Re: [PATCH] usb: host: Faraday fotg210-hcd driver
From: Yuan-Hsin Chen
Date: Tue Jun 11 2013 - 04:29:16 EST
Hi,
On Thu, Jun 6, 2013 at 1:15 AM, Yuan-Hsin Chen <yhchen@xxxxxxxxxxxxxxxx> wrote:
> FOTG210 is an OTG controller which can be configured as an
> USB2.0 host. FOTG210 host is an ehci-like controller with
> some differences. First, register layout of FOTG210 is
> incompatible with EHCI. Furthermore, FOTG210 is lack of
> siTDs which means iTDs are used for both HS and FS ISO
> transfer.
>
Are there any advice?
Thanks.
> Signed-off-by: Yuan-Hsin Chen <yhchen@xxxxxxxxxxxxxxxx>
> ---
> drivers/usb/Makefile | 1 +
> drivers/usb/host/Kconfig | 12 +
> drivers/usb/host/Makefile | 1 +
> drivers/usb/host/fotg210-hcd.c | 5967 ++++++++++++++++++++++++++++++++++++++++
> drivers/usb/host/fotg210.h | 746 +++++
> 5 files changed, 6727 insertions(+), 0 deletions(-)
> create mode 100644 drivers/usb/host/fotg210-hcd.c
> create mode 100644 drivers/usb/host/fotg210.h
>
> diff --git a/drivers/usb/Makefile b/drivers/usb/Makefile
> index c41feba..56358fa 100644
> --- a/drivers/usb/Makefile
> +++ b/drivers/usb/Makefile
> @@ -25,6 +25,7 @@ obj-$(CONFIG_USB_HWA_HCD) += host/
> obj-$(CONFIG_USB_ISP1760_HCD) += host/
> obj-$(CONFIG_USB_IMX21_HCD) += host/
> obj-$(CONFIG_USB_FSL_MPH_DR_OF) += host/
> +obj-$(CONFIG_USB_FOTG210_HCD) += host/
>
> obj-$(CONFIG_USB_C67X00_HCD) += c67x00/
>
> diff --git a/drivers/usb/host/Kconfig b/drivers/usb/host/Kconfig
> index de94f26..77fd5f0 100644
> --- a/drivers/usb/host/Kconfig
> +++ b/drivers/usb/host/Kconfig
> @@ -345,6 +345,18 @@ config USB_ISP1362_HCD
> To compile this driver as a module, choose M here: the
> module will be called isp1362-hcd.
>
> +config USB_FOTG210_HCD
> + tristate "FOTG210 HCD support"
> + depends on USB
> + default N
> + ---help---
> + Faraday FOTG210 is an OTG controller which can be configured as
> + an USB2.0 host. It is designed to meet USB2.0 EHCI specification
> + with minor modification.
> +
> + To compile this driver as a module, choose M here: the
> + module will be called fotg210-hcd.
> +
> config USB_OHCI_HCD
> tristate "OHCI HCD support"
> depends on USB_ARCH_HAS_OHCI
> diff --git a/drivers/usb/host/Makefile b/drivers/usb/host/Makefile
> index 4fb73c1..facf5aa 100644
> --- a/drivers/usb/host/Makefile
> +++ b/drivers/usb/host/Makefile
> @@ -52,3 +52,4 @@ obj-$(CONFIG_USB_FSL_MPH_DR_OF) += fsl-mph-dr-of.o
> obj-$(CONFIG_USB_OCTEON2_COMMON) += octeon2-common.o
> obj-$(CONFIG_USB_HCD_BCMA) += bcma-hcd.o
> obj-$(CONFIG_USB_HCD_SSB) += ssb-hcd.o
> +obj-$(CONFIG_USB_FOTG210_HCD) += fotg210-hcd.o
> diff --git a/drivers/usb/host/fotg210-hcd.c b/drivers/usb/host/fotg210-hcd.c
> new file mode 100644
> index 0000000..b585452
> --- /dev/null
> +++ b/drivers/usb/host/fotg210-hcd.c
> @@ -0,0 +1,5967 @@
> +/*
> + * Faraday FOTG210 EHCI-like driver
> + *
> + * Copyright (c) 2013 Faraday Technology Corporation
> + *
> + * Author: Yuan-Hsin Chen <yhchen@xxxxxxxxxxxxxxxx>
> + * Feng-Hsin Chiang <john453@xxxxxxxxxxxxxxxx>
> + * Po-Yu Chuang <ratbert.chuang@xxxxxxxxx>
> + *
> + * Most of code borrowed from the Linux-3.7 EHCI driver
> + *
> + * This program is free software; you can redistribute it and/or modify it
> + * under the terms of the GNU General Public License as published by the
> + * Free Software Foundation; either version 2 of the License, or (at your
> + * option) any later version.
> + *
> + * This program is distributed in the hope that it will be useful, but
> + * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
> + * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
> + * for more details.
> + *
> + * You should have received a copy of the GNU General Public License
> + * along with this program; if not, write to the Free Software Foundation,
> + * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
> + */
> +#include <linux/module.h>
> +#include <linux/device.h>
> +#include <linux/dmapool.h>
> +#include <linux/kernel.h>
> +#include <linux/delay.h>
> +#include <linux/ioport.h>
> +#include <linux/sched.h>
> +#include <linux/vmalloc.h>
> +#include <linux/errno.h>
> +#include <linux/init.h>
> +#include <linux/hrtimer.h>
> +#include <linux/list.h>
> +#include <linux/interrupt.h>
> +#include <linux/usb.h>
> +#include <linux/usb/hcd.h>
> +#include <linux/moduleparam.h>
> +#include <linux/dma-mapping.h>
> +#include <linux/debugfs.h>
> +#include <linux/slab.h>
> +#include <linux/uaccess.h>
> +#include <linux/platform_device.h>
> +
> +#include <asm/byteorder.h>
> +#include <asm/io.h>
> +#include <asm/irq.h>
> +#include <asm/unaligned.h>
> +
> +/*-------------------------------------------------------------------------*/
> +#define DRIVER_AUTHOR "Yuan-Hsin Chen"
> +#define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
> +
> +static const char hcd_name [] = "fotg210_hcd";
> +
> +#undef VERBOSE_DEBUG
> +#undef FOTG210_URB_TRACE
> +
> +#ifdef DEBUG
> +#define FOTG210_STATS
> +#endif
> +
> +/* magic numbers that can affect system performance */
> +#define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
> +#define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
> +#define FOTG210_TUNE_RL_TT 0
> +#define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
> +#define FOTG210_TUNE_MULT_TT 1
> +/*
> + * Some drivers think it's safe to schedule isochronous transfers more than
> + * 256 ms into the future (partly as a result of an old bug in the scheduling
> + * code). In an attempt to avoid trouble, we will use a minimum scheduling
> + * length of 512 frames instead of 256.
> + */
> +#define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
> +
> +/* Initial IRQ latency: faster than hw default */
> +static int log2_irq_thresh = 0; // 0 to 6
> +module_param (log2_irq_thresh, int, S_IRUGO);
> +MODULE_PARM_DESC (log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
> +
> +/* initial park setting: slower than hw default */
> +static unsigned park = 0;
> +module_param (park, uint, S_IRUGO);
> +MODULE_PARM_DESC (park, "park setting; 1-3 back-to-back async packets");
> +
> +/* for link power management(LPM) feature */
> +static unsigned int hird;
> +module_param(hird, int, S_IRUGO);
> +MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
> +
> +#define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
> +
> +#include "fotg210.h"
> +
> +/*-------------------------------------------------------------------------*/
> +
> +#define fotg210_dbg(fotg210, fmt, args...) \
> + dev_dbg (fotg210_to_hcd(fotg210)->self.controller , fmt , ## args )
> +#define fotg210_err(fotg210, fmt, args...) \
> + dev_err (fotg210_to_hcd(fotg210)->self.controller , fmt , ## args )
> +#define fotg210_info(fotg210, fmt, args...) \
> + dev_info (fotg210_to_hcd(fotg210)->self.controller , fmt , ## args )
> +#define fotg210_warn(fotg210, fmt, args...) \
> + dev_warn (fotg210_to_hcd(fotg210)->self.controller , fmt , ## args )
> +
> +#ifdef VERBOSE_DEBUG
> +# define fotg210_vdbg fotg210_dbg
> +#else
> + static inline void fotg210_vdbg(struct fotg210_hcd *fotg210, ...) {}
> +#endif
> +
> +#ifdef DEBUG
> +
> +/* check the values in the HCSPARAMS register
> + * (host controller _Structural_ parameters)
> + * see EHCI spec, Table 2-4 for each value
> + */
> +static void dbg_hcs_params (struct fotg210_hcd *fotg210, char *label)
> +{
> + u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
> +
> + fotg210_dbg (fotg210,
> + "%s hcs_params 0x%x ports=%d\n",
> + label, params,
> + HCS_N_PORTS (params)
> + );
> +}
> +#else
> +
> +static inline void dbg_hcs_params (struct fotg210_hcd *fotg210, char *label) {}
> +
> +#endif
> +
> +#ifdef DEBUG
> +
> +/* check the values in the HCCPARAMS register
> + * (host controller _Capability_ parameters)
> + * see EHCI Spec, Table 2-5 for each value
> + * */
> +static void dbg_hcc_params (struct fotg210_hcd *fotg210, char *label)
> +{
> + u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
> +
> + fotg210_dbg (fotg210,
> + "%s hcc_params %04x uframes %s%s\n",
> + label,
> + params,
> + HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
> + HCC_CANPARK(params) ? " park" : "");
> +}
> +#else
> +
> +static inline void dbg_hcc_params (struct fotg210_hcd *fotg210, char *label) {}
> +
> +#endif
> +
> +#ifdef DEBUG
> +
> +static void __maybe_unused
> +dbg_qtd (const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
> +{
> + fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
> + hc32_to_cpup(fotg210, &qtd->hw_next),
> + hc32_to_cpup(fotg210, &qtd->hw_alt_next),
> + hc32_to_cpup(fotg210, &qtd->hw_token),
> + hc32_to_cpup(fotg210, &qtd->hw_buf [0]));
> + if (qtd->hw_buf [1])
> + fotg210_dbg(fotg210, " p1=%08x p2=%08x p3=%08x p4=%08x\n",
> + hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
> + hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
> + hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
> + hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
> +}
> +
> +static void __maybe_unused
> +dbg_qh (const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
> +{
> + struct fotg210_qh_hw *hw = qh->hw;
> +
> + fotg210_dbg (fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label,
> + qh, hw->hw_next, hw->hw_info1, hw->hw_info2, hw->hw_current);
> + dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
> +}
> +
> +static void __maybe_unused
> +dbg_itd (const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
> +{
> + fotg210_dbg (fotg210, "%s [%d] itd %p, next %08x, urb %p\n",
> + label, itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
> + itd->urb);
> + fotg210_dbg (fotg210,
> + " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
> + hc32_to_cpu(fotg210, itd->hw_transaction[0]),
> + hc32_to_cpu(fotg210, itd->hw_transaction[1]),
> + hc32_to_cpu(fotg210, itd->hw_transaction[2]),
> + hc32_to_cpu(fotg210, itd->hw_transaction[3]),
> + hc32_to_cpu(fotg210, itd->hw_transaction[4]),
> + hc32_to_cpu(fotg210, itd->hw_transaction[5]),
> + hc32_to_cpu(fotg210, itd->hw_transaction[6]),
> + hc32_to_cpu(fotg210, itd->hw_transaction[7]));
> + fotg210_dbg (fotg210,
> + " buf: %08x %08x %08x %08x %08x %08x %08x\n",
> + hc32_to_cpu(fotg210, itd->hw_bufp[0]),
> + hc32_to_cpu(fotg210, itd->hw_bufp[1]),
> + hc32_to_cpu(fotg210, itd->hw_bufp[2]),
> + hc32_to_cpu(fotg210, itd->hw_bufp[3]),
> + hc32_to_cpu(fotg210, itd->hw_bufp[4]),
> + hc32_to_cpu(fotg210, itd->hw_bufp[5]),
> + hc32_to_cpu(fotg210, itd->hw_bufp[6]));
> + fotg210_dbg (fotg210, " index: %d %d %d %d %d %d %d %d\n",
> + itd->index[0], itd->index[1], itd->index[2],
> + itd->index[3], itd->index[4], itd->index[5],
> + itd->index[6], itd->index[7]);
> +}
> +
> +static int __maybe_unused
> +dbg_status_buf (char *buf, unsigned len, const char *label, u32 status)
> +{
> + return scnprintf (buf, len,
> + "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
> + label, label [0] ? " " : "", status,
> + (status & STS_ASS) ? " Async" : "",
> + (status & STS_PSS) ? " Periodic" : "",
> + (status & STS_RECL) ? " Recl" : "",
> + (status & STS_HALT) ? " Halt" : "",
> + (status & STS_IAA) ? " IAA" : "",
> + (status & STS_FATAL) ? " FATAL" : "",
> + (status & STS_FLR) ? " FLR" : "",
> + (status & STS_PCD) ? " PCD" : "",
> + (status & STS_ERR) ? " ERR" : "",
> + (status & STS_INT) ? " INT" : ""
> + );
> +}
> +
> +static int __maybe_unused
> +dbg_intr_buf (char *buf, unsigned len, const char *label, u32 enable)
> +{
> + return scnprintf (buf, len,
> + "%s%sintrenable %02x%s%s%s%s%s%s",
> + label, label [0] ? " " : "", enable,
> + (enable & STS_IAA) ? " IAA" : "",
> + (enable & STS_FATAL) ? " FATAL" : "",
> + (enable & STS_FLR) ? " FLR" : "",
> + (enable & STS_PCD) ? " PCD" : "",
> + (enable & STS_ERR) ? " ERR" : "",
> + (enable & STS_INT) ? " INT" : ""
> + );
> +}
> +
> +static const char *const fls_strings [] =
> + { "1024", "512", "256", "??" };
> +
> +static int
> +dbg_command_buf (char *buf, unsigned len, const char *label, u32 command)
> +{
> + return scnprintf (buf, len,
> + "%s%scommand %07x %s=%d ithresh=%d%s%s%s "
> + "period=%s%s %s",
> + label, label [0] ? " " : "", command,
> + (command & CMD_PARK) ? " park" : "(park)",
> + CMD_PARK_CNT (command),
> + (command >> 16) & 0x3f,
> + (command & CMD_IAAD) ? " IAAD" : "",
> + (command & CMD_ASE) ? " Async" : "",
> + (command & CMD_PSE) ? " Periodic" : "",
> + fls_strings [(command >> 2) & 0x3],
> + (command & CMD_RESET) ? " Reset" : "",
> + (command & CMD_RUN) ? "RUN" : "HALT"
> + );
> +}
> +
> +static int
> +dbg_port_buf (char *buf, unsigned len, const char *label, int port, u32 status)
> +{
> + char *sig;
> +
> + /* signaling state */
> + switch (status & (3 << 10)) {
> + case 0 << 10: sig = "se0"; break;
> + case 1 << 10: sig = "k"; break; /* low speed */
> + case 2 << 10: sig = "j"; break;
> + default: sig = "?"; break;
> + }
> +
> + return scnprintf (buf, len,
> + "%s%sport:%d status %06x %d "
> + "sig=%s%s%s%s%s%s%s%s",
> + label, label [0] ? " " : "", port, status,
> + status>>25,/*device address */
> + sig,
> + (status & PORT_RESET) ? " RESET" : "",
> + (status & PORT_SUSPEND) ? " SUSPEND" : "",
> + (status & PORT_RESUME) ? " RESUME" : "",
> + (status & PORT_PEC) ? " PEC" : "",
> + (status & PORT_PE) ? " PE" : "",
> + (status & PORT_CSC) ? " CSC" : "",
> + (status & PORT_CONNECT) ? " CONNECT" : "");
> +}
> +
> +#else
> +static inline void __maybe_unused
> +dbg_qh (char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
> +{}
> +
> +static inline int __maybe_unused
> +dbg_status_buf (char *buf, unsigned len, const char *label, u32 status)
> +{ return 0; }
> +
> +static inline int __maybe_unused
> +dbg_command_buf (char *buf, unsigned len, const char *label, u32 command)
> +{ return 0; }
> +
> +static inline int __maybe_unused
> +dbg_intr_buf (char *buf, unsigned len, const char *label, u32 enable)
> +{ return 0; }
> +
> +static inline int __maybe_unused
> +dbg_port_buf (char *buf, unsigned len, const char *label, int port, u32 status)
> +{ return 0; }
> +
> +#endif /* DEBUG */
> +
> +/* functions have the "wrong" filename when they're output... */
> +#define dbg_status(fotg210, label, status) { \
> + char _buf [80]; \
> + dbg_status_buf (_buf, sizeof _buf, label, status); \
> + fotg210_dbg (fotg210, "%s\n", _buf); \
> +}
> +
> +#define dbg_cmd(fotg210, label, command) { \
> + char _buf [80]; \
> + dbg_command_buf (_buf, sizeof _buf, label, command); \
> + fotg210_dbg (fotg210, "%s\n", _buf); \
> +}
> +
> +#define dbg_port(fotg210, label, port, status) { \
> + char _buf [80]; \
> + dbg_port_buf (_buf, sizeof _buf, label, port, status); \
> + fotg210_dbg (fotg210, "%s\n", _buf); \
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +#ifdef STUB_DEBUG_FILES
> +
> +static inline void create_debug_files (struct fotg210_hcd *bus) { }
> +static inline void remove_debug_files (struct fotg210_hcd *bus) { }
> +
> +#else
> +
> +/* troubleshooting help: expose state in debugfs */
> +
> +static int debug_async_open(struct inode *, struct file *);
> +static int debug_periodic_open(struct inode *, struct file *);
> +static int debug_registers_open(struct inode *, struct file *);
> +static int debug_async_open(struct inode *, struct file *);
> +
> +static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
> +static int debug_close(struct inode *, struct file *);
> +
> +static const struct file_operations debug_async_fops = {
> + .owner = THIS_MODULE,
> + .open = debug_async_open,
