+ /* get obj pointer */
+ obj = slabp->s_mem + slabp->free * cachep->objsize;
+ slabp->inuse++;
+ next = slab_bufctl(slabp)[slabp->free];
+#if DEBUG
+ slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
+#endif
+ slabp->free = next;
+ check_slabp(cachep, slabp);
+ l3->free_objects--;
+ /* move slabp to correct slabp list: */
+ list_del(&slabp->list);
+
+ if (slabp->free == BUFCTL_END) {
+ list_add(&slabp->list, &l3->slabs_full);
+ } else {
+ list_add(&slabp->list, &l3->slabs_partial);
+ }
+
+ spin_unlock(&l3->list_lock);
+ goto done;
+
+ must_grow:
+ spin_unlock(&l3->list_lock);
+ x = cache_grow(cachep, flags, nodeid);
+
+ if (!x)
+ return NULL;
+
+ goto retry;
+ done:
+ return obj;
}
#endif

/*
* Caller needs to acquire correct kmem_list's list_lock
*/
-static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects, int node)
+static void free_block(kmem_cache_t * cachep, void **objpp, int nr_objects,
+ int node)
{
int i;
struct kmem_list3 *l3;
@@ -2666,7 +2711,7 @@ static void free_block(kmem_cache_t *cac

if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
printk(KERN_ERR "slab: double free detected in cache "
- "'%s', objp %p\n", cachep->name, objp);
+ "'%s', objp %p\n", cachep->name, objp);
BUG();
}
#endif
@@ -2695,7 +2740,7 @@ static void free_block(kmem_cache_t *cac
}
}

-static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac)
+static void cache_flusharray(kmem_cache_t * cachep, struct array_cache *ac)
{
int batchcount;
struct kmem_list3 *l3;
@@ -2710,20 +2755,19 @@ static void cache_flusharray(kmem_cache_
spin_lock(&l3->list_lock);
if (l3->shared) {
struct array_cache *shared_array = l3->shared;
- int max = shared_array->limit-shared_array->avail;
+ int max = shared_array->limit - shared_array->avail;
if (max) {
if (batchcount > max)
batchcount = max;
memcpy(&(shared_array->entry[shared_array->avail]),
- ac->entry,
- sizeof(void*)*batchcount);
+ ac->entry, sizeof(void *) * batchcount);
shared_array->avail += batchcount;
goto free_done;
}
}

free_block(cachep, ac->entry, batchcount, node);
-free_done:
+ free_done:
#if STATS
{
int i = 0;
@@ -2745,10 +2789,9 @@ free_done:
spin_unlock(&l3->list_lock);
ac->avail -= batchcount;
memmove(ac->entry, &(ac->entry[batchcount]),
- sizeof(void*)*ac->avail);
+ sizeof(void *) * ac->avail);
}

-
/*
* __cache_free
* Release an obj back to its cache. If the obj has a constructed
@@ -2756,7 +2799,7 @@ free_done:
*
* Called with disabled ints.
*/
-static inline void __cache_free(kmem_cache_t *cachep, void *objp)
+static inline void __cache_free(kmem_cache_t * cachep, void *objp)
{
struct array_cache *ac = ac_data(cachep);

@@ -2773,7 +2816,8 @@ static inline void __cache_free(kmem_cac
if (unlikely(slabp->nodeid != numa_node_id())) {
struct array_cache *alien = NULL;
int nodeid = slabp->nodeid;
- struct kmem_list3 *l3 = cachep->nodelists[numa_node_id()];
+ struct kmem_list3 *l3 =
+ cachep->nodelists[numa_node_id()];

STATS_INC_NODEFREES(cachep);
if (l3->alien && l3->alien[nodeid]) {
@@ -2781,15 +2825,15 @@ static inline void __cache_free(kmem_cac
spin_lock(&alien->lock);
if (unlikely(alien->avail == alien->limit))
__drain_alien_cache(cachep,
- alien, nodeid);
+ alien, nodeid);
alien->entry[alien->avail++] = objp;
spin_unlock(&alien->lock);
} else {
spin_lock(&(cachep->nodelists[nodeid])->
- list_lock);
+ list_lock);
free_block(cachep, &objp, 1, nodeid);
spin_unlock(&(cachep->nodelists[nodeid])->
- list_lock);
+ list_lock);
}
return;
}
@@ -2814,10 +2858,11 @@ static inline void __cache_free(kmem_cac
* Allocate an object from this cache. The flags are only relevant
* if the cache has no available objects.
*/
-void *kmem_cache_alloc(kmem_cache_t *cachep, gfp_t flags)
+void *kmem_cache_alloc(kmem_cache_t * cachep, gfp_t flags)
{
return __cache_alloc(cachep, flags);
}
+
EXPORT_SYMBOL(kmem_cache_alloc);

/**
@@ -2834,11 +2879,11 @@ EXPORT_SYMBOL(kmem_cache_alloc);
*
* Currently only used for dentry validation.
*/
-int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr)
+int fastcall kmem_ptr_validate(kmem_cache_t * cachep, void *ptr)
{
- unsigned long addr = (unsigned long) ptr;
+ unsigned long addr = (unsigned long)ptr;
unsigned long min_addr = PAGE_OFFSET;
- unsigned long align_mask = BYTES_PER_WORD-1;
+ unsigned long align_mask = BYTES_PER_WORD - 1;
unsigned long size = cachep->objsize;
struct page *page;

@@ -2858,7 +2903,7 @@ int fastcall kmem_ptr_validate(kmem_cach
if (unlikely(page_get_cache(page) != cachep))
goto out;
return 1;
-out:
+ out:
return 0;
}

@@ -2875,7 +2920,7 @@ out:
* New and improved: it will now make sure that the object gets
* put on the correct node list so that there is no false sharing.
*/
-void *kmem_cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
+void *kmem_cache_alloc_node(kmem_cache_t * cachep, gfp_t flags, int nodeid)
{
unsigned long save_flags;
void *ptr;
@@ -2885,8 +2930,10 @@ void *kmem_cache_alloc_node(kmem_cache_t

if (unlikely(!cachep->nodelists[nodeid])) {
/* Fall back to __cache_alloc if we run into trouble */
- printk(KERN_WARNING "slab: not allocating in inactive node %d for cache %s\n", nodeid, cachep->name);
- return __cache_alloc(cachep,flags);
+ printk(KERN_WARNING
+ "slab: not allocating in inactive node %d for cache %s\n",
+ nodeid, cachep->name);
+ return __cache_alloc(cachep, flags);
}

cache_alloc_debugcheck_before(cachep, flags);
@@ -2896,10 +2943,13 @@ void *kmem_cache_alloc_node(kmem_cache_t
else
ptr = __cache_alloc_node(cachep, flags, nodeid);
local_irq_restore(save_flags);
- ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, __builtin_return_address(0));
+ ptr =
+ cache_alloc_debugcheck_after(cachep, flags, ptr,
+ __builtin_return_address(0));

return ptr;
}
+
EXPORT_SYMBOL(kmem_cache_alloc_node);

void *kmalloc_node(size_t size, gfp_t flags, int node)
@@ -2911,6 +2961,7 @@ void *kmalloc_node(size_t size, gfp_t fl
return NULL;
return kmem_cache_alloc_node(cachep, flags, node);
}
+
EXPORT_SYMBOL(kmalloc_node);
#endif

@@ -2949,6 +3000,7 @@ void *__kmalloc(size_t size, gfp_t flags
return NULL;
return __cache_alloc(cachep, flags);
}
+
EXPORT_SYMBOL(__kmalloc);

#ifdef CONFIG_SMP
@@ -2962,7 +3014,7 @@ EXPORT_SYMBOL(__kmalloc);
void *__alloc_percpu(size_t size)
{
int i;
- struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL);
+ struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);

if (!pdata)
return NULL;
@@ -2986,9 +3038,9 @@ void *__alloc_percpu(size_t size)
}