> + .read = debug_output,
> + .release = debug_close,
> + .llseek = default_llseek,
> +};
> +static const struct file_operations debug_periodic_fops = {
> + .owner = THIS_MODULE,
> + .open = debug_periodic_open,
> + .read = debug_output,
> + .release = debug_close,
> + .llseek = default_llseek,
> +};
> +static const struct file_operations debug_registers_fops = {
> + .owner = THIS_MODULE,
> + .open = debug_registers_open,
> + .read = debug_output,
> + .release = debug_close,
> + .llseek = default_llseek,
> +};
> +
> +static struct dentry *fotg210_debug_root;
> +
> +struct debug_buffer {
> + ssize_t (*fill_func)(struct debug_buffer *); /* fill method */
> + struct usb_bus *bus;
> + struct mutex mutex; /* protect filling of buffer */
> + size_t count; /* number of characters filled into buffer */
> + char *output_buf;
> + size_t alloc_size;
> +};
> +
> +#define speed_char(info1) ({ char tmp; \
> + switch (info1 & (3 << 12)) { \
> + case QH_FULL_SPEED: tmp = 'f'; break; \
> + case QH_LOW_SPEED: tmp = 'l'; break; \
> + case QH_HIGH_SPEED: tmp = 'h'; break; \
> + default: tmp = '?'; break; \
> + }; tmp; })
> +
> +static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
> +{
> + __u32 v = hc32_to_cpu(fotg210, token);
> +
> + if (v & QTD_STS_ACTIVE)
> + return '*';
> + if (v & QTD_STS_HALT)
> + return '-';
> + if (!IS_SHORT_READ (v))
> + return ' ';
> + /* tries to advance through hw_alt_next */
> + return '/';
> +}
> +
> +static void qh_lines (
> + struct fotg210_hcd *fotg210,
> + struct fotg210_qh *qh,
> + char **nextp,
> + unsigned *sizep
> +)
> +{
> + u32 scratch;
> + u32 hw_curr;
> + struct fotg210_qtd *td;
> + unsigned temp;
> + unsigned size = *sizep;
> + char *next = *nextp;
> + char mark;
> + __le32 list_end = FOTG210_LIST_END(fotg210);
> + struct fotg210_qh_hw *hw = qh->hw;
> +
> + if (hw->hw_qtd_next == list_end) /* NEC does this */
> + mark = '@';
> + else
> + mark = token_mark(fotg210, hw->hw_token);
> + if (mark == '/') { /* qh_alt_next controls qh advance? */
> + if ((hw->hw_alt_next & QTD_MASK(fotg210))
> + == fotg210->async->hw->hw_alt_next)
> + mark = '#'; /* blocked */
> + else if (hw->hw_alt_next == list_end)
> + mark = '.'; /* use hw_qtd_next */
> + /* else alt_next points to some other qtd */
> + }
> + scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
> + hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
> + temp = scnprintf (next, size,
> + "qh/%p dev%d %cs ep%d %08x %08x (%08x%c %s nak%d)",
> + qh, scratch & 0x007f,
> + speed_char (scratch),
> + (scratch >> 8) & 0x000f,
> + scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
> + hc32_to_cpup(fotg210, &hw->hw_token), mark,
> + (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
> + ? "data1" : "data0",
> + (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
> + size -= temp;
> + next += temp;
> +
> + /* hc may be modifying the list as we read it ... */
> + list_for_each_entry(td, &qh->qtd_list, qtd_list) {
> + scratch = hc32_to_cpup(fotg210, &td->hw_token);
> + mark = ' ';
> + if (hw_curr == td->qtd_dma)
> + mark = '*';
> + else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
> + mark = '+';
> + else if (QTD_LENGTH (scratch)) {
> + if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
> + mark = '#';
> + else if (td->hw_alt_next != list_end)
> + mark = '/';
> + }
> + temp = snprintf (next, size,
> + "\n\t%p%c%s len=%d %08x urb %p",
> + td, mark, ({ char *tmp;
> + switch ((scratch>>8)&0x03) {
> + case 0: tmp = "out"; break;
> + case 1: tmp = "in"; break;
> + case 2: tmp = "setup"; break;
> + default: tmp = "?"; break;
> + } tmp;}),
> + (scratch >> 16) & 0x7fff,
> + scratch,
> + td->urb);
> + if (size < temp)
> + temp = size;
> + size -= temp;
> + next += temp;
> + if (temp == size)
> + goto done;
> + }
> +
> + temp = snprintf (next, size, "\n");
> + if (size < temp)
> + temp = size;
> + size -= temp;
> + next += temp;
> +
> +done:
> + *sizep = size;
> + *nextp = next;
> +}
> +
> +static ssize_t fill_async_buffer(struct debug_buffer *buf)
> +{
> + struct usb_hcd *hcd;
> + struct fotg210_hcd *fotg210;
> + unsigned long flags;
> + unsigned temp, size;
> + char *next;
> + struct fotg210_qh *qh;
> +
> + hcd = bus_to_hcd(buf->bus);
> + fotg210 = hcd_to_fotg210 (hcd);
> + next = buf->output_buf;
> + size = buf->alloc_size;
> +
> + *next = 0;
> +
> + /* dumps a snapshot of the async schedule.
> + * usually empty except for long-term bulk reads, or head.
> + * one QH per line, and TDs we know about
> + */
> + spin_lock_irqsave (&fotg210->lock, flags);
> + for (qh = fotg210->async->qh_next.qh; size > 0 && qh; qh = qh->qh_next.qh)
> + qh_lines (fotg210, qh, &next, &size);
> + if (fotg210->async_unlink && size > 0) {
> + temp = scnprintf(next, size, "\nunlink =\n");
> + size -= temp;
> + next += temp;
> +
> + for (qh = fotg210->async_unlink; size > 0 && qh;
> + qh = qh->unlink_next)
> + qh_lines (fotg210, qh, &next, &size);
> + }
> + spin_unlock_irqrestore (&fotg210->lock, flags);
> +
> + return strlen(buf->output_buf);
> +}
> +
> +#define DBG_SCHED_LIMIT 64
> +static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
> +{
> + struct usb_hcd *hcd;
> + struct fotg210_hcd *fotg210;
> + unsigned long flags;
> + union fotg210_shadow p, *seen;
> + unsigned temp, size, seen_count;
> + char *next;
> + unsigned i;
> + __hc32 tag;
> +
> + if (!(seen = kmalloc (DBG_SCHED_LIMIT * sizeof *seen, GFP_ATOMIC)))
> + return 0;
> + seen_count = 0;
> +
> + hcd = bus_to_hcd(buf->bus);
> + fotg210 = hcd_to_fotg210 (hcd);
> + next = buf->output_buf;
> + size = buf->alloc_size;
> +
> + temp = scnprintf (next, size, "size = %d\n", fotg210->periodic_size);
> + size -= temp;
> + next += temp;
> +
> + /* dump a snapshot of the periodic schedule.
> + * iso changes, interrupt usually doesn't.
> + */
> + spin_lock_irqsave (&fotg210->lock, flags);
> + for (i = 0; i < fotg210->periodic_size; i++) {
> + p = fotg210->pshadow [i];
> + if (likely (!p.ptr))
> + continue;
> + tag = Q_NEXT_TYPE(fotg210, fotg210->periodic [i]);
> +
> + temp = scnprintf (next, size, "%4d: ", i);
> + size -= temp;
> + next += temp;
> +
> + do {
> + struct fotg210_qh_hw *hw;
> +
> + switch (hc32_to_cpu(fotg210, tag)) {
> + case Q_TYPE_QH:
> + hw = p.qh->hw;
> + temp = scnprintf (next, size, " qh%d-%04x/%p",
> + p.qh->period,
> + hc32_to_cpup(fotg210,
> + &hw->hw_info2)
> + /* uframe masks */
> + & (QH_CMASK | QH_SMASK),
> + p.qh);
> + size -= temp;
> + next += temp;
> + /* don't repeat what follows this qh */
> + for (temp = 0; temp < seen_count; temp++) {
> + if (seen [temp].ptr != p.ptr)
> + continue;
> + if (p.qh->qh_next.ptr) {
> + temp = scnprintf (next, size,
> + " ...");
> + size -= temp;
> + next += temp;
> + }
> + break;
> + }
> + /* show more info the first time around */
> + if (temp == seen_count) {
> + u32 scratch = hc32_to_cpup(fotg210,
> + &hw->hw_info1);
> + struct fotg210_qtd *qtd;
> + char *type = "";
> +
> + /* count tds, get ep direction */
> + temp = 0;
> + list_for_each_entry (qtd,
> + &p.qh->qtd_list,
> + qtd_list) {
> + temp++;
> + switch (0x03 & (hc32_to_cpu(
> + fotg210,
> + qtd->hw_token) >> 8)) {
> + case 0: type = "out"; continue;
> + case 1: type = "in"; continue;
> + }
> + }
> +
> + temp = scnprintf (next, size,
> + " (%c%d ep%d%s "
> + "[%d/%d] q%d p%d)",
> + speed_char (scratch),
> + scratch & 0x007f,
> + (scratch >> 8) & 0x000f, type,
> + p.qh->usecs, p.qh->c_usecs,
> + temp,
> + 0x7ff & (scratch >> 16));
> +
> + if (seen_count < DBG_SCHED_LIMIT)
> + seen [seen_count++].qh = p.qh;
> + } else
> + temp = 0;
> + tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
> + p = p.qh->qh_next;
> + break;
> + case Q_TYPE_FSTN:
> + temp = scnprintf (next, size,
> + " fstn-%8x/%p", p.fstn->hw_prev,
> + p.fstn);
> + tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
> + p = p.fstn->fstn_next;
> + break;
> + case Q_TYPE_ITD:
> + temp = scnprintf (next, size,
> + " itd/%p", p.itd);
> + tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
> + p = p.itd->itd_next;
> + break;
> + }
> + size -= temp;
> + next += temp;
> + } while (p.ptr);
> +
> + temp = scnprintf (next, size, "\n");
> + size -= temp;
> + next += temp;
> + }
> + spin_unlock_irqrestore (&fotg210->lock, flags);
> + kfree (seen);
> +
> + return buf->alloc_size - size;
> +}
> +#undef DBG_SCHED_LIMIT
> +
> +static const char *rh_state_string(struct fotg210_hcd *fotg210)
> +{
> + switch (fotg210->rh_state) {
> + case FOTG210_RH_HALTED:
> + return "halted";
> + case FOTG210_RH_SUSPENDED:
> + return "suspended";
> + case FOTG210_RH_RUNNING:
> + return "running";
> + case FOTG210_RH_STOPPING:
> + return "stopping";
> + }
> + return "?";
> +}
> +
> +static ssize_t fill_registers_buffer(struct debug_buffer *buf)
> +{
> + struct usb_hcd *hcd;
> + struct fotg210_hcd *fotg210;
> + unsigned long flags;
> + unsigned temp, size, i;
> + char *next, scratch [80];
> + static char fmt [] = "%*s\n";
> + static char label [] = "";
> +
> + hcd = bus_to_hcd(buf->bus);
> + fotg210 = hcd_to_fotg210 (hcd);
> + next = buf->output_buf;
> + size = buf->alloc_size;
> +
> + spin_lock_irqsave (&fotg210->lock, flags);
> +
> + if (!HCD_HW_ACCESSIBLE(hcd)) {
> + size = scnprintf (next, size,
> + "bus %s, device %s\n"
> + "%s\n"
> + "SUSPENDED (no register access)\n",
> + hcd->self.controller->bus->name,
> + dev_name(hcd->self.controller),
> + hcd->product_desc);
> + goto done;
> + }
> +
> + /* Capability Registers */
> + i = HC_VERSION(fotg210, fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
> + temp = scnprintf (next, size,
> + "bus %s, device %s\n"
> + "%s\n"
> + "EHCI %x.%02x, rh state %s\n",
> + hcd->self.controller->bus->name,
> + dev_name(hcd->self.controller),
> + hcd->product_desc,
> + i >> 8, i & 0x0ff, rh_state_string(fotg210));
> + size -= temp;
> + next += temp;
> +
> + // FIXME interpret both types of params
> + i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
> + temp = scnprintf (next, size, "structural params 0x%08x\n", i);
> + size -= temp;
> + next += temp;
> +
> + i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
> + temp = scnprintf (next, size, "capability params 0x%08x\n", i);
> + size -= temp;
> + next += temp;
> +
> + /* Operational Registers */
> + temp = dbg_status_buf (scratch, sizeof scratch, label,
> + fotg210_readl(fotg210, &fotg210->regs->status));
> + temp = scnprintf (next, size, fmt, temp, scratch);
> + size -= temp;
> + next += temp;
> +
> + temp = dbg_command_buf (scratch, sizeof scratch, label,
> + fotg210_readl(fotg210, &fotg210->regs->command));
> + temp = scnprintf (next, size, fmt, temp, scratch);
> + size -= temp;
> + next += temp;
> +
> + temp = dbg_intr_buf (scratch, sizeof scratch, label,
> + fotg210_readl(fotg210, &fotg210->regs->intr_enable));
> + temp = scnprintf (next, size, fmt, temp, scratch);
> + size -= temp;
> + next += temp;
> +
> + temp = scnprintf (next, size, "uframe %04x\n",
> + fotg210_read_frame_index(fotg210));
> + size -= temp;
> + next += temp;
> +
> + if (fotg210->async_unlink) {
> + temp = scnprintf(next, size, "async unlink qh %p\n",
> + fotg210->async_unlink);
> + size -= temp;
> + next += temp;
> + }
> +
> +#ifdef FOTG210_STATS
> + temp = scnprintf (next, size,
> + "irq normal %ld err %ld iaa %ld (lost %ld)\n",
> + fotg210->stats.normal, fotg210->stats.error, fotg210->stats.iaa,
> + fotg210->stats.lost_iaa);
> + size -= temp;
> + next += temp;
> +
> + temp = scnprintf (next, size, "complete %ld unlink %ld\n",
> + fotg210->stats.complete, fotg210->stats.unlink);
> + size -= temp;
> + next += temp;
> +#endif
> +
> +done:
> + spin_unlock_irqrestore (&fotg210->lock, flags);
> +
> + return buf->alloc_size - size;
> +}
> +
> +static struct debug_buffer *alloc_buffer(struct usb_bus *bus,
> + ssize_t (*fill_func)(struct debug_buffer *))
> +{
> + struct debug_buffer *buf;
> +
> + buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
> +
> + if (buf) {
> + buf->bus = bus;
> + buf->fill_func = fill_func;
> + mutex_init(&buf->mutex);
> + buf->alloc_size = PAGE_SIZE;
> + }
> +
> + return buf;
> +}
> +
> +static int fill_buffer(struct debug_buffer *buf)
> +{
> + int ret = 0;
> +
> + if (!buf->output_buf)
> + buf->output_buf = vmalloc(buf->alloc_size);
> +
> + if (!buf->output_buf) {
> + ret = -ENOMEM;
> + goto out;
> + }
> +
> + ret = buf->fill_func(buf);
> +
> + if (ret >= 0) {
> + buf->count = ret;
> + ret = 0;
> + }
> +
> +out:
> + return ret;
> +}
> +
> +static ssize_t debug_output(struct file *file, char __user *user_buf,
> + size_t len, loff_t *offset)
> +{
> + struct debug_buffer *buf = file->private_data;
> + int ret = 0;
> +
> + mutex_lock(&buf->mutex);
> + if (buf->count == 0) {
> + ret = fill_buffer(buf);
> + if (ret != 0) {
> + mutex_unlock(&buf->mutex);
> + goto out;
> + }
> + }
> + mutex_unlock(&buf->mutex);
> +
> + ret = simple_read_from_buffer(user_buf, len, offset,
> + buf->output_buf, buf->count);
> +
> +out:
> + return ret;
> +
> +}
> +
> +static int debug_close(struct inode *inode, struct file *file)
> +{
> + struct debug_buffer *buf = file->private_data;
> +
> + if (buf) {
> + vfree(buf->output_buf);
> + kfree(buf);
> + }
> +
> + return 0;
> +}
> +static int debug_async_open(struct inode *inode, struct file *file)
> +{
> + file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
> +
> + return file->private_data ? 0 : -ENOMEM;
> +}
> +
> +static int debug_periodic_open(struct inode *inode, struct file *file)
> +{
> + struct debug_buffer *buf;
> + buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
> + if (!buf)
> + return -ENOMEM;
> +
> + buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
> + file->private_data = buf;
> + return 0;
> +}
> +
> +static int debug_registers_open(struct inode *inode, struct file *file)
> +{
> + file->private_data = alloc_buffer(inode->i_private,
> + fill_registers_buffer);
> +
> + return file->private_data ? 0 : -ENOMEM;
> +}
> +
> +static inline void create_debug_files (struct fotg210_hcd *fotg210)
> +{
> + struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
> +
> + fotg210->debug_dir = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
> + if (!fotg210->debug_dir)
> + return;
> +
> + if (!debugfs_create_file("async", S_IRUGO, fotg210->debug_dir, bus,
> + &debug_async_fops))
> + goto file_error;
> +
> + if (!debugfs_create_file("periodic", S_IRUGO, fotg210->debug_dir, bus,
> + &debug_periodic_fops))
> + goto file_error;
> +
> + if (!debugfs_create_file("registers", S_IRUGO, fotg210->debug_dir, bus,
> + &debug_registers_fops))
> + goto file_error;
> +
> + return;
> +
> +file_error:
> + debugfs_remove_recursive(fotg210->debug_dir);
> +}
> +
> +static inline void remove_debug_files (struct fotg210_hcd *fotg210)
> +{
> + debugfs_remove_recursive(fotg210->debug_dir);
> +}
> +
> +#endif /* STUB_DEBUG_FILES */
> +/*-------------------------------------------------------------------------*/
> +
> +/*
> + * handshake - spin reading hc until handshake completes or fails
> + * @ptr: address of hc register to be read
> + * @mask: bits to look at in result of read
> + * @done: value of those bits when handshake succeeds
> + * @usec: timeout in microseconds
> + *
> + * Returns negative errno, or zero on success
> + *
> + * Success happens when the "mask" bits have the specified value (hardware
> + * handshake done). There are two failure modes: "usec" have passed (major
> + * hardware flakeout), or the register reads as all-ones (hardware removed).
> + *
> + * That last failure should_only happen in cases like physical cardbus eject
> + * before driver shutdown. But it also seems to be caused by bugs in cardbus
> + * bridge shutdown: shutting down the bridge before the devices using it.
> + */
> +static int handshake (struct fotg210_hcd *fotg210, void __iomem *ptr,
> + u32 mask, u32 done, int usec)
> +{
> + u32 result;
> +
> + do {
> + result = fotg210_readl(fotg210, ptr);
> + if (result == ~(u32)0) /* card removed */
> + return -ENODEV;
> + result &= mask;
> + if (result == done)
> + return 0;
> + udelay (1);
> + usec--;
> + } while (usec > 0);
> + return -ETIMEDOUT;
> +}
> +
> +/*
> + * Force HC to halt state from unknown (EHCI spec section 2.3).
> + * Must be called with interrupts enabled and the lock not held.
> + */
> +static int fotg210_halt (struct fotg210_hcd *fotg210)
> +{
> + u32 temp;
> +
> + spin_lock_irq(&fotg210->lock);
> +
> + /* disable any irqs left enabled by previous code */
> + fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
> +
> + /*
> + * This routine gets called during probe before fotg210->command
> + * has been initialized, so we can't rely on its value.
> + */
> + fotg210->command &= ~CMD_RUN;
> + temp = fotg210_readl(fotg210, &fotg210->regs->command);
> + temp &= ~(CMD_RUN | CMD_IAAD);
> + fotg210_writel(fotg210, temp, &fotg210->regs->command);
> +
> + spin_unlock_irq(&fotg210->lock);
> + synchronize_irq(fotg210_to_hcd(fotg210)->irq);
> +
> + return handshake(fotg210, &fotg210->regs->status,
> + STS_HALT, STS_HALT, 16 * 125);
> +}
> +
> +/*
> + * Reset a non-running (STS_HALT == 1) controller.
> + * Must be called with interrupts enabled and the lock not held.
> + */
> +static int fotg210_reset (struct fotg210_hcd *fotg210)
> +{
> + int retval;
> + u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
> +
> + /* If the EHCI debug controller is active, special care must be
> + * taken before and after a host controller reset */
> + if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
> + fotg210->debug = NULL;
> +
> + command |= CMD_RESET;
> + dbg_cmd (fotg210, "reset", command);
> + fotg210_writel(fotg210, command, &fotg210->regs->command);
> + fotg210->rh_state = FOTG210_RH_HALTED;
> + fotg210->next_statechange = jiffies;
> + retval = handshake (fotg210, &fotg210->regs->command,
> + CMD_RESET, 0, 250 * 1000);
> +
> + if (retval)
> + return retval;
> +
> + if (fotg210->debug)
> + dbgp_external_startup(fotg210_to_hcd(fotg210));
> +
> + fotg210->port_c_suspend = fotg210->suspended_ports =
> + fotg210->resuming_ports = 0;
> + return retval;
> +}
> +
> +/*
> + * Idle the controller (turn off the schedules).
> + * Must be called with interrupts enabled and the lock not held.
> + */
> +static void fotg210_quiesce (struct fotg210_hcd *fotg210)
> +{
> + u32 temp;
> +
> + if (fotg210->rh_state != FOTG210_RH_RUNNING)
> + return;
> +
> + /* wait for any schedule enables/disables to take effect */
> + temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
> + handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp, 16 * 125);
> +
> + /* then disable anything that's still active */
> + spin_lock_irq(&fotg210->lock);
> + fotg210->command &= ~(CMD_ASE | CMD_PSE);
> + fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
> + spin_unlock_irq(&fotg210->lock);
> +
> + /* hardware can take 16 microframes to turn off ... */
> + handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0, 16 * 125);
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +static void end_unlink_async(struct fotg210_hcd *fotg210);
> +static void unlink_empty_async(struct fotg210_hcd *fotg210);
> +static void fotg210_work(struct fotg210_hcd *fotg210);
> +static void start_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
> +static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
> +
> +/*-------------------------------------------------------------------------*/
> +
> +/* Set a bit in the USBCMD register */
> +static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
> +{
> + fotg210->command |= bit;
> + fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
> +
> + /* unblock posted write */
> + fotg210_readl(fotg210, &fotg210->regs->command);
> +}
> +
> +/* Clear a bit in the USBCMD register */
> +static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
> +{
> + fotg210->command &= ~bit;
> + fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
> +
> + /* unblock posted write */
> + fotg210_readl(fotg210, &fotg210->regs->command);
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +/*
> + * EHCI timer support... Now using hrtimers.
> + *
> + * Lots of different events are triggered from fotg210->hrtimer. Whenever
> + * the timer routine runs, it checks each possible event; events that are
> + * currently enabled and whose expiration time has passed get handled.
> + * The set of enabled events is stored as a collection of bitflags in
> + * fotg210->enabled_hrtimer_events, and they are numbered in order of
> + * increasing delay values (ranging between 1 ms and 100 ms).
> + *
> + * Rather than implementing a sorted list or tree of all pending events,
> + * we keep track only of the lowest-numbered pending event, in
> + * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its
> + * expiration time is set to the timeout value for this event.
> + *
> + * As a result, events might not get handled right away; the actual delay
> + * could be anywhere up to twice the requested delay. This doesn't
> + * matter, because none of the events are especially time-critical. The
> + * ones that matter most all have a delay of 1 ms, so they will be
> + * handled after 2 ms at most, which is okay. In addition to this, we
> + * allow for an expiration range of 1 ms.
> + */
> +
> +/*
> + * Delay lengths for the hrtimer event types.
> + * Keep this list sorted by delay length, in the same order as
> + * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
> + */
> +static unsigned event_delays_ns[] = {
> + 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_ASS */
> + 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_PSS */
> + 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_DEAD */
> + 1125 * NSEC_PER_USEC, /* FOTG210_HRTIMER_UNLINK_INTR */
> + 2 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_FREE_ITDS */
> + 6 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
> + 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IAA_WATCHDOG */
> + 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
> + 15 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_ASYNC */
> + 100 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IO_WATCHDOG */
> +};
> +
> +/* Enable a pending hrtimer event */
> +static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
> + bool resched)
> +{
> + ktime_t *timeout = &fotg210->hr_timeouts[event];
> +
> + if (resched)
> + *timeout = ktime_add(ktime_get(),
> + ktime_set(0, event_delays_ns[event]));
> + fotg210->enabled_hrtimer_events |= (1 << event);
> +
> + /* Track only the lowest-numbered pending event */
> + if (event < fotg210->next_hrtimer_event) {
> + fotg210->next_hrtimer_event = event;
> + hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
> + NSEC_PER_MSEC, HRTIMER_MODE_ABS);
> + }
> +}
> +
> +
> +/* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
> +static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
> +{
> + unsigned actual, want;
> +
> + /* Don't enable anything if the controller isn't running (e.g., died) */
> + if (fotg210->rh_state != FOTG210_RH_RUNNING)
> + return;
> +
> + want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
> + actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
> +
> + if (want != actual) {
> +
> + /* Poll again later, but give up after about 20 ms */
> + if (fotg210->ASS_poll_count++ < 20) {
> + fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS, true);
> + return;
> + }
> + fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
> + want, actual);
> + }
> + fotg210->ASS_poll_count = 0;
> +
> + /* The status is up-to-date; restart or stop the schedule as needed */
> + if (want == 0) { /* Stopped */
> + if (fotg210->async_count > 0)
> + fotg210_set_command_bit(fotg210, CMD_ASE);
> +
> + } else { /* Running */
> + if (fotg210->async_count == 0) {
> +
> + /* Turn off the schedule after a while */
> + fotg210_enable_event(fotg210, FOTG210_HRTIMER_DISABLE_ASYNC,
> + true);
> + }
> + }
> +}
> +
> +/* Turn off the async schedule after a brief delay */
> +static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
> +{
> + fotg210_clear_command_bit(fotg210, CMD_ASE);
> +}
> +
> +
> +/* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
> +static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
> +{
> + unsigned actual, want;
> +
> + /* Don't do anything if the controller isn't running (e.g., died) */
> + if (fotg210->rh_state != FOTG210_RH_RUNNING)
> + return;
> +
> + want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
> + actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
> +
> + if (want != actual) {
> +
> + /* Poll again later, but give up after about 20 ms */
> + if (fotg210->PSS_poll_count++ < 20) {
> + fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS, true);
> + return;
> + }
> + fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
> + want, actual);
> + }
> + fotg210->PSS_poll_count = 0;
> +
> + /* The status is up-to-date; restart or stop the schedule as needed */
> + if (want == 0) { /* Stopped */
> + if (fotg210->periodic_count > 0)
> + fotg210_set_command_bit(fotg210, CMD_PSE);
> +
> + } else { /* Running */
> + if (fotg210->periodic_count == 0) {
> +
> + /* Turn off the schedule after a while */
> + fotg210_enable_event(fotg210, FOTG210_HRTIMER_DISABLE_PERIODIC,
> + true);
> + }
> + }
> +}
> +
> +/* Turn off the periodic schedule after a brief delay */
> +static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
> +{
> + fotg210_clear_command_bit(fotg210, CMD_PSE);
> +}
> +
> +
> +/* Poll the STS_HALT status bit; see when a dead controller stops */
> +static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
> +{
> + if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
> +
> + /* Give up after a few milliseconds */
> + if (fotg210->died_poll_count++ < 5) {
> + /* Try again later */
> + fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_DEAD, true);
> + return;
> + }
> + fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
> + }
> +
> + /* Clean up the mess */
> + fotg210->rh_state = FOTG210_RH_HALTED;
> + fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
> + fotg210_work(fotg210);
> + end_unlink_async(fotg210);
> +
> + /* Not in process context, so don't try to reset the controller */
> +}
> +
> +
> +/* Handle unlinked interrupt QHs once they are gone from the hardware */
> +static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
> +{
> + bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
> +
> + /*
> + * Process all the QHs on the intr_unlink list that were added
> + * before the current unlink cycle began. The list is in
> + * temporal order, so stop when we reach the first entry in the
> + * current cycle. But if the root hub isn't running then
> + * process all the QHs on the list.
> + */
> + fotg210->intr_unlinking = true;
> + while (fotg210->intr_unlink) {
> + struct fotg210_qh *qh = fotg210->intr_unlink;
> +
> + if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
> + break;
> + fotg210->intr_unlink = qh->unlink_next;
> + qh->unlink_next = NULL;
> + end_unlink_intr(fotg210, qh);
> + }
> +
> + /* Handle remaining entries later */
> + if (fotg210->intr_unlink) {
> + fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR, true);
> + ++fotg210->intr_unlink_cycle;
> + }
> + fotg210->intr_unlinking = false;
> +}
> +
> +
> +/* Start another free-iTDs/siTDs cycle */
> +static void start_free_itds(struct fotg210_hcd *fotg210)
> +{
> + if (!(fotg210->enabled_hrtimer_events & BIT(FOTG210_HRTIMER_FREE_ITDS))) {
> + fotg210->last_itd_to_free = list_entry(
> + fotg210->cached_itd_list.prev,
> + struct fotg210_itd, itd_list);
> + fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
> + }
> +}
> +
> +/* Wait for controller to stop using old iTDs and siTDs */
> +static void end_free_itds(struct fotg210_hcd *fotg210)
> +{
> + struct fotg210_itd *itd, *n;
> +
> + if (fotg210->rh_state < FOTG210_RH_RUNNING) {
> + fotg210->last_itd_to_free = NULL;
> + }
> +
> + list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
> + list_del(&itd->itd_list);
> + dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
> + if (itd == fotg210->last_itd_to_free)
> + break;
> + }
> +
> + if (!list_empty(&fotg210->cached_itd_list))
> + start_free_itds(fotg210);
> +}
> +
> +
> +/* Handle lost (or very late) IAA interrupts */
> +static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
> +{
> + if (fotg210->rh_state != FOTG210_RH_RUNNING)
> + return;
> +
> + /*
> + * Lost IAA irqs wedge things badly; seen first with a vt8235.
> + * So we need this watchdog, but must protect it against both
> + * (a) SMP races against real IAA firing and retriggering, and
> + * (b) clean HC shutdown, when IAA watchdog was pending.
> + */
> + if (fotg210->async_iaa) {
> + u32 cmd, status;
> +
> + /* If we get here, IAA is *REALLY* late. It's barely
> + * conceivable that the system is so busy that CMD_IAAD
> + * is still legitimately set, so let's be sure it's
> + * clear before we read STS_IAA. (The HC should clear
> + * CMD_IAAD when it sets STS_IAA.)
> + */
> + cmd = fotg210_readl(fotg210, &fotg210->regs->command);
> +
> + /*
> + * If IAA is set here it either legitimately triggered
> + * after the watchdog timer expired (_way_ late, so we'll
> + * still count it as lost) ... or a silicon erratum:
> + * - VIA seems to set IAA without triggering the IRQ;
> + * - IAAD potentially cleared without setting IAA.
> + */
> + status = fotg210_readl(fotg210, &fotg210->regs->status);
> + if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
> + COUNT(fotg210->stats.lost_iaa);
> + fotg210_writel(fotg210, STS_IAA, &fotg210->regs->status);
> + }
> +
> + fotg210_vdbg(fotg210, "IAA watchdog: status %x cmd %x\n",
> + status, cmd);
> + end_unlink_async(fotg210);
> + }
> +}
> +
> +
> +/* Enable the I/O watchdog, if appropriate */
> +static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
> +{
> + /* Not needed if the controller isn't running or it's already enabled */
> + if (fotg210->rh_state != FOTG210_RH_RUNNING ||
> + (fotg210->enabled_hrtimer_events &
> + BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
> + return;
> +
> + /*
> + * Isochronous transfers always need the watchdog.
> + * For other sorts we use it only if the flag is set.
> + */
> + if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
> + fotg210->async_count + fotg210->intr_count > 0))
> + fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG, true);
> +}
> +
> +
> +/*
> + * Handler functions for the hrtimer event types.
> + * Keep this array in the same order as the event types indexed by
> + * enum fotg210_hrtimer_event in fotg210.h.
> + */
> +static void (*event_handlers[])(struct fotg210_hcd *) = {
> + fotg210_poll_ASS, /* FOTG210_HRTIMER_POLL_ASS */
> + fotg210_poll_PSS, /* FOTG210_HRTIMER_POLL_PSS */
> + fotg210_handle_controller_death, /* FOTG210_HRTIMER_POLL_DEAD */
> + fotg210_handle_intr_unlinks, /* FOTG210_HRTIMER_UNLINK_INTR */
> + end_free_itds, /* FOTG210_HRTIMER_FREE_ITDS */
> + unlink_empty_async, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
> + fotg210_iaa_watchdog, /* FOTG210_HRTIMER_IAA_WATCHDOG */
> + fotg210_disable_PSE, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
> + fotg210_disable_ASE, /* FOTG210_HRTIMER_DISABLE_ASYNC */
> + fotg210_work, /* FOTG210_HRTIMER_IO_WATCHDOG */
> +};
> +
> +static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
> +{
> + struct fotg210_hcd *fotg210 = container_of(t, struct fotg210_hcd, hrtimer);
> + ktime_t now;
> + unsigned long events;
> + unsigned long flags;
> + unsigned e;
> +
> + spin_lock_irqsave(&fotg210->lock, flags);
> +
> + events = fotg210->enabled_hrtimer_events;
> + fotg210->enabled_hrtimer_events = 0;
> + fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
> +
> + /*
> + * Check each pending event. If its time has expired, handle
> + * the event; otherwise re-enable it.