/* Catch derefs w/o wrappers */
- return (void *) (~(unsigned long) pdata);
+ return (void *)(~(unsigned long)pdata);

-unwind_oom:
+ unwind_oom:
while (--i >= 0) {
if (!cpu_possible(i))
continue;
@@ -2997,6 +3049,7 @@ unwind_oom:
kfree(pdata);
return NULL;
}
+
EXPORT_SYMBOL(__alloc_percpu);
#endif

@@ -3008,7 +3061,7 @@ EXPORT_SYMBOL(__alloc_percpu);
* Free an object which was previously allocated from this
* cache.
*/
-void kmem_cache_free(kmem_cache_t *cachep, void *objp)
+void kmem_cache_free(kmem_cache_t * cachep, void *objp)
{
unsigned long flags;

@@ -3016,6 +3069,7 @@ void kmem_cache_free(kmem_cache_t *cache
__cache_free(cachep, objp);
local_irq_restore(flags);
}
+
EXPORT_SYMBOL(kmem_cache_free);

/**
@@ -3030,6 +3084,7 @@ void *kzalloc(size_t size, gfp_t flags)
memset(ret, 0, size);
return ret;
}
+
EXPORT_SYMBOL(kzalloc);

/**
@@ -3051,9 +3106,10 @@ void kfree(const void *objp)
local_irq_save(flags);
kfree_debugcheck(objp);
c = page_get_cache(virt_to_page(objp));
- __cache_free(c, (void*)objp);
+ __cache_free(c, (void *)objp);
local_irq_restore(flags);
}
+
EXPORT_SYMBOL(kfree);

#ifdef CONFIG_SMP
@@ -3064,38 +3120,40 @@ EXPORT_SYMBOL(kfree);
* Don't free memory not originally allocated by alloc_percpu()
* The complemented objp is to check for that.
*/
-void
-free_percpu(const void *objp)
+void free_percpu(const void *objp)
{
int i;
- struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp);
+ struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);

/*
* We allocate for all cpus so we cannot use for online cpu here.
*/
for_each_cpu(i)
- kfree(p->ptrs[i]);
+ kfree(p->ptrs[i]);
kfree(p);
}
+
EXPORT_SYMBOL(free_percpu);
#endif

-unsigned int kmem_cache_size(kmem_cache_t *cachep)
+unsigned int kmem_cache_size(kmem_cache_t * cachep)
{
return obj_size(cachep);
}
+
EXPORT_SYMBOL(kmem_cache_size);

-const char *kmem_cache_name(kmem_cache_t *cachep)
+const char *kmem_cache_name(kmem_cache_t * cachep)
{
return cachep->name;
}
+
EXPORT_SYMBOL_GPL(kmem_cache_name);

/*
* This initializes kmem_list3 for all nodes.
*/
-static int alloc_kmemlist(kmem_cache_t *cachep)
+static int alloc_kmemlist(kmem_cache_t * cachep)
{
int node;
struct kmem_list3 *l3;
@@ -3108,44 +3166,44 @@ static int alloc_kmemlist(kmem_cache_t *
if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
goto fail;
#endif
- if (!(new = alloc_arraycache(node, (cachep->shared*
- cachep->batchcount), 0xbaadf00d)))
+ if (!(new = alloc_arraycache(node, (cachep->shared *
+ cachep->batchcount),
+ 0xbaadf00d)))
goto fail;
if ((l3 = cachep->nodelists[node])) {

spin_lock_irq(&l3->list_lock);

if ((nc = cachep->nodelists[node]->shared))
- free_block(cachep, nc->entry,
- nc->avail, node);
+ free_block(cachep, nc->entry, nc->avail, node);

l3->shared = new;
if (!cachep->nodelists[node]->alien) {
l3->alien = new_alien;
new_alien = NULL;
}
- l3->free_limit = (1 + nr_cpus_node(node))*
- cachep->batchcount + cachep->num;
+ l3->free_limit = (1 + nr_cpus_node(node)) *
+ cachep->batchcount + cachep->num;
spin_unlock_irq(&l3->list_lock);
kfree(nc);
free_alien_cache(new_alien);
continue;
}
if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
- GFP_KERNEL, node)))
+ GFP_KERNEL, node)))
goto fail;