> + */
> + now = ktime_get();
> + for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
> + if (now.tv64 >= fotg210->hr_timeouts[e].tv64)
> + event_handlers[e](fotg210);
> + else
> + fotg210_enable_event(fotg210, e, false);
> + }
> +
> + spin_unlock_irqrestore(&fotg210->lock, flags);
> + return HRTIMER_NORESTART;
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +#define fotg210_bus_suspend NULL
> +#define fotg210_bus_resume NULL
> +
> +/*-------------------------------------------------------------------------*/
> +
> +static int check_reset_complete (
> + struct fotg210_hcd *fotg210,
> + int index,
> + u32 __iomem *status_reg,
> + int port_status
> +) {
> + if (!(port_status & PORT_CONNECT))
> + return port_status;
> +
> + /* if reset finished and it's still not enabled -- handoff */
> + if (!(port_status & PORT_PE)) {
> + /* with integrated TT, there's nobody to hand it to! */
> + fotg210_dbg (fotg210,
> + "Failed to enable port %d on root hub TT\n",
> + index+1);
> + return port_status;
> + } else {
> + fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
> + index + 1);
> + }
> +
> + return port_status;
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +
> +/* build "status change" packet (one or two bytes) from HC registers */
> +
> +static int
> +fotg210_hub_status_data (struct usb_hcd *hcd, char *buf)
> +{
> + struct fotg210_hcd *fotg210 = hcd_to_fotg210 (hcd);
> + u32 temp, status;
> + u32 mask;
> + int retval = 1;
> + unsigned long flags;
> +
> + /* init status to no-changes */
> + buf [0] = 0;
> +
> + /* Inform the core about resumes-in-progress by returning
> + * a non-zero value even if there are no status changes.
> + */
> + status = fotg210->resuming_ports;
> +
> + mask = PORT_CSC | PORT_PEC;
> + // PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND
> +
> + /* no hub change reports (bit 0) for now (power, ...) */
> +
> + /* port N changes (bit N)? */
> + spin_lock_irqsave (&fotg210->lock, flags);
> +
> + temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
> +
> + /*
> + * Return status information even for ports with OWNER set.
> + * Otherwise khubd wouldn't see the disconnect event when a
> + * high-speed device is switched over to the companion
> + * controller by the user.
> + */
> +
> + if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend)
> + || (fotg210->reset_done[0] && time_after_eq(
> + jiffies, fotg210->reset_done[0]))) {
> + buf [0] |= 1 << 1;
> + status = STS_PCD;
> + }
> + /* FIXME autosuspend idle root hubs */
> + spin_unlock_irqrestore (&fotg210->lock, flags);
> + return status ? retval : 0;
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +static void
> +fotg210_hub_descriptor (
> + struct fotg210_hcd *fotg210,
> + struct usb_hub_descriptor *desc
> +) {
> + int ports = HCS_N_PORTS (fotg210->hcs_params);
> + u16 temp;
> +
> + desc->bDescriptorType = 0x29;
> + desc->bPwrOn2PwrGood = 10; /* fotg210 1.0, 2.3.9 says 20ms max */
> + desc->bHubContrCurrent = 0;
> +
> + desc->bNbrPorts = ports;
> + temp = 1 + (ports / 8);
> + desc->bDescLength = 7 + 2 * temp;
> +
> + /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
> + memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
> + memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
> +
> + temp = 0x0008; /* per-port overcurrent reporting */
> + temp |= 0x0002; /* no power switching */
> + desc->wHubCharacteristics = cpu_to_le16(temp);
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +static int fotg210_hub_control (
> + struct usb_hcd *hcd,
> + u16 typeReq,
> + u16 wValue,
> + u16 wIndex,
> + char *buf,
> + u16 wLength
> +) {
> + struct fotg210_hcd *fotg210 = hcd_to_fotg210 (hcd);
> + int ports = HCS_N_PORTS (fotg210->hcs_params);
> + u32 __iomem *status_reg = &fotg210->regs->port_status;
> + u32 temp, temp1, status;
> + unsigned long flags;
> + int retval = 0;
> + unsigned selector;
> +
> + /*
> + * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
> + * HCS_INDICATOR may say we can change LEDs to off/amber/green.
> + * (track current state ourselves) ... blink for diagnostics,
> + * power, "this is the one", etc. EHCI spec supports this.
> + */
> +
> + spin_lock_irqsave (&fotg210->lock, flags);
> + switch (typeReq) {
> + case ClearHubFeature:
> + switch (wValue) {
> + case C_HUB_LOCAL_POWER:
> + case C_HUB_OVER_CURRENT:
> + /* no hub-wide feature/status flags */
> + break;
> + default:
> + goto error;
> + }
> + break;
> + case ClearPortFeature:
> + if (!wIndex || wIndex > ports)
> + goto error;
> + wIndex--;
> + temp = fotg210_readl(fotg210, status_reg);
> + temp &= ~PORT_RWC_BITS;
> +
> + /*
> + * Even if OWNER is set, so the port is owned by the
> + * companion controller, khubd needs to be able to clear
> + * the port-change status bits (especially
> + * USB_PORT_STAT_C_CONNECTION).
> + */
> +
> + switch (wValue) {
> + case USB_PORT_FEAT_ENABLE:
> + fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
> + break;
> + case USB_PORT_FEAT_C_ENABLE:
> + fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
> + break;
> + case USB_PORT_FEAT_SUSPEND:
> + if (temp & PORT_RESET)
> + goto error;
> + if (!(temp & PORT_SUSPEND))
> + break;
> + if ((temp & PORT_PE) == 0)
> + goto error;
> +
> + /* resume signaling for 20 msec */
> + fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
> + fotg210->reset_done[wIndex] = jiffies
> + + msecs_to_jiffies(20);
> + break;
> + case USB_PORT_FEAT_C_SUSPEND:
> + clear_bit(wIndex, &fotg210->port_c_suspend);
> + break;
> + case USB_PORT_FEAT_C_CONNECTION:
> + fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
> + break;
> + case USB_PORT_FEAT_C_OVER_CURRENT:
> + fotg210_writel(fotg210, temp | OTGISR_OVC, &fotg210->regs->otgisr);
> + break;
> + case USB_PORT_FEAT_C_RESET:
> + /* GetPortStatus clears reset */
> + break;
> + default:
> + goto error;
> + }
> + fotg210_readl(fotg210, &fotg210->regs->command); /* unblock posted write */
> + break;
> + case GetHubDescriptor:
> + fotg210_hub_descriptor (fotg210, (struct usb_hub_descriptor *)
> + buf);
> + break;
> + case GetHubStatus:
> + /* no hub-wide feature/status flags */
> + memset (buf, 0, 4);
> + //cpu_to_le32s ((u32 *) buf);
> + break;
> + case GetPortStatus:
> + if (!wIndex || wIndex > ports)
> + goto error;
> + wIndex--;
> + status = 0;
> + temp = fotg210_readl(fotg210, status_reg);
> +
> + // wPortChange bits
> + if (temp & PORT_CSC)
> + status |= USB_PORT_STAT_C_CONNECTION << 16;
> + if (temp & PORT_PEC)
> + status |= USB_PORT_STAT_C_ENABLE << 16;
> +
> + temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
> + if (temp1 & OTGISR_OVC)
> + status |= USB_PORT_STAT_C_OVERCURRENT << 16;
> +
> + /* whoever resumes must GetPortStatus to complete it!! */
> + if (temp & PORT_RESUME) {
> +
> + /* Remote Wakeup received? */
> + if (!fotg210->reset_done[wIndex]) {
> + /* resume signaling for 20 msec */
> + fotg210->reset_done[wIndex] = jiffies
> + + msecs_to_jiffies(20);
> + /* check the port again */
> + mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
> + fotg210->reset_done[wIndex]);
> + }
> +
> + /* resume completed? */
> + else if (time_after_eq(jiffies,
> + fotg210->reset_done[wIndex])) {
> + clear_bit(wIndex, &fotg210->suspended_ports);
> + set_bit(wIndex, &fotg210->port_c_suspend);
> + fotg210->reset_done[wIndex] = 0;
> +
> + /* stop resume signaling */
> + temp = fotg210_readl(fotg210, status_reg);
> + fotg210_writel(fotg210,
> + temp & ~(PORT_RWC_BITS | PORT_RESUME),
> + status_reg);
> + clear_bit(wIndex, &fotg210->resuming_ports);
> + retval = handshake(fotg210, status_reg,
> + PORT_RESUME, 0, 2000 /* 2msec */);
> + if (retval != 0) {
> + fotg210_err(fotg210,
> + "port %d resume error %d\n",
> + wIndex + 1, retval);
> + goto error;
> + }
> + temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
> + }
> + }
> +
> + /* whoever resets must GetPortStatus to complete it!! */
> + if ((temp & PORT_RESET)
> + && time_after_eq(jiffies,
> + fotg210->reset_done[wIndex])) {
> + status |= USB_PORT_STAT_C_RESET << 16;
> + fotg210->reset_done [wIndex] = 0;
> + clear_bit(wIndex, &fotg210->resuming_ports);
> +
> + /* force reset to complete */
> + fotg210_writel(fotg210, temp & ~(PORT_RWC_BITS | PORT_RESET),
> + status_reg);
> + /* REVISIT: some hardware needs 550+ usec to clear
> + * this bit; seems too long to spin routinely...
> + */
> + retval = handshake(fotg210, status_reg,
> + PORT_RESET, 0, 1000);
> + if (retval != 0) {
> + fotg210_err (fotg210, "port %d reset error %d\n",
> + wIndex + 1, retval);
> + goto error;
> + }
> +
> + /* see what we found out */
> + temp = check_reset_complete (fotg210, wIndex, status_reg,
> + fotg210_readl(fotg210, status_reg));
> + }
> +
> + if (!(temp & (PORT_RESUME|PORT_RESET))) {
> + fotg210->reset_done[wIndex] = 0;
> + clear_bit(wIndex, &fotg210->resuming_ports);
> + }
> +
> + /* transfer dedicated ports to the companion hc */
> + if ((temp & PORT_CONNECT) &&
> + test_bit(wIndex, &fotg210->companion_ports)) {
> + temp &= ~PORT_RWC_BITS;
> + fotg210_writel(fotg210, temp, status_reg);
> + fotg210_dbg(fotg210, "port %d --> companion\n", wIndex + 1);
> + temp = fotg210_readl(fotg210, status_reg);
> + }
> +
> + /*
> + * Even if OWNER is set, there's no harm letting khubd
> + * see the wPortStatus values (they should all be 0 except
> + * for PORT_POWER anyway).
> + */
> +
> + if (temp & PORT_CONNECT) {
> + status |= USB_PORT_STAT_CONNECTION;
> + status |= fotg210_port_speed(fotg210, temp);
> + }
> + if (temp & PORT_PE)
> + status |= USB_PORT_STAT_ENABLE;
> +
> + /* maybe the port was unsuspended without our knowledge */
> + if (temp & (PORT_SUSPEND|PORT_RESUME)) {
> + status |= USB_PORT_STAT_SUSPEND;
> + } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
> + clear_bit(wIndex, &fotg210->suspended_ports);
> + clear_bit(wIndex, &fotg210->resuming_ports);
> + fotg210->reset_done[wIndex] = 0;
> + if (temp & PORT_PE)
> + set_bit(wIndex, &fotg210->port_c_suspend);
> + }
> +
> + temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
> + if (temp1 & OTGISR_OVC)
> + status |= USB_PORT_STAT_OVERCURRENT;
> + if (temp & PORT_RESET)
> + status |= USB_PORT_STAT_RESET;
> + if (test_bit(wIndex, &fotg210->port_c_suspend))
> + status |= USB_PORT_STAT_C_SUSPEND << 16;
> +
> +#ifndef VERBOSE_DEBUG
> + if (status & ~0xffff) /* only if wPortChange is interesting */
> +#endif
> + dbg_port (fotg210, "GetStatus", wIndex + 1, temp);
> + put_unaligned_le32(status, buf);
> + break;
> + case SetHubFeature:
> + switch (wValue) {
> + case C_HUB_LOCAL_POWER:
> + case C_HUB_OVER_CURRENT:
> + /* no hub-wide feature/status flags */
> + break;
> + default:
> + goto error;
> + }
> + break;
> + case SetPortFeature:
> + selector = wIndex >> 8;
> + wIndex &= 0xff;
> +
> + if (!wIndex || wIndex > ports)
> + goto error;
> + wIndex--;
> + temp = fotg210_readl(fotg210, status_reg);
> + temp &= ~PORT_RWC_BITS;
> + switch (wValue) {
> + case USB_PORT_FEAT_SUSPEND:
> + if ((temp & PORT_PE) == 0
> + || (temp & PORT_RESET) != 0)
> + goto error;
> +
> + /* After above check the port must be connected.
> + * Set appropriate bit thus could put phy into low power
> + * mode if we have hostpc feature
> + */
> + fotg210_writel(fotg210, temp | PORT_SUSPEND, status_reg);
> + set_bit(wIndex, &fotg210->suspended_ports);
> + break;
> + case USB_PORT_FEAT_RESET:
> + if (temp & PORT_RESUME)
> + goto error;
> + /* line status bits may report this as low speed,
> + * which can be fine if this root hub has a
> + * transaction translator built in.
> + */
> + fotg210_vdbg (fotg210, "port %d reset\n", wIndex + 1);
> + temp |= PORT_RESET;
> + temp &= ~PORT_PE;
> +
> + /*
> + * caller must wait, then call GetPortStatus
> + * usb 2.0 spec says 50 ms resets on root
> + */
> + fotg210->reset_done [wIndex] = jiffies
> + + msecs_to_jiffies (50);
> + fotg210_writel(fotg210, temp, status_reg);
> + break;
> +
> + /* For downstream facing ports (these): one hub port is put
> + * into test mode according to USB2 11.24.2.13, then the hub
> + * must be reset (which for root hub now means rmmod+modprobe,
> + * or else system reboot). See EHCI 2.3.9 and 4.14 for info
> + * about the EHCI-specific stuff.
> + */
> + case USB_PORT_FEAT_TEST:
> + if (!selector || selector > 5)
> + goto error;
> + spin_unlock_irqrestore(&fotg210->lock, flags);
> + fotg210_quiesce(fotg210);
> + spin_lock_irqsave(&fotg210->lock, flags);
> +
> + /* Put all enabled ports into suspend */
> + temp = fotg210_readl(fotg210, status_reg) & ~PORT_RWC_BITS;
> + if (temp & PORT_PE)
> + fotg210_writel(fotg210, temp | PORT_SUSPEND,
> + status_reg);
> +
> + spin_unlock_irqrestore(&fotg210->lock, flags);
> + fotg210_halt(fotg210);
> + spin_lock_irqsave(&fotg210->lock, flags);
> +
> + temp = fotg210_readl(fotg210, status_reg);
> + temp |= selector << 16;
> + fotg210_writel(fotg210, temp, status_reg);
> + break;
> +
> + default:
> + goto error;
> + }
> + fotg210_readl(fotg210, &fotg210->regs->command); /* unblock posted writes */
> + break;
> +
> + default:
> +error:
> + /* "stall" on error */
> + retval = -EPIPE;
> + }
> + spin_unlock_irqrestore (&fotg210->lock, flags);
> + return retval;
> +}
> +
> +static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
> + int portnum)
> +{
> + return;
> +}
> +
> +static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
> + int portnum)
> +{
> + return 0;
> +}
> +/*-------------------------------------------------------------------------*/
> +/*
> + * There's basically three types of memory:
> + * - data used only by the HCD ... kmalloc is fine
> + * - async and periodic schedules, shared by HC and HCD ... these
> + * need to use dma_pool or dma_alloc_coherent
> + * - driver buffers, read/written by HC ... single shot DMA mapped
> + *
> + * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
> + * No memory seen by this driver is pageable.
> + */
> +
> +/*-------------------------------------------------------------------------*/
> +
> +/* Allocate the key transfer structures from the previously allocated pool */
> +
> +static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
> + dma_addr_t dma)
> +{
> + memset (qtd, 0, sizeof *qtd);
> + qtd->qtd_dma = dma;
> + qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
> + qtd->hw_next = FOTG210_LIST_END(fotg210);
> + qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
> + INIT_LIST_HEAD (&qtd->qtd_list);
> +}
> +
> +static struct fotg210_qtd *fotg210_qtd_alloc (struct fotg210_hcd *fotg210, gfp_t flags)
> +{
> + struct fotg210_qtd *qtd;
> + dma_addr_t dma;
> +
> + qtd = dma_pool_alloc (fotg210->qtd_pool, flags, &dma);
> + if (qtd != NULL) {
> + fotg210_qtd_init(fotg210, qtd, dma);
> + }
> + return qtd;
> +}
> +
> +static inline void fotg210_qtd_free (struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
> +{
> + dma_pool_free (fotg210->qtd_pool, qtd, qtd->qtd_dma);
> +}
> +
> +
> +static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
> +{
> + /* clean qtds first, and know this is not linked */
> + if (!list_empty (&qh->qtd_list) || qh->qh_next.ptr) {
> + fotg210_dbg (fotg210, "unused qh not empty!\n");
> + BUG ();
> + }
> + if (qh->dummy)
> + fotg210_qtd_free (fotg210, qh->dummy);
> + dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
> + kfree(qh);
> +}
> +
> +static struct fotg210_qh *fotg210_qh_alloc (struct fotg210_hcd *fotg210, gfp_t flags)
> +{
> + struct fotg210_qh *qh;
> + dma_addr_t dma;
> +
> + qh = kzalloc(sizeof *qh, GFP_ATOMIC);
> + if (!qh)
> + goto done;
> + qh->hw = (struct fotg210_qh_hw *)
> + dma_pool_alloc(fotg210->qh_pool, flags, &dma);
> + if (!qh->hw)
> + goto fail;
> + memset(qh->hw, 0, sizeof *qh->hw);
> + qh->qh_dma = dma;
> + // INIT_LIST_HEAD (&qh->qh_list);
> + INIT_LIST_HEAD (&qh->qtd_list);
> +
> + /* dummy td enables safe urb queuing */
> + qh->dummy = fotg210_qtd_alloc (fotg210, flags);
> + if (qh->dummy == NULL) {
> + fotg210_dbg (fotg210, "no dummy td\n");
> + goto fail1;
> + }
> +done:
> + return qh;
> +fail1:
> + dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
> +fail:
> + kfree(qh);
> + return NULL;
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +/* The queue heads and transfer descriptors are managed from pools tied
> + * to each of the "per device" structures.
> + * This is the initialisation and cleanup code.
> + */
> +
> +static void fotg210_mem_cleanup (struct fotg210_hcd *fotg210)
> +{
> + if (fotg210->async)
> + qh_destroy(fotg210, fotg210->async);
> + fotg210->async = NULL;
> +
> + if (fotg210->dummy)
> + qh_destroy(fotg210, fotg210->dummy);
> + fotg210->dummy = NULL;
> +
> + /* DMA consistent memory and pools */
> + if (fotg210->qtd_pool)
> + dma_pool_destroy (fotg210->qtd_pool);
> + fotg210->qtd_pool = NULL;
> +
> + if (fotg210->qh_pool) {
> + dma_pool_destroy (fotg210->qh_pool);
> + fotg210->qh_pool = NULL;
> + }
> +
> + if (fotg210->itd_pool)
> + dma_pool_destroy (fotg210->itd_pool);
> + fotg210->itd_pool = NULL;
> +
> + if (fotg210->periodic)
> + dma_free_coherent (fotg210_to_hcd(fotg210)->self.controller,
> + fotg210->periodic_size * sizeof (u32),
> + fotg210->periodic, fotg210->periodic_dma);
> + fotg210->periodic = NULL;
> +
> + /* shadow periodic table */
> + kfree(fotg210->pshadow);
> + fotg210->pshadow = NULL;
> +}
> +
> +/* remember to add cleanup code (above) if you add anything here */
> +static int fotg210_mem_init (struct fotg210_hcd *fotg210, gfp_t flags)
> +{
> + int i;
> +
> + /* QTDs for control/bulk/intr transfers */
> + fotg210->qtd_pool = dma_pool_create ("fotg210_qtd",
> + fotg210_to_hcd(fotg210)->self.controller,
> + sizeof (struct fotg210_qtd),
> + 32 /* byte alignment (for hw parts) */,
> + 4096 /* can't cross 4K */);
> + if (!fotg210->qtd_pool) {
> + goto fail;
> + }
> +
> + /* QHs for control/bulk/intr transfers */
> + fotg210->qh_pool = dma_pool_create ("fotg210_qh",
> + fotg210_to_hcd(fotg210)->self.controller,
> + sizeof(struct fotg210_qh_hw),
> + 32 /* byte alignment (for hw parts) */,
> + 4096 /* can't cross 4K */);
> + if (!fotg210->qh_pool) {
> + goto fail;
> + }
> + fotg210->async = fotg210_qh_alloc (fotg210, flags);
> + if (!fotg210->async) {
> + goto fail;
> + }
> +
> + /* ITD for high speed ISO transfers */
> + fotg210->itd_pool = dma_pool_create ("fotg210_itd",
> + fotg210_to_hcd(fotg210)->self.controller,
> + sizeof (struct fotg210_itd),
> + 64 /* byte alignment (for hw parts) */,
> + 4096 /* can't cross 4K */);
> + if (!fotg210->itd_pool) {
> + goto fail;
> + }
> +
> + /* Hardware periodic table */
> + fotg210->periodic = (__le32 *)
> + dma_alloc_coherent (fotg210_to_hcd(fotg210)->self.controller,
> + fotg210->periodic_size * sizeof(__le32),
> + &fotg210->periodic_dma, 0);
> + if (fotg210->periodic == NULL) {
> + goto fail;
> + }
> +
> + for (i = 0; i < fotg210->periodic_size; i++)
> + fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
> +
> + /* software shadow of hardware table */
> + fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *), flags);
> + if (fotg210->pshadow != NULL)
> + return 0;
> +
> +fail:
> + fotg210_dbg (fotg210, "couldn't init memory\n");
> + fotg210_mem_cleanup (fotg210);
> + return -ENOMEM;
> +}
> +/*-------------------------------------------------------------------------*/
> +/*
> + * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
> + *
> + * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
> + * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
> + * buffers needed for the larger number). We use one QH per endpoint, queue
> + * multiple urbs (all three types) per endpoint. URBs may need several qtds.
> + *
> + * ISO traffic uses "ISO TD" (itd) records, and (along with
> + * interrupts) needs careful scheduling. Performance improvements can be
> + * an ongoing challenge. That's in "ehci-sched.c".
> + *
> + * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
> + * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
> + * (b) special fields in qh entries or (c) split iso entries. TTs will
> + * buffer low/full speed data so the host collects it at high speed.
> + */
> +
> +/*-------------------------------------------------------------------------*/
> +
> +/* fill a qtd, returning how much of the buffer we were able to queue up */
> +
> +static int
> +qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd, dma_addr_t buf,
> + size_t len, int token, int maxpacket)
> +{
> + int i, count;
> + u64 addr = buf;
> +
> + /* one buffer entry per 4K ... first might be short or unaligned */
> + qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
> + qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
> + count = 0x1000 - (buf & 0x0fff); /* rest of that page */
> + if (likely (len < count)) /* ... iff needed */
> + count = len;
> + else {
> + buf += 0x1000;
> + buf &= ~0x0fff;
> +
> + /* per-qtd limit: from 16K to 20K (best alignment) */
> + for (i = 1; count < len && i < 5; i++) {
> + addr = buf;
> + qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
> + qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
> + (u32)(addr >> 32));
> + buf += 0x1000;
> + if ((count + 0x1000) < len)
> + count += 0x1000;
> + else
> + count = len;
> + }
> +
> + /* short packets may only terminate transfers */
> + if (count != len)
> + count -= (count % maxpacket);
> + }
> + qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
> + qtd->length = count;
> +
> + return count;
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +static inline void
> +qh_update (struct fotg210_hcd *fotg210, struct fotg210_qh *qh, struct fotg210_qtd *qtd)
> +{
> + struct fotg210_qh_hw *hw = qh->hw;
> +
> + /* writes to an active overlay are unsafe */
> + BUG_ON(qh->qh_state != QH_STATE_IDLE);
> +
> + hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
> + hw->hw_alt_next = FOTG210_LIST_END(fotg210);
> +
> + /* Except for control endpoints, we make hardware maintain data
> + * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
> + * and set the pseudo-toggle in udev. Only usb_clear_halt() will
> + * ever clear it.
> + */
> + if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
> + unsigned is_out, epnum;
> +
> + is_out = qh->is_out;
> + epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
> + if (unlikely (!usb_gettoggle (qh->dev, epnum, is_out))) {
> + hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
> + usb_settoggle (qh->dev, epnum, is_out, 1);
> + }
> + }
> +
> + hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
> +}
> +
> +/* if it weren't for a common silicon quirk (writing the dummy into the qh
> + * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
> + * recovery (including urb dequeue) would need software changes to a QH...
> + */
> +static void
> +qh_refresh (struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
> +{
> + struct fotg210_qtd *qtd;
> +
> + if (list_empty (&qh->qtd_list))
> + qtd = qh->dummy;
> + else {
> + qtd = list_entry (qh->qtd_list.next,
> + struct fotg210_qtd, qtd_list);
> + /*
> + * first qtd may already be partially processed.
> + * If we come here during unlink, the QH overlay region
> + * might have reference to the just unlinked qtd. The
> + * qtd is updated in qh_completions(). Update the QH
> + * overlay here.
> + */
> + if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
> + qh->hw->hw_qtd_next = qtd->hw_next;
> + qtd = NULL;
> + }
> + }
> +
> + if (qtd)
> + qh_update (fotg210, qh, qtd);
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
> +
> +static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
> + struct usb_host_endpoint *ep)
> +{
> + struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
> + struct fotg210_qh *qh = ep->hcpriv;
> + unsigned long flags;
> +
> + spin_lock_irqsave(&fotg210->lock, flags);
> + qh->clearing_tt = 0;
> + if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
> + && fotg210->rh_state == FOTG210_RH_RUNNING)
> + qh_link_async(fotg210, qh);
> + spin_unlock_irqrestore(&fotg210->lock, flags);
> +}
> +
> +static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
> + struct urb *urb, u32 token)
> +{
> +
> + /* If an async split transaction gets an error or is unlinked,
> + * the TT buffer may be left in an indeterminate state. We
> + * have to clear the TT buffer.
> + *
> + * Note: this routine is never called for Isochronous transfers.
> + */
> + if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
> +#ifdef DEBUG
> + struct usb_device *tt = urb->dev->tt->hub;
> + dev_dbg(&tt->dev,
> + "clear tt buffer port %d, a%d ep%d t%08x\n",
> + urb->dev->ttport, urb->dev->devnum,
> + usb_pipeendpoint(urb->pipe), token);
> +#endif /* DEBUG */
> + if (urb->dev->tt->hub !=
> + fotg210_to_hcd(fotg210)->self.root_hub) {
> + if (usb_hub_clear_tt_buffer(urb) == 0)
> + qh->clearing_tt = 1;
> + }
> + }
> +}
> +
> +static int qtd_copy_status (
> + struct fotg210_hcd *fotg210,
> + struct urb *urb,
> + size_t length,
> + u32 token
> +)
> +{
> + int status = -EINPROGRESS;
> +
> + /* count IN/OUT bytes, not SETUP (even short packets) */
> + if (likely (QTD_PID (token) != 2))
> + urb->actual_length += length - QTD_LENGTH (token);
> +
> + /* don't modify error codes */
> + if (unlikely(urb->unlinked))
> + return status;
> +
> + /* force cleanup after short read; not always an error */
> + if (unlikely (IS_SHORT_READ (token)))
> + status = -EREMOTEIO;
> +
> + /* serious "can't proceed" faults reported by the hardware */
> + if (token & QTD_STS_HALT) {
> + if (token & QTD_STS_BABBLE) {
> + /* FIXME "must" disable babbling device's port too */
> + status = -EOVERFLOW;
> + /* CERR nonzero + halt --> stall */
> + } else if (QTD_CERR(token)) {
> + status = -EPIPE;
> +
> + /* In theory, more than one of the following bits can be set
> + * since they are sticky and the transaction is retried.
> + * Which to test first is rather arbitrary.
> + */
> + } else if (token & QTD_STS_MMF) {
> + /* fs/ls interrupt xfer missed the complete-split */
> + status = -EPROTO;
> + } else if (token & QTD_STS_DBE) {
> + status = (QTD_PID (token) == 1) /* IN ? */
> + ? -ENOSR /* hc couldn't read data */
> + : -ECOMM; /* hc couldn't write data */
> + } else if (token & QTD_STS_XACT) {
> + /* timeout, bad CRC, wrong PID, etc */
> + fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
> + urb->dev->devpath,
> + usb_pipeendpoint(urb->pipe),
> + usb_pipein(urb->pipe) ? "in" : "out");
> + status = -EPROTO;
> + } else { /* unknown */
> + status = -EPROTO;
> + }
> +
> + fotg210_vdbg (fotg210,
> + "dev%d ep%d%s qtd token %08x --> status %d\n",
> + usb_pipedevice (urb->pipe),
> + usb_pipeendpoint (urb->pipe),
> + usb_pipein (urb->pipe) ? "in" : "out",
> + token, status);
> + }
> +
> + return status;
> +}
> +
> +static void
> +fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb, int status)
> +__releases(fotg210->lock)
> +__acquires(fotg210->lock)
> +{
> + if (likely (urb->hcpriv != NULL)) {
> + struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
> +
> + /* S-mask in a QH means it's an interrupt urb */
> + if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
> +
> + /* ... update hc-wide periodic stats (for usbfs) */
> + fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
> + }
> + }
> +
> + if (unlikely(urb->unlinked)) {
> + COUNT(fotg210->stats.unlink);
> + } else {
> + /* report non-error and short read status as zero */
> + if (status == -EINPROGRESS || status == -EREMOTEIO)
> + status = 0;
> + COUNT(fotg210->stats.complete);
> + }
> +
> +#ifdef FOTG210_URB_TRACE
> + fotg210_dbg (fotg210,
> + "%s %s urb %p ep%d%s status %d len %d/%d\n",
> + __func__, urb->dev->devpath, urb,
> + usb_pipeendpoint (urb->pipe),
> + usb_pipein (urb->pipe) ? "in" : "out",
> + status,
> + urb->actual_length, urb->transfer_buffer_length);
> +#endif
> +
> + /* complete() can reenter this HCD */
> + usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
> + spin_unlock (&fotg210->lock);
> + usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
> + spin_lock (&fotg210->lock);
> +}
> +
> +static int qh_schedule (struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
> +
> +/*
> + * Process and free completed qtds for a qh, returning URBs to drivers.
> + * Chases up to qh->hw_current. Returns number of completions called,
> + * indicating how much "real" work we did.
> + */
> +static unsigned
> +qh_completions (struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
> +{
> + struct fotg210_qtd *last, *end = qh->dummy;
> + struct list_head *entry, *tmp;
> + int last_status;
> + int stopped;
> + unsigned count = 0;
> + u8 state;
> + struct fotg210_qh_hw *hw = qh->hw;
> +
> + if (unlikely (list_empty (&qh->qtd_list)))
> + return count;
> +
> + /* completions (or tasks on other cpus) must never clobber HALT
> + * till we've gone through and cleaned everything up, even when
> + * they add urbs to this qh's queue or mark them for unlinking.
> + *
> + * NOTE: unlinking expects to be done in queue order.
> + *
> + * It's a bug for qh->qh_state to be anything other than
> + * QH_STATE_IDLE, unless our caller is scan_async() or
> + * scan_intr().
> + */
> + state = qh->qh_state;
> + qh->qh_state = QH_STATE_COMPLETING;
> + stopped = (state == QH_STATE_IDLE);
> +
> + rescan:
> + last = NULL;
> + last_status = -EINPROGRESS;
> + qh->needs_rescan = 0;
> +
> + /* remove de-activated QTDs from front of queue.
> + * after faults (including short reads), cleanup this urb
> + * then let the queue advance.
> + * if queue is stopped, handles unlinks.
> + */
> + list_for_each_safe (entry, tmp, &qh->qtd_list) {
> + struct fotg210_qtd *qtd;
> + struct urb *urb;
> + u32 token = 0;
> +
> + qtd = list_entry (entry, struct fotg210_qtd, qtd_list);
> + urb = qtd->urb;
> +
> + /* clean up any state from previous QTD ...*/
> + if (last) {
> + if (likely (last->urb != urb)) {
> + fotg210_urb_done(fotg210, last->urb, last_status);
> + count++;
> + last_status = -EINPROGRESS;
> + }
> + fotg210_qtd_free (fotg210, last);
> + last = NULL;
> + }
> +
> + /* ignore urbs submitted during completions we reported */
> + if (qtd == end)
> + break;
> +
> + /* hardware copies qtd out of qh overlay */
> + rmb ();
> + token = hc32_to_cpu(fotg210, qtd->hw_token);
> +
> + /* always clean up qtds the hc de-activated */
> + retry_xacterr:
> + if ((token & QTD_STS_ACTIVE) == 0) {
> +
> + /* Report Data Buffer Error: non-fatal but useful */
> + if (token & QTD_STS_DBE)
> + fotg210_dbg(fotg210,
> + "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
> + urb,
> + usb_endpoint_num(&urb->ep->desc),
> + usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
> + urb->transfer_buffer_length,
> + qtd,
> + qh);
> +
> + /* on STALL, error, and short reads this urb must
> + * complete and all its qtds must be recycled.