kmem_list3_init(l3);
l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
- ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
+ ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
l3->shared = new;
l3->alien = new_alien;
- l3->free_limit = (1 + nr_cpus_node(node))*
- cachep->batchcount + cachep->num;
+ l3->free_limit = (1 + nr_cpus_node(node)) *
+ cachep->batchcount + cachep->num;
cachep->nodelists[node] = l3;
}
return err;
-fail:
+ fail:
err = -ENOMEM;
return err;
}
@@ -3167,18 +3225,19 @@ static void do_ccupdate_local(void *info
new->new[smp_processor_id()] = old;
}

-
-static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount,
- int shared)
+static int do_tune_cpucache(kmem_cache_t * cachep, int limit, int batchcount,
+ int shared)
{
struct ccupdate_struct new;
int i, err;

- memset(&new.new,0,sizeof(new.new));
+ memset(&new.new, 0, sizeof(new.new));
for_each_online_cpu(i) {
- new.new[i] = alloc_arraycache(cpu_to_node(i), limit, batchcount);
+ new.new[i] =
+ alloc_arraycache(cpu_to_node(i), limit, batchcount);
if (!new.new[i]) {
- for (i--; i >= 0; i--) kfree(new.new[i]);
+ for (i--; i >= 0; i--)
+ kfree(new.new[i]);
return -ENOMEM;
}
}
@@ -3206,14 +3265,13 @@ static int do_tune_cpucache(kmem_cache_t
err = alloc_kmemlist(cachep);
if (err) {
printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
- cachep->name, -err);
+ cachep->name, -err);
BUG();
}
return 0;
}

-
-static void enable_cpucache(kmem_cache_t *cachep)
+static void enable_cpucache(kmem_cache_t * cachep)
{
int err;
int limit, shared;
@@ -3259,14 +3317,14 @@ static void enable_cpucache(kmem_cache_t
if (limit > 32)
limit = 32;
#endif
- err = do_tune_cpucache(cachep, limit, (limit+1)/2, shared);
+ err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
if (err)
printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
- cachep->name, -err);
+ cachep->name, -err);
}

-static void drain_array_locked(kmem_cache_t *cachep,
- struct array_cache *ac, int force, int node)
+static void drain_array_locked(kmem_cache_t * cachep,
+ struct array_cache *ac, int force, int node)
{
int tofree;

@@ -3274,14 +3332,14 @@ static void drain_array_locked(kmem_cach
if (ac->touched && !force) {
ac->touched = 0;
} else if (ac->avail) {
- tofree = force ? ac->avail : (ac->limit+4)/5;
+ tofree = force ? ac->avail : (ac->limit + 4) / 5;
if (tofree > ac->avail) {
- tofree = (ac->avail+1)/2;
+ tofree = (ac->avail + 1) / 2;
}
free_block(cachep, ac->entry, tofree, node);
ac->avail -= tofree;
memmove(ac->entry, &(ac->entry[tofree]),
- sizeof(void*)*ac->avail);
+ sizeof(void *) * ac->avail);
}
}

@@ -3304,13 +3362,14 @@ static void cache_reap(void *unused)

if (down_trylock(&cache_chain_sem)) {
/* Give up. Setup the next iteration. */
- schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
+ schedule_delayed_work(&__get_cpu_var(reap_work),
+ REAPTIMEOUT_CPUC);
return;
}

list_for_each(walk, &cache_chain) {
kmem_cache_t *searchp;
- struct list_head* p;
+ struct list_head *p;
int tofree;
struct slab *slabp;