> + */
> + if ((token & QTD_STS_HALT) != 0) {
> +
> + /* retry transaction errors until we
> + * reach the software xacterr limit
> + */
> + if ((token & QTD_STS_XACT) &&
> + QTD_CERR(token) == 0 &&
> + ++qh->xacterrs < QH_XACTERR_MAX &&
> + !urb->unlinked) {
> + fotg210_dbg(fotg210,
> + "detected XactErr len %zu/%zu retry %d\n",
> + qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
> +
> + /* reset the token in the qtd and the
> + * qh overlay (which still contains
> + * the qtd) so that we pick up from
> + * where we left off
> + */
> + token &= ~QTD_STS_HALT;
> + token |= QTD_STS_ACTIVE |
> + (FOTG210_TUNE_CERR << 10);
> + qtd->hw_token = cpu_to_hc32(fotg210,
> + token);
> + wmb();
> + hw->hw_token = cpu_to_hc32(fotg210,
> + token);
> + goto retry_xacterr;
> + }
> + stopped = 1;
> +
> + /* magic dummy for some short reads; qh won't advance.
> + * that silicon quirk can kick in with this dummy too.
> + *
> + * other short reads won't stop the queue, including
> + * control transfers (status stage handles that) or
> + * most other single-qtd reads ... the queue stops if
> + * URB_SHORT_NOT_OK was set so the driver submitting
> + * the urbs could clean it up.
> + */
> + } else if (IS_SHORT_READ (token)
> + && !(qtd->hw_alt_next
> + & FOTG210_LIST_END(fotg210))) {
> + stopped = 1;
> + }
> +
> + /* stop scanning when we reach qtds the hc is using */
> + } else if (likely (!stopped
> + && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
> + break;
> +
> + /* scan the whole queue for unlinks whenever it stops */
> + } else {
> + stopped = 1;
> +
> + /* cancel everything if we halt, suspend, etc */
> + if (fotg210->rh_state < FOTG210_RH_RUNNING)
> + last_status = -ESHUTDOWN;
> +
> + /* this qtd is active; skip it unless a previous qtd
> + * for its urb faulted, or its urb was canceled.
> + */
> + else if (last_status == -EINPROGRESS && !urb->unlinked)
> + continue;
> +
> + /* qh unlinked; token in overlay may be most current */
> + if (state == QH_STATE_IDLE
> + && cpu_to_hc32(fotg210, qtd->qtd_dma)
> + == hw->hw_current) {
> + token = hc32_to_cpu(fotg210, hw->hw_token);
> +
> + /* An unlink may leave an incomplete
> + * async transaction in the TT buffer.
> + * We have to clear it.
> + */
> + fotg210_clear_tt_buffer(fotg210, qh, urb, token);
> + }
> + }
> +
> + /* unless we already know the urb's status, collect qtd status
> + * and update count of bytes transferred. in common short read
> + * cases with only one data qtd (including control transfers),
> + * queue processing won't halt. but with two or more qtds (for
> + * example, with a 32 KB transfer), when the first qtd gets a
> + * short read the second must be removed by hand.
> + */
> + if (last_status == -EINPROGRESS) {
> + last_status = qtd_copy_status(fotg210, urb,
> + qtd->length, token);
> + if (last_status == -EREMOTEIO
> + && (qtd->hw_alt_next
> + & FOTG210_LIST_END(fotg210)))
> + last_status = -EINPROGRESS;
> +
> + /* As part of low/full-speed endpoint-halt processing
> + * we must clear the TT buffer (11.17.5).
> + */
> + if (unlikely(last_status != -EINPROGRESS &&
> + last_status != -EREMOTEIO)) {
> + /* The TT's in some hubs malfunction when they
> + * receive this request following a STALL (they
> + * stop sending isochronous packets). Since a
> + * STALL can't leave the TT buffer in a busy
> + * state (if you believe Figures 11-48 - 11-51
> + * in the USB 2.0 spec), we won't clear the TT
> + * buffer in this case. Strictly speaking this
> + * is a violation of the spec.
> + */
> + if (last_status != -EPIPE)
> + fotg210_clear_tt_buffer(fotg210, qh, urb,
> + token);
> + }
> + }
> +
> + /* if we're removing something not at the queue head,
> + * patch the hardware queue pointer.
> + */
> + if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
> + last = list_entry (qtd->qtd_list.prev,
> + struct fotg210_qtd, qtd_list);
> + last->hw_next = qtd->hw_next;
> + }
> +
> + /* remove qtd; it's recycled after possible urb completion */
> + list_del (&qtd->qtd_list);
> + last = qtd;
> +
> + /* reinit the xacterr counter for the next qtd */
> + qh->xacterrs = 0;
> + }
> +
> + /* last urb's completion might still need calling */
> + if (likely (last != NULL)) {
> + fotg210_urb_done(fotg210, last->urb, last_status);
> + count++;
> + fotg210_qtd_free (fotg210, last);
> + }
> +
> + /* Do we need to rescan for URBs dequeued during a giveback? */
> + if (unlikely(qh->needs_rescan)) {
> + /* If the QH is already unlinked, do the rescan now. */
> + if (state == QH_STATE_IDLE)
> + goto rescan;
> +
> + /* Otherwise we have to wait until the QH is fully unlinked.
> + * Our caller will start an unlink if qh->needs_rescan is
> + * set. But if an unlink has already started, nothing needs
> + * to be done.
> + */
> + if (state != QH_STATE_LINKED)
> + qh->needs_rescan = 0;
> + }
> +
> + /* restore original state; caller must unlink or relink */
> + qh->qh_state = state;
> +
> + /* be sure the hardware's done with the qh before refreshing
> + * it after fault cleanup, or recovering from silicon wrongly
> + * overlaying the dummy qtd (which reduces DMA chatter).
> + */
> + if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
> + switch (state) {
> + case QH_STATE_IDLE:
> + qh_refresh(fotg210, qh);
> + break;
> + case QH_STATE_LINKED:
> + /* We won't refresh a QH that's linked (after the HC
> + * stopped the queue). That avoids a race:
> + * - HC reads first part of QH;
> + * - CPU updates that first part and the token;
> + * - HC reads rest of that QH, including token
> + * Result: HC gets an inconsistent image, and then
> + * DMAs to/from the wrong memory (corrupting it).
> + *
> + * That should be rare for interrupt transfers,
> + * except maybe high bandwidth ...
> + */
> +
> + /* Tell the caller to start an unlink */
> + qh->needs_rescan = 1;
> + break;
> + /* otherwise, unlink already started */
> + }
> + }
> +
> + return count;
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +// high bandwidth multiplier, as encoded in highspeed endpoint descriptors
> +#define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
> +// ... and packet size, for any kind of endpoint descriptor
> +#define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
> +
> +/*
> + * reverse of qh_urb_transaction: free a list of TDs.
> + * used for cleanup after errors, before HC sees an URB's TDs.
> + */
> +static void qtd_list_free (
> + struct fotg210_hcd *fotg210,
> + struct urb *urb,
> + struct list_head *qtd_list
> +) {
> + struct list_head *entry, *temp;
> +
> + list_for_each_safe (entry, temp, qtd_list) {
> + struct fotg210_qtd *qtd;
> +
> + qtd = list_entry (entry, struct fotg210_qtd, qtd_list);
> + list_del (&qtd->qtd_list);
> + fotg210_qtd_free (fotg210, qtd);
> + }
> +}
> +
> +/*
> + * create a list of filled qtds for this URB; won't link into qh.
> + */
> +static struct list_head *
> +qh_urb_transaction (
> + struct fotg210_hcd *fotg210,
> + struct urb *urb,
> + struct list_head *head,
> + gfp_t flags
> +) {
> + struct fotg210_qtd *qtd, *qtd_prev;
> + dma_addr_t buf;
> + int len, this_sg_len, maxpacket;
> + int is_input;
> + u32 token;
> + int i;
> + struct scatterlist *sg;
> +
> + /*
> + * URBs map to sequences of QTDs: one logical transaction
> + */
> + qtd = fotg210_qtd_alloc (fotg210, flags);
> + if (unlikely (!qtd))
> + return NULL;
> + list_add_tail (&qtd->qtd_list, head);
> + qtd->urb = urb;
> +
> + token = QTD_STS_ACTIVE;
> + token |= (FOTG210_TUNE_CERR << 10);
> + /* for split transactions, SplitXState initialized to zero */
> +
> + len = urb->transfer_buffer_length;
> + is_input = usb_pipein (urb->pipe);
> + if (usb_pipecontrol (urb->pipe)) {
> + /* SETUP pid */
> + qtd_fill(fotg210, qtd, urb->setup_dma,
> + sizeof (struct usb_ctrlrequest),
> + token | (2 /* "setup" */ << 8), 8);
> +
> + /* ... and always at least one more pid */
> + token ^= QTD_TOGGLE;
> + qtd_prev = qtd;
> + qtd = fotg210_qtd_alloc (fotg210, flags);
> + if (unlikely (!qtd))
> + goto cleanup;
> + qtd->urb = urb;
> + qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
> + list_add_tail (&qtd->qtd_list, head);
> +
> + /* for zero length DATA stages, STATUS is always IN */
> + if (len == 0)
> + token |= (1 /* "in" */ << 8);
> + }
> +
> + /*
> + * data transfer stage: buffer setup
> + */
> + i = urb->num_mapped_sgs;
> + if (len > 0 && i > 0) {
> + sg = urb->sg;
> + buf = sg_dma_address(sg);
> +
> + /* urb->transfer_buffer_length may be smaller than the
> + * size of the scatterlist (or vice versa)
> + */
> + this_sg_len = min_t(int, sg_dma_len(sg), len);
> + } else {
> + sg = NULL;
> + buf = urb->transfer_dma;
> + this_sg_len = len;
> + }
> +
> + if (is_input)
> + token |= (1 /* "in" */ << 8);
> + /* else it's already initted to "out" pid (0 << 8) */
> +
> + maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
> +
> + /*
> + * buffer gets wrapped in one or more qtds;
> + * last one may be "short" (including zero len)
> + * and may serve as a control status ack
> + */
> + for (;;) {
> + int this_qtd_len;
> +
> + this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
> + maxpacket);
> + this_sg_len -= this_qtd_len;
> + len -= this_qtd_len;
> + buf += this_qtd_len;
> +
> + /*
> + * short reads advance to a "magic" dummy instead of the next
> + * qtd ... that forces the queue to stop, for manual cleanup.
> + * (this will usually be overridden later.)
> + */
> + if (is_input)
> + qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
> +
> + /* qh makes control packets use qtd toggle; maybe switch it */
> + if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
> + token ^= QTD_TOGGLE;
> +
> + if (likely(this_sg_len <= 0)) {
> + if (--i <= 0 || len <= 0)
> + break;
> + sg = sg_next(sg);
> + buf = sg_dma_address(sg);
> + this_sg_len = min_t(int, sg_dma_len(sg), len);
> + }
> +
> + qtd_prev = qtd;
> + qtd = fotg210_qtd_alloc (fotg210, flags);
> + if (unlikely (!qtd))
> + goto cleanup;
> + qtd->urb = urb;
> + qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
> + list_add_tail (&qtd->qtd_list, head);
> + }
> +
> + /*
> + * unless the caller requires manual cleanup after short reads,
> + * have the alt_next mechanism keep the queue running after the
> + * last data qtd (the only one, for control and most other cases).
> + */
> + if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
> + || usb_pipecontrol (urb->pipe)))
> + qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
> +
> + /*
> + * control requests may need a terminating data "status" ack;
> + * other OUT ones may need a terminating short packet
> + * (zero length).
> + */
> + if (likely (urb->transfer_buffer_length != 0)) {
> + int one_more = 0;
> +
> + if (usb_pipecontrol (urb->pipe)) {
> + one_more = 1;
> + token ^= 0x0100; /* "in" <--> "out" */
> + token |= QTD_TOGGLE; /* force DATA1 */
> + } else if (usb_pipeout(urb->pipe)
> + && (urb->transfer_flags & URB_ZERO_PACKET)
> + && !(urb->transfer_buffer_length % maxpacket)) {
> + one_more = 1;
> + }
> + if (one_more) {
> + qtd_prev = qtd;
> + qtd = fotg210_qtd_alloc (fotg210, flags);
> + if (unlikely (!qtd))
> + goto cleanup;
> + qtd->urb = urb;
> + qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
> + list_add_tail (&qtd->qtd_list, head);
> +
> + /* never any data in such packets */
> + qtd_fill(fotg210, qtd, 0, 0, token, 0);
> + }
> + }
> +
> + /* by default, enable interrupt on urb completion */
> + if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
> + qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
> + return head;
> +
> +cleanup:
> + qtd_list_free (fotg210, urb, head);
> + return NULL;
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +// Would be best to create all qh's from config descriptors,
> +// when each interface/altsetting is established. Unlink
> +// any previous qh and cancel its urbs first; endpoints are
> +// implicitly reset then (data toggle too).
> +// That'd mean updating how usbcore talks to HCDs. (2.7?)
> +
> +
> +/*
> + * Each QH holds a qtd list; a QH is used for everything except iso.
> + *
> + * For interrupt urbs, the scheduler must set the microframe scheduling
> + * mask(s) each time the QH gets scheduled. For highspeed, that's
> + * just one microframe in the s-mask. For split interrupt transactions
> + * there are additional complications: c-mask, maybe FSTNs.
> + */
> +static struct fotg210_qh *
> +qh_make (
> + struct fotg210_hcd *fotg210,
> + struct urb *urb,
> + gfp_t flags
> +) {
> + struct fotg210_qh *qh = fotg210_qh_alloc (fotg210, flags);
> + u32 info1 = 0, info2 = 0;
> + int is_input, type;
> + int maxp = 0;
> + struct usb_tt *tt = urb->dev->tt;
> + struct fotg210_qh_hw *hw;
> +
> + if (!qh)
> + return qh;
> +
> + /*
> + * init endpoint/device data for this QH
> + */
> + info1 |= usb_pipeendpoint (urb->pipe) << 8;
> + info1 |= usb_pipedevice (urb->pipe) << 0;
> +
> + is_input = usb_pipein (urb->pipe);
> + type = usb_pipetype (urb->pipe);
> + maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input);
> +
> + /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
> + * acts like up to 3KB, but is built from smaller packets.
> + */
> + if (max_packet(maxp) > 1024) {
> + fotg210_dbg(fotg210, "bogus qh maxpacket %d\n", max_packet(maxp));
> + goto done;
> + }
> +
> + /* Compute interrupt scheduling parameters just once, and save.
> + * - allowing for high bandwidth, how many nsec/uframe are used?
> + * - split transactions need a second CSPLIT uframe; same question
> + * - splits also need a schedule gap (for full/low speed I/O)
> + * - qh has a polling interval
> + *
> + * For control/bulk requests, the HC or TT handles these.
> + */
> + if (type == PIPE_INTERRUPT) {
> + qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
> + is_input, 0,
> + hb_mult(maxp) * max_packet(maxp)));
> + qh->start = NO_FRAME;
> +
> + if (urb->dev->speed == USB_SPEED_HIGH) {
> + qh->c_usecs = 0;
> + qh->gap_uf = 0;
> +
> + qh->period = urb->interval >> 3;
> + if (qh->period == 0 && urb->interval != 1) {
> + /* NOTE interval 2 or 4 uframes could work.
> + * But interval 1 scheduling is simpler, and
> + * includes high bandwidth.
> + */
> + urb->interval = 1;
> + } else if (qh->period > fotg210->periodic_size) {
> + qh->period = fotg210->periodic_size;
> + urb->interval = qh->period << 3;
> + }
> + } else {
> + int think_time;
> +
> + /* gap is f(FS/LS transfer times) */
> + qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
> + is_input, 0, maxp) / (125 * 1000);
> +
> + /* FIXME this just approximates SPLIT/CSPLIT times */
> + if (is_input) { // SPLIT, gap, CSPLIT+DATA
> + qh->c_usecs = qh->usecs + HS_USECS (0);
> + qh->usecs = HS_USECS (1);
> + } else { // SPLIT+DATA, gap, CSPLIT
> + qh->usecs += HS_USECS (1);
> + qh->c_usecs = HS_USECS (0);
> + }
> +
> + think_time = tt ? tt->think_time : 0;
> + qh->tt_usecs = NS_TO_US (think_time +
> + usb_calc_bus_time (urb->dev->speed,
> + is_input, 0, max_packet (maxp)));
> + qh->period = urb->interval;
> + if (qh->period > fotg210->periodic_size) {
> + qh->period = fotg210->periodic_size;
> + urb->interval = qh->period;
> + }
> + }
> + }
> +
> + /* support for tt scheduling, and access to toggles */
> + qh->dev = urb->dev;
> +
> + /* using TT? */
> + switch (urb->dev->speed) {
> + case USB_SPEED_LOW:
> + info1 |= QH_LOW_SPEED;
> + /* FALL THROUGH */
> +
> + case USB_SPEED_FULL:
> + /* EPS 0 means "full" */
> + if (type != PIPE_INTERRUPT)
> + info1 |= (FOTG210_TUNE_RL_TT << 28);
> + if (type == PIPE_CONTROL) {
> + info1 |= QH_CONTROL_EP; /* for TT */
> + info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
> + }
> + info1 |= maxp << 16;
> +
> + info2 |= (FOTG210_TUNE_MULT_TT << 30);
> +
> + /* Some Freescale processors have an erratum in which the
> + * port number in the queue head was 0..N-1 instead of 1..N.
> + */
> + if (fotg210_has_fsl_portno_bug(fotg210))
> + info2 |= (urb->dev->ttport-1) << 23;
> + else
> + info2 |= urb->dev->ttport << 23;
> +
> + /* set the address of the TT; for TDI's integrated
> + * root hub tt, leave it zeroed.
> + */
> + if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
> + info2 |= tt->hub->devnum << 16;
> +
> + /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
> +
> + break;
> +
> + case USB_SPEED_HIGH: /* no TT involved */
> + info1 |= QH_HIGH_SPEED;
> + if (type == PIPE_CONTROL) {
> + info1 |= (FOTG210_TUNE_RL_HS << 28);
> + info1 |= 64 << 16; /* usb2 fixed maxpacket */
> + info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
> + info2 |= (FOTG210_TUNE_MULT_HS << 30);
> + } else if (type == PIPE_BULK) {
> + info1 |= (FOTG210_TUNE_RL_HS << 28);
> + /* The USB spec says that high speed bulk endpoints
> + * always use 512 byte maxpacket. But some device
> + * vendors decided to ignore that, and MSFT is happy
> + * to help them do so. So now people expect to use
> + * such nonconformant devices with Linux too; sigh.
> + */
> + info1 |= max_packet(maxp) << 16;
> + info2 |= (FOTG210_TUNE_MULT_HS << 30);
> + } else { /* PIPE_INTERRUPT */
> + info1 |= max_packet (maxp) << 16;
> + info2 |= hb_mult (maxp) << 30;
> + }
> + break;
> + default:
> + fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
> + urb->dev->speed);
> +done:
> + qh_destroy(fotg210, qh);
> + return NULL;
> + }
> +
> + /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
> +
> + /* init as live, toggle clear, advance to dummy */
> + qh->qh_state = QH_STATE_IDLE;
> + hw = qh->hw;
> + hw->hw_info1 = cpu_to_hc32(fotg210, info1);
> + hw->hw_info2 = cpu_to_hc32(fotg210, info2);
> + qh->is_out = !is_input;
> + usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
> + qh_refresh (fotg210, qh);
> + return qh;
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +static void enable_async(struct fotg210_hcd *fotg210)
> +{
> + if (fotg210->async_count++)
> + return;
> +
> + /* Stop waiting to turn off the async schedule */
> + fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
> +
> + /* Don't start the schedule until ASS is 0 */
> + fotg210_poll_ASS(fotg210);
> + turn_on_io_watchdog(fotg210);
> +}
> +
> +static void disable_async(struct fotg210_hcd *fotg210)
> +{
> + if (--fotg210->async_count)
> + return;
> +
> + /* The async schedule and async_unlink list are supposed to be empty */
> + WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
> +
> + /* Don't turn off the schedule until ASS is 1 */
> + fotg210_poll_ASS(fotg210);
> +}
> +
> +/* move qh (and its qtds) onto async queue; maybe enable queue. */
> +
> +static void qh_link_async (struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
> +{
> + __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
> + struct fotg210_qh *head;
> +
> + /* Don't link a QH if there's a Clear-TT-Buffer pending */
> + if (unlikely(qh->clearing_tt))
> + return;
> +
> + WARN_ON(qh->qh_state != QH_STATE_IDLE);
> +
> + /* clear halt and/or toggle; and maybe recover from silicon quirk */
> + qh_refresh(fotg210, qh);
> +
> + /* splice right after start */
> + head = fotg210->async;
> + qh->qh_next = head->qh_next;
> + qh->hw->hw_next = head->hw->hw_next;
> + wmb ();
> +
> + head->qh_next.qh = qh;
> + head->hw->hw_next = dma;
> +
> + qh->xacterrs = 0;
> + qh->qh_state = QH_STATE_LINKED;
> + /* qtd completions reported later by interrupt */
> +
> + enable_async(fotg210);
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +/*
> + * For control/bulk/interrupt, return QH with these TDs appended.
> + * Allocates and initializes the QH if necessary.
> + * Returns null if it can't allocate a QH it needs to.
> + * If the QH has TDs (urbs) already, that's great.
> + */
> +static struct fotg210_qh *qh_append_tds (
> + struct fotg210_hcd *fotg210,
> + struct urb *urb,
> + struct list_head *qtd_list,
> + int epnum,
> + void **ptr
> +)
> +{
> + struct fotg210_qh *qh = NULL;
> + __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
> +
> + qh = (struct fotg210_qh *) *ptr;
> + if (unlikely (qh == NULL)) {
> + /* can't sleep here, we have fotg210->lock... */
> + qh = qh_make (fotg210, urb, GFP_ATOMIC);
> + *ptr = qh;
> + }
> + if (likely (qh != NULL)) {
> + struct fotg210_qtd *qtd;
> +
> + if (unlikely (list_empty (qtd_list)))
> + qtd = NULL;
> + else
> + qtd = list_entry (qtd_list->next, struct fotg210_qtd,
> + qtd_list);
> +
> + /* control qh may need patching ... */
> + if (unlikely (epnum == 0)) {
> +
> + /* usb_reset_device() briefly reverts to address 0 */
> + if (usb_pipedevice (urb->pipe) == 0)
> + qh->hw->hw_info1 &= ~qh_addr_mask;
> + }
> +
> + /* just one way to queue requests: swap with the dummy qtd.
> + * only hc or qh_refresh() ever modify the overlay.
> + */
> + if (likely (qtd != NULL)) {
> + struct fotg210_qtd *dummy;
> + dma_addr_t dma;
> + __hc32 token;
> +
> + /* to avoid racing the HC, use the dummy td instead of
> + * the first td of our list (becomes new dummy). both
> + * tds stay deactivated until we're done, when the
> + * HC is allowed to fetch the old dummy (4.10.2).
> + */
> + token = qtd->hw_token;
> + qtd->hw_token = HALT_BIT(fotg210);
> +
> + dummy = qh->dummy;
> +
> + dma = dummy->qtd_dma;
> + *dummy = *qtd;
> + dummy->qtd_dma = dma;
> +
> + list_del (&qtd->qtd_list);
> + list_add (&dummy->qtd_list, qtd_list);
> + list_splice_tail(qtd_list, &qh->qtd_list);
> +
> + fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
> + qh->dummy = qtd;
> +
> + /* hc must see the new dummy at list end */
> + dma = qtd->qtd_dma;
> + qtd = list_entry (qh->qtd_list.prev,
> + struct fotg210_qtd, qtd_list);
> + qtd->hw_next = QTD_NEXT(fotg210, dma);
> +
> + /* let the hc process these next qtds */
> + wmb ();
> + dummy->hw_token = token;
> +
> + urb->hcpriv = qh;
> + }
> + }
> + return qh;
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +static int
> +submit_async (
> + struct fotg210_hcd *fotg210,
> + struct urb *urb,
> + struct list_head *qtd_list,
> + gfp_t mem_flags
> +) {
> + int epnum;
> + unsigned long flags;
> + struct fotg210_qh *qh = NULL;
> + int rc;
> +
> + epnum = urb->ep->desc.bEndpointAddress;
> +
> +#ifdef FOTG210_URB_TRACE
> + {
> + struct fotg210_qtd *qtd;
> + qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
> + fotg210_dbg(fotg210,
> + "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
> + __func__, urb->dev->devpath, urb,
> + epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
> + urb->transfer_buffer_length,
> + qtd, urb->ep->hcpriv);
> + }
> +#endif
> +
> + spin_lock_irqsave (&fotg210->lock, flags);
> + if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
> + rc = -ESHUTDOWN;
> + goto done;
> + }
> + rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
> + if (unlikely(rc))
> + goto done;
> +
> + qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
> + if (unlikely(qh == NULL)) {
> + usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
> + rc = -ENOMEM;
> + goto done;
> + }
> +
> + /* Control/bulk operations through TTs don't need scheduling,
> + * the HC and TT handle it when the TT has a buffer ready.
> + */
> + if (likely (qh->qh_state == QH_STATE_IDLE))
> + qh_link_async(fotg210, qh);
> + done:
> + spin_unlock_irqrestore (&fotg210->lock, flags);
> + if (unlikely (qh == NULL))
> + qtd_list_free (fotg210, urb, qtd_list);
> + return rc;
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +static void single_unlink_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
> +{
> + struct fotg210_qh *prev;
> +
> + /* Add to the end of the list of QHs waiting for the next IAAD */
> + qh->qh_state = QH_STATE_UNLINK;
> + if (fotg210->async_unlink)
> + fotg210->async_unlink_last->unlink_next = qh;
> + else
> + fotg210->async_unlink = qh;
> + fotg210->async_unlink_last = qh;
> +
> + /* Unlink it from the schedule */
> + prev = fotg210->async;
> + while (prev->qh_next.qh != qh)
> + prev = prev->qh_next.qh;
> +
> + prev->hw->hw_next = qh->hw->hw_next;
> + prev->qh_next = qh->qh_next;
> + if (fotg210->qh_scan_next == qh)
> + fotg210->qh_scan_next = qh->qh_next.qh;
> +}
> +
> +static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
> +{
> + /*
> + * Do nothing if an IAA cycle is already running or
> + * if one will be started shortly.
> + */
> + if (fotg210->async_iaa || fotg210->async_unlinking)
> + return;
> +
> + /* Do all the waiting QHs at once */
> + fotg210->async_iaa = fotg210->async_unlink;
> + fotg210->async_unlink = NULL;
> +
> + /* If the controller isn't running, we don't have to wait for it */
> + if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
> + if (!nested) /* Avoid recursion */
> + end_unlink_async(fotg210);
> +
> + /* Otherwise start a new IAA cycle */
> + } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
> + /* Make sure the unlinks are all visible to the hardware */
> + wmb();
> +
> + fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
> + &fotg210->regs->command);
> + fotg210_readl(fotg210, &fotg210->regs->command);
> + fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG, true);
> + }
> +}
> +
> +/* the async qh for the qtds being unlinked are now gone from the HC */
> +
> +static void end_unlink_async(struct fotg210_hcd *fotg210)
> +{
> + struct fotg210_qh *qh;
> +
> + /* Process the idle QHs */
> + restart:
> + fotg210->async_unlinking = true;
> + while (fotg210->async_iaa) {
> + qh = fotg210->async_iaa;
> + fotg210->async_iaa = qh->unlink_next;
> + qh->unlink_next = NULL;
> +
> + qh->qh_state = QH_STATE_IDLE;
> + qh->qh_next.qh = NULL;
> +
> + qh_completions(fotg210, qh);
> + if (!list_empty(&qh->qtd_list) &&
> + fotg210->rh_state == FOTG210_RH_RUNNING)
> + qh_link_async(fotg210, qh);
> + disable_async(fotg210);
> + }
> + fotg210->async_unlinking = false;
> +
> + /* Start a new IAA cycle if any QHs are waiting for it */
> + if (fotg210->async_unlink) {
> + start_iaa_cycle(fotg210, true);
> + if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
> + goto restart;
> + }
> +}
> +
> +static void unlink_empty_async(struct fotg210_hcd *fotg210)
> +{
> + struct fotg210_qh *qh, *next;
> + bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
> + bool check_unlinks_later = false;
> +
> + /* Unlink all the async QHs that have been empty for a timer cycle */
> + next = fotg210->async->qh_next.qh;
> + while (next) {
> + qh = next;
> + next = qh->qh_next.qh;
> +
> + if (list_empty(&qh->qtd_list) &&
> + qh->qh_state == QH_STATE_LINKED) {
> + if (!stopped && qh->unlink_cycle ==
> + fotg210->async_unlink_cycle)
> + check_unlinks_later = true;
> + else
> + single_unlink_async(fotg210, qh);
> + }
> + }
> +
> + /* Start a new IAA cycle if any QHs are waiting for it */
> + if (fotg210->async_unlink)
> + start_iaa_cycle(fotg210, false);
> +
> + /* QHs that haven't been empty for long enough will be handled later */
> + if (check_unlinks_later) {
> + fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS, true);
> + ++fotg210->async_unlink_cycle;
> + }
> +}
> +
> +/* makes sure the async qh will become idle */
> +/* caller must own fotg210->lock */
> +
> +static void start_unlink_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
> +{
> + /*
> + * If the QH isn't linked then there's nothing we can do
> + * unless we were called during a giveback, in which case
> + * qh_completions() has to deal with it.
> + */
> + if (qh->qh_state != QH_STATE_LINKED) {
> + if (qh->qh_state == QH_STATE_COMPLETING)
> + qh->needs_rescan = 1;
> + return;
> + }
> +
> + single_unlink_async(fotg210, qh);
> + start_iaa_cycle(fotg210, false);
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +static void scan_async (struct fotg210_hcd *fotg210)
> +{
> + struct fotg210_qh *qh;
> + bool check_unlinks_later = false;
> +
> + fotg210->qh_scan_next = fotg210->async->qh_next.qh;
> + while (fotg210->qh_scan_next) {
> + qh = fotg210->qh_scan_next;
> + fotg210->qh_scan_next = qh->qh_next.qh;
> + rescan:
> + /* clean any finished work for this qh */
> + if (!list_empty(&qh->qtd_list)) {
> + int temp;
> +
> + /*
> + * Unlinks could happen here; completion reporting
> + * drops the lock. That's why fotg210->qh_scan_next
> + * always holds the next qh to scan; if the next qh
> + * gets unlinked then fotg210->qh_scan_next is adjusted
> + * in single_unlink_async().
> + */
> + temp = qh_completions(fotg210, qh);
> + if (qh->needs_rescan) {
> + start_unlink_async(fotg210, qh);
> + } else if (list_empty(&qh->qtd_list)
> + && qh->qh_state == QH_STATE_LINKED) {
> + qh->unlink_cycle = fotg210->async_unlink_cycle;
> + check_unlinks_later = true;
> + } else if (temp != 0)
> + goto rescan;
> + }
> + }
> +
> + /*
> + * Unlink empty entries, reducing DMA usage as well
> + * as HCD schedule-scanning costs. Delay for any qh
> + * we just scanned, there's a not-unusual case that it
> + * doesn't stay idle for long.
> + */
> + if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
> + !(fotg210->enabled_hrtimer_events &
> + BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
> + fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS, true);
> + ++fotg210->async_unlink_cycle;
> + }
> +}
> +/*-------------------------------------------------------------------------*/
> +/*
> + * EHCI scheduled transaction support: interrupt, iso, split iso
> + * These are called "periodic" transactions in the EHCI spec.
> + *
> + * Note that for interrupt transfers, the QH/QTD manipulation is shared
> + * with the "asynchronous" transaction support (control/bulk transfers).
> + * The only real difference is in how interrupt transfers are scheduled.
> + *
> + * For ISO, we make an "iso_stream" head to serve the same role as a QH.
> + * It keeps track of every ITD (or SITD) that's linked, and holds enough
> + * pre-calculated schedule data to make appending to the queue be quick.
> + */
> +
> +static int fotg210_get_frame (struct usb_hcd *hcd);
> +
> +/*-------------------------------------------------------------------------*/
> +
> +/*
> + * periodic_next_shadow - return "next" pointer on shadow list
> + * @periodic: host pointer to qh/itd
> + * @tag: hardware tag for type of this record
> + */
> +static union fotg210_shadow *
> +periodic_next_shadow(struct fotg210_hcd *fotg210, union fotg210_shadow *periodic,
> + __hc32 tag)
> +{
> + switch (hc32_to_cpu(fotg210, tag)) {
> + case Q_TYPE_QH:
> + return &periodic->qh->qh_next;
> + case Q_TYPE_FSTN:
> + return &periodic->fstn->fstn_next;
> + default:
> + return &periodic->itd->itd_next;
> + }
> +}
> +
> +static __hc32 *
> +shadow_next_periodic(struct fotg210_hcd *fotg210, union fotg210_shadow *periodic,
> + __hc32 tag)
> +{
> + switch (hc32_to_cpu(fotg210, tag)) {
> + /* our fotg210_shadow.qh is actually software part */
> + case Q_TYPE_QH:
> + return &periodic->qh->hw->hw_next;
> + /* others are hw parts */
> + default:
> + return periodic->hw_next;
> + }
> +}
> +
> +/* caller must hold fotg210->lock */
> +static void periodic_unlink (struct fotg210_hcd *fotg210, unsigned frame, void *ptr)
> +{
> + union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
> + __hc32 *hw_p = &fotg210->periodic[frame];
> + union fotg210_shadow here = *prev_p;
> +
> + /* find predecessor of "ptr"; hw and shadow lists are in sync */
> + while (here.ptr && here.ptr != ptr) {
> + prev_p = periodic_next_shadow(fotg210, prev_p,
> + Q_NEXT_TYPE(fotg210, *hw_p));
> + hw_p = shadow_next_periodic(fotg210, &here,
> + Q_NEXT_TYPE(fotg210, *hw_p));
> + here = *prev_p;
> + }
> + /* an interrupt entry (at list end) could have been shared */
> + if (!here.ptr)
> + return;
> +
> + /* update shadow and hardware lists ... the old "next" pointers
> + * from ptr may still be in use, the caller updates them.