@@ -3327,7 +3386,7 @@ static void cache_reap(void *unused)
spin_lock_irq(&l3->list_lock);

drain_array_locked(searchp, ac_data(searchp), 0,
- numa_node_id());
+ numa_node_id());

if (time_after(l3->next_reap, jiffies))
goto next_unlock;
@@ -3336,14 +3395,16 @@ static void cache_reap(void *unused)

if (l3->shared)
drain_array_locked(searchp, l3->shared, 0,
- numa_node_id());
+ numa_node_id());

if (l3->free_touched) {
l3->free_touched = 0;
goto next_unlock;
}

- tofree = (l3->free_limit+5*searchp->num-1)/(5*searchp->num);
+ tofree =
+ (l3->free_limit + 5 * searchp->num -
+ 1) / (5 * searchp->num);
do {
p = l3->slabs_free.next;
if (p == &(l3->slabs_free))
@@ -3363,10 +3424,10 @@ static void cache_reap(void *unused)
spin_unlock_irq(&l3->list_lock);
slab_destroy(searchp, slabp);
spin_lock_irq(&l3->list_lock);
- } while(--tofree > 0);
-next_unlock:
+ } while (--tofree > 0);
+ next_unlock:
spin_unlock_irq(&l3->list_lock);
-next:
+ next:
cond_resched();
}
check_irq_on();
@@ -3401,7 +3462,7 @@ static inline void print_slabinfo_header
seq_putc(m, '\n');
}

-static void *s_start(struct seq_file *m, loff_t *pos)
+static void *s_start(struct seq_file *m, loff_t * pos)
{
loff_t n = *pos;
struct list_head *p;
@@ -3418,12 +3479,12 @@ static void *s_start(struct seq_file *m,
return list_entry(p, kmem_cache_t, next);
}

-static void *s_next(struct seq_file *m, void *p, loff_t *pos)
+static void *s_next(struct seq_file *m, void *p, loff_t * pos)
{
kmem_cache_t *cachep = p;
++*pos;
return cachep->next.next == &cache_chain ? NULL
- : list_entry(cachep->next.next, kmem_cache_t, next);
+ : list_entry(cachep->next.next, kmem_cache_t, next);
}

static void s_stop(struct seq_file *m, void *p)
@@ -3435,11 +3496,11 @@ static int s_show(struct seq_file *m, vo
{
kmem_cache_t *cachep = p;
struct list_head *q;
- struct slab *slabp;
- unsigned long active_objs;
- unsigned long num_objs;
- unsigned long active_slabs = 0;
- unsigned long num_slabs, free_objects = 0, shared_avail = 0;
+ struct slab *slabp;
+ unsigned long active_objs;
+ unsigned long num_objs;
+ unsigned long active_slabs = 0;
+ unsigned long num_slabs, free_objects = 0, shared_avail = 0;
const char *name;
char *error = NULL;
int node;
@@ -3456,14 +3517,14 @@ static int s_show(struct seq_file *m, vo

spin_lock(&l3->list_lock);

- list_for_each(q,&l3->slabs_full) {
+ list_for_each(q, &l3->slabs_full) {
slabp = list_entry(q, struct slab, list);
if (slabp->inuse != cachep->num && !error)
error = "slabs_full accounting error";
active_objs += cachep->num;
active_slabs++;
}
- list_for_each(q,&l3->slabs_partial) {
+ list_for_each(q, &l3->slabs_partial) {
slabp = list_entry(q, struct slab, list);
if (slabp->inuse == cachep->num && !error)
error = "slabs_partial inuse accounting error";
@@ -3472,7 +3533,7 @@ static int s_show(struct seq_file *m, vo
active_objs += slabp->inuse;
active_slabs++;
}
- list_for_each(q,&l3->slabs_free) {
+ list_for_each(q, &l3->slabs_free) {
slabp = list_entry(q, struct slab, list);
if (slabp->inuse && !error)
error = "slabs_free/inuse accounting error";
@@ -3483,25 +3544,24 @@ static int s_show(struct seq_file *m, vo

spin_unlock(&l3->list_lock);
}
- num_slabs+=active_slabs;
- num_objs = num_slabs*cachep->num;
+ num_slabs += active_slabs;
+ num_objs = num_slabs * cachep->num;
if (num_objs - active_objs != free_objects && !error)
error = "free_objects accounting error";

- name = cachep->name;
+ name = cachep->name;
if (error)
printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
- name, active_objs, num_objs, cachep->objsize,
- cachep->num, (1<<cachep->gfporder));
+ name, active_objs, num_objs, cachep->objsize,
+ cachep->num, (1 << cachep->gfporder));
seq_printf(m, " : tunables %4u %4u %4u",
- cachep->limit, cachep->batchcount,
- cachep->shared);
+ cachep->limit, cachep->batchcount, cachep->shared);
seq_printf(m, " : slabdata %6lu %6lu %6lu",
- active_slabs, num_slabs, shared_avail);
+ active_slabs, num_slabs, shared_avail);
#if STATS
- { /* list3 stats */
+ { /* list3 stats */
unsigned long high = cachep->high_mark;
unsigned long allocs = cachep->num_allocations;
unsigned long grown = cachep->grown;
@@ -3512,9 +3572,7 @@ static int s_show(struct seq_file *m, vo
unsigned long node_frees = cachep->node_frees;

seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
- %4lu %4lu %4lu %4lu",
- allocs, high, grown, reaped, errors,
- max_freeable, node_allocs, node_frees);
+ %4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
}
/* cpu stats */
{
@@ -3524,7 +3582,7 @@ static int s_show(struct seq_file *m, vo
unsigned long freemiss = atomic_read(&cachep->freemiss);

seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
- allochit, allocmiss, freehit, freemiss);
+ allochit, allocmiss, freehit, freemiss);
}
#endif
seq_putc(m, '\n');
@@ -3547,10 +3605,10 @@ static int s_show(struct seq_file *m, vo
*/

struct seq_operations slabinfo_op = {
- .start = s_start,
- .next = s_next,
- .stop = s_stop,
- .show = s_show,
+ .start = s_start,
+ .next = s_next,
+ .stop = s_stop,
+ .show = s_show,
};

#define MAX_SLABINFO_WRITE 128
@@ -3561,18 +3619,18 @@ struct seq_operations slabinfo_op = {
* @count: data length
* @ppos: unused
*/
-ssize_t slabinfo_write(struct file *file, const char __user *buffer,
- size_t count, loff_t *ppos)
+ssize_t slabinfo_write(struct file *file, const char __user * buffer,
+ size_t count, loff_t * ppos)
{
- char kbuf[MAX_SLABINFO_WRITE+1], *tmp;
+ char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
int limit, batchcount, shared, res;
struct list_head *p;
-
+
if (count > MAX_SLABINFO_WRITE)
return -EINVAL;
if (copy_from_user(&kbuf, buffer, count))
return -EFAULT;
- kbuf[MAX_SLABINFO_WRITE] = '\0';
+ kbuf[MAX_SLABINFO_WRITE] = '\0';

tmp = strchr(kbuf, ' ');
if (!tmp)
@@ -3585,18 +3643,17 @@ ssize_t slabinfo_write(struct file *file
/* Find the cache in the chain of caches. */
down(&cache_chain_sem);
res = -EINVAL;
- list_for_each(p,&cache_chain) {
+ list_for_each(p, &cache_chain) {
kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);

if (!strcmp(cachep->name, kbuf)) {
if (limit < 1 ||
batchcount < 1 ||
- batchcount > limit ||
- shared < 0) {
+ batchcount > limit || shared < 0) {
res = 0;
} else {
res = do_tune_cpucache(cachep, limit,
- batchcount, shared);
+ batchcount, shared);
}
break;
}
@@ -3628,7 +3685,6 @@ unsigned int ksize(const void *objp)
return obj_size(page_get_cache(virt_to_page(objp)));
}

-
/*
* kstrdup - allocate space for and copy an existing string
*
@@ -3649,4 +3705,5 @@ char *kstrdup(const char *s, gfp_t gfp)
memcpy(buf, s, len);
return buf;
}
+
EXPORT_SYMBOL(kstrdup);
-
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/