> + */
> + *prev_p = *periodic_next_shadow(fotg210, &here,
> + Q_NEXT_TYPE(fotg210, *hw_p));
> +
> + *hw_p = *shadow_next_periodic(fotg210, &here,
> + Q_NEXT_TYPE(fotg210, *hw_p));
> +}
> +
> +/* how many of the uframe's 125 usecs are allocated? */
> +static unsigned short
> +periodic_usecs (struct fotg210_hcd *fotg210, unsigned frame, unsigned uframe)
> +{
> + __hc32 *hw_p = &fotg210->periodic [frame];
> + union fotg210_shadow *q = &fotg210->pshadow [frame];
> + unsigned usecs = 0;
> + struct fotg210_qh_hw *hw;
> +
> + while (q->ptr) {
> + switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
> + case Q_TYPE_QH:
> + hw = q->qh->hw;
> + /* is it in the S-mask? */
> + if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
> + usecs += q->qh->usecs;
> + /* ... or C-mask? */
> + if (hw->hw_info2 & cpu_to_hc32(fotg210,
> + 1 << (8 + uframe)))
> + usecs += q->qh->c_usecs;
> + hw_p = &hw->hw_next;
> + q = &q->qh->qh_next;
> + break;
> + // case Q_TYPE_FSTN:
> + default:
> + /* for "save place" FSTNs, count the relevant INTR
> + * bandwidth from the previous frame
> + */
> + if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210)) {
> + fotg210_dbg (fotg210, "ignoring FSTN cost ...\n");
> + }
> + hw_p = &q->fstn->hw_next;
> + q = &q->fstn->fstn_next;
> + break;
> + case Q_TYPE_ITD:
> + if (q->itd->hw_transaction[uframe])
> + usecs += q->itd->stream->usecs;
> + hw_p = &q->itd->hw_next;
> + q = &q->itd->itd_next;
> + break;
> + }
> + }
> +#ifdef DEBUG
> + if (usecs > fotg210->uframe_periodic_max)
> + fotg210_err (fotg210, "uframe %d sched overrun: %d usecs\n",
> + frame * 8 + uframe, usecs);
> +#endif
> + return usecs;
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +static int same_tt (struct usb_device *dev1, struct usb_device *dev2)
> +{
> + if (!dev1->tt || !dev2->tt)
> + return 0;
> + if (dev1->tt != dev2->tt)
> + return 0;
> + if (dev1->tt->multi)
> + return dev1->ttport == dev2->ttport;
> + else
> + return 1;
> +}
> +
> +/* return true iff the device's transaction translator is available
> + * for a periodic transfer starting at the specified frame, using
> + * all the uframes in the mask.
> + */
> +static int tt_no_collision (
> + struct fotg210_hcd *fotg210,
> + unsigned period,
> + struct usb_device *dev,
> + unsigned frame,
> + u32 uf_mask
> +)
> +{
> + if (period == 0) /* error */
> + return 0;
> +
> + /* note bandwidth wastage: split never follows csplit
> + * (different dev or endpoint) until the next uframe.
> + * calling convention doesn't make that distinction.
> + */
> + for (; frame < fotg210->periodic_size; frame += period) {
> + union fotg210_shadow here;
> + __hc32 type;
> + struct fotg210_qh_hw *hw;
> +
> + here = fotg210->pshadow [frame];
> + type = Q_NEXT_TYPE(fotg210, fotg210->periodic [frame]);
> + while (here.ptr) {
> + switch (hc32_to_cpu(fotg210, type)) {
> + case Q_TYPE_ITD:
> + type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
> + here = here.itd->itd_next;
> + continue;
> + case Q_TYPE_QH:
> + hw = here.qh->hw;
> + if (same_tt (dev, here.qh->dev)) {
> + u32 mask;
> +
> + mask = hc32_to_cpu(fotg210,
> + hw->hw_info2);
> + /* "knows" no gap is needed */
> + mask |= mask >> 8;
> + if (mask & uf_mask)
> + break;
> + }
> + type = Q_NEXT_TYPE(fotg210, hw->hw_next);
> + here = here.qh->qh_next;
> + continue;
> + // case Q_TYPE_FSTN:
> + default:
> + fotg210_dbg (fotg210,
> + "periodic frame %d bogus type %d\n",
> + frame, type);
> + }
> +
> + /* collision or error */
> + return 0;
> + }
> + }
> +
> + /* no collision */
> + return 1;
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +static void enable_periodic(struct fotg210_hcd *fotg210)
> +{
> + if (fotg210->periodic_count++)
> + return;
> +
> + /* Stop waiting to turn off the periodic schedule */
> + fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
> +
> + /* Don't start the schedule until PSS is 0 */
> + fotg210_poll_PSS(fotg210);
> + turn_on_io_watchdog(fotg210);
> +}
> +
> +static void disable_periodic(struct fotg210_hcd *fotg210)
> +{
> + if (--fotg210->periodic_count)
> + return;
> +
> + /* Don't turn off the schedule until PSS is 1 */
> + fotg210_poll_PSS(fotg210);
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +/* periodic schedule slots have iso tds (normal or split) first, then a
> + * sparse tree for active interrupt transfers.
> + *
> + * this just links in a qh; caller guarantees uframe masks are set right.
> + * no FSTN support (yet; fotg210 0.96+)
> + */
> +static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
> +{
> + unsigned i;
> + unsigned period = qh->period;
> +
> + dev_dbg (&qh->dev->dev,
> + "link qh%d-%04x/%p start %d [%d/%d us]\n",
> + period, hc32_to_cpup(fotg210, &qh->hw->hw_info2)
> + & (QH_CMASK | QH_SMASK),
> + qh, qh->start, qh->usecs, qh->c_usecs);
> +
> + /* high bandwidth, or otherwise every microframe */
> + if (period == 0)
> + period = 1;
> +
> + for (i = qh->start; i < fotg210->periodic_size; i += period) {
> + union fotg210_shadow *prev = &fotg210->pshadow[i];
> + __hc32 *hw_p = &fotg210->periodic[i];
> + union fotg210_shadow here = *prev;
> + __hc32 type = 0;
> +
> + /* skip the iso nodes at list head */
> + while (here.ptr) {
> + type = Q_NEXT_TYPE(fotg210, *hw_p);
> + if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
> + break;
> + prev = periodic_next_shadow(fotg210, prev, type);
> + hw_p = shadow_next_periodic(fotg210, &here, type);
> + here = *prev;
> + }
> +
> + /* sorting each branch by period (slow-->fast)
> + * enables sharing interior tree nodes
> + */
> + while (here.ptr && qh != here.qh) {
> + if (qh->period > here.qh->period)
> + break;
> + prev = &here.qh->qh_next;
> + hw_p = &here.qh->hw->hw_next;
> + here = *prev;
> + }
> + /* link in this qh, unless some earlier pass did that */
> + if (qh != here.qh) {
> + qh->qh_next = here;
> + if (here.qh)
> + qh->hw->hw_next = *hw_p;
> + wmb ();
> + prev->qh = qh;
> + *hw_p = QH_NEXT (fotg210, qh->qh_dma);
> + }
> + }
> + qh->qh_state = QH_STATE_LINKED;
> + qh->xacterrs = 0;
> +
> + /* update per-qh bandwidth for usbfs */
> + fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
> + ? ((qh->usecs + qh->c_usecs) / qh->period)
> + : (qh->usecs * 8);
> +
> + list_add(&qh->intr_node, &fotg210->intr_qh_list);
> +
> + /* maybe enable periodic schedule processing */
> + ++fotg210->intr_count;
> + enable_periodic(fotg210);
> +}
> +
> +static void qh_unlink_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
> +{
> + unsigned i;
> + unsigned period;
> +
> + /*
> + * If qh is for a low/full-speed device, simply unlinking it
> + * could interfere with an ongoing split transaction. To unlink
> + * it safely would require setting the QH_INACTIVATE bit and
> + * waiting at least one frame, as described in EHCI 4.12.2.5.
> + *
> + * We won't bother with any of this. Instead, we assume that the
> + * only reason for unlinking an interrupt QH while the current URB
> + * is still active is to dequeue all the URBs (flush the whole
> + * endpoint queue).
> + *
> + * If rebalancing the periodic schedule is ever implemented, this
> + * approach will no longer be valid.
> + */
> +
> + /* high bandwidth, or otherwise part of every microframe */
> + if ((period = qh->period) == 0)
> + period = 1;
> +
> + for (i = qh->start; i < fotg210->periodic_size; i += period)
> + periodic_unlink (fotg210, i, qh);
> +
> + /* update per-qh bandwidth for usbfs */
> + fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
> + ? ((qh->usecs + qh->c_usecs) / qh->period)
> + : (qh->usecs * 8);
> +
> + dev_dbg (&qh->dev->dev,
> + "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
> + qh->period,
> + hc32_to_cpup(fotg210, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
> + qh, qh->start, qh->usecs, qh->c_usecs);
> +
> + /* qh->qh_next still "live" to HC */
> + qh->qh_state = QH_STATE_UNLINK;
> + qh->qh_next.ptr = NULL;
> +
> + if (fotg210->qh_scan_next == qh)
> + fotg210->qh_scan_next = list_entry(qh->intr_node.next,
> + struct fotg210_qh, intr_node);
> + list_del(&qh->intr_node);
> +}
> +
> +static void start_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
> +{
> + /* If the QH isn't linked then there's nothing we can do
> + * unless we were called during a giveback, in which case
> + * qh_completions() has to deal with it.
> + */
> + if (qh->qh_state != QH_STATE_LINKED) {
> + if (qh->qh_state == QH_STATE_COMPLETING)
> + qh->needs_rescan = 1;
> + return;
> + }
> +
> + qh_unlink_periodic (fotg210, qh);
> +
> + /* Make sure the unlinks are visible before starting the timer */
> + wmb();
> +
> + /*
> + * The EHCI spec doesn't say how long it takes the controller to
> + * stop accessing an unlinked interrupt QH. The timer delay is
> + * 9 uframes; presumably that will be long enough.
> + */
> + qh->unlink_cycle = fotg210->intr_unlink_cycle;
> +
> + /* New entries go at the end of the intr_unlink list */
> + if (fotg210->intr_unlink)
> + fotg210->intr_unlink_last->unlink_next = qh;
> + else
> + fotg210->intr_unlink = qh;
> + fotg210->intr_unlink_last = qh;
> +
> + if (fotg210->intr_unlinking)
> + ; /* Avoid recursive calls */
> + else if (fotg210->rh_state < FOTG210_RH_RUNNING)
> + fotg210_handle_intr_unlinks(fotg210);
> + else if (fotg210->intr_unlink == qh) {
> + fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR, true);
> + ++fotg210->intr_unlink_cycle;
> + }
> +}
> +
> +static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
> +{
> + struct fotg210_qh_hw *hw = qh->hw;
> + int rc;
> +
> + qh->qh_state = QH_STATE_IDLE;
> + hw->hw_next = FOTG210_LIST_END(fotg210);
> +
> + qh_completions(fotg210, qh);
> +
> + /* reschedule QH iff another request is queued */
> + if (!list_empty(&qh->qtd_list) && fotg210->rh_state == FOTG210_RH_RUNNING) {
> + rc = qh_schedule(fotg210, qh);
> +
> + /* An error here likely indicates handshake failure
> + * or no space left in the schedule. Neither fault
> + * should happen often ...
> + *
> + * FIXME kill the now-dysfunctional queued urbs
> + */
> + if (rc != 0)
> + fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
> + qh, rc);
> + }
> +
> + /* maybe turn off periodic schedule */
> + --fotg210->intr_count;
> + disable_periodic(fotg210);
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +static int check_period (
> + struct fotg210_hcd *fotg210,
> + unsigned frame,
> + unsigned uframe,
> + unsigned period,
> + unsigned usecs
> +) {
> + int claimed;
> +
> + /* complete split running into next frame?
> + * given FSTN support, we could sometimes check...
> + */
> + if (uframe >= 8)
> + return 0;
> +
> + /* convert "usecs we need" to "max already claimed" */
> + usecs = fotg210->uframe_periodic_max - usecs;
> +
> + /* we "know" 2 and 4 uframe intervals were rejected; so
> + * for period 0, check _every_ microframe in the schedule.
> + */
> + if (unlikely (period == 0)) {
> + do {
> + for (uframe = 0; uframe < 7; uframe++) {
> + claimed = periodic_usecs (fotg210, frame, uframe);
> + if (claimed > usecs)
> + return 0;
> + }
> + } while ((frame += 1) < fotg210->periodic_size);
> +
> + /* just check the specified uframe, at that period */
> + } else {
> + do {
> + claimed = periodic_usecs (fotg210, frame, uframe);
> + if (claimed > usecs)
> + return 0;
> + } while ((frame += period) < fotg210->periodic_size);
> + }
> +
> + // success!
> + return 1;
> +}
> +
> +static int check_intr_schedule (
> + struct fotg210_hcd *fotg210,
> + unsigned frame,
> + unsigned uframe,
> + const struct fotg210_qh *qh,
> + __hc32 *c_maskp
> +)
> +{
> + int retval = -ENOSPC;
> + u8 mask = 0;
> +
> + if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
> + goto done;
> +
> + if (!check_period (fotg210, frame, uframe, qh->period, qh->usecs))
> + goto done;
> + if (!qh->c_usecs) {
> + retval = 0;
> + *c_maskp = 0;
> + goto done;
> + }
> +
> + /* Make sure this tt's buffer is also available for CSPLITs.
> + * We pessimize a bit; probably the typical full speed case
> + * doesn't need the second CSPLIT.
> + *
> + * NOTE: both SPLIT and CSPLIT could be checked in just
> + * one smart pass...
> + */
> + mask = 0x03 << (uframe + qh->gap_uf);
> + *c_maskp = cpu_to_hc32(fotg210, mask << 8);
> +
> + mask |= 1 << uframe;
> + if (tt_no_collision (fotg210, qh->period, qh->dev, frame, mask)) {
> + if (!check_period (fotg210, frame, uframe + qh->gap_uf + 1,
> + qh->period, qh->c_usecs))
> + goto done;
> + if (!check_period (fotg210, frame, uframe + qh->gap_uf,
> + qh->period, qh->c_usecs))
> + goto done;
> + retval = 0;
> + }
> +done:
> + return retval;
> +}
> +
> +/* "first fit" scheduling policy used the first time through,
> + * or when the previous schedule slot can't be re-used.
> + */
> +static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
> +{
> + int status;
> + unsigned uframe;
> + __hc32 c_mask;
> + unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
> + struct fotg210_qh_hw *hw = qh->hw;
> +
> + qh_refresh(fotg210, qh);
> + hw->hw_next = FOTG210_LIST_END(fotg210);
> + frame = qh->start;
> +
> + /* reuse the previous schedule slots, if we can */
> + if (frame < qh->period) {
> + uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
> + status = check_intr_schedule (fotg210, frame, --uframe,
> + qh, &c_mask);
> + } else {
> + uframe = 0;
> + c_mask = 0;
> + status = -ENOSPC;
> + }
> +
> + /* else scan the schedule to find a group of slots such that all
> + * uframes have enough periodic bandwidth available.
> + */
> + if (status) {
> + /* "normal" case, uframing flexible except with splits */
> + if (qh->period) {
> + int i;
> +
> + for (i = qh->period; status && i > 0; --i) {
> + frame = ++fotg210->random_frame % qh->period;
> + for (uframe = 0; uframe < 8; uframe++) {
> + status = check_intr_schedule (fotg210,
> + frame, uframe, qh,
> + &c_mask);
> + if (status == 0)
> + break;
> + }
> + }
> +
> + /* qh->period == 0 means every uframe */
> + } else {
> + frame = 0;
> + status = check_intr_schedule (fotg210, 0, 0, qh, &c_mask);
> + }
> + if (status)
> + goto done;
> + qh->start = frame;
> +
> + /* reset S-frame and (maybe) C-frame masks */
> + hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
> + hw->hw_info2 |= qh->period
> + ? cpu_to_hc32(fotg210, 1 << uframe)
> + : cpu_to_hc32(fotg210, QH_SMASK);
> + hw->hw_info2 |= c_mask;
> + } else
> + fotg210_dbg (fotg210, "reused qh %p schedule\n", qh);
> +
> + /* stuff into the periodic schedule */
> + qh_link_periodic(fotg210, qh);
> +done:
> + return status;
> +}
> +
> +static int intr_submit (
> + struct fotg210_hcd *fotg210,
> + struct urb *urb,
> + struct list_head *qtd_list,
> + gfp_t mem_flags
> +) {
> + unsigned epnum;
> + unsigned long flags;
> + struct fotg210_qh *qh;
> + int status;
> + struct list_head empty;
> +
> + /* get endpoint and transfer/schedule data */
> + epnum = urb->ep->desc.bEndpointAddress;
> +
> + spin_lock_irqsave (&fotg210->lock, flags);
> +
> + if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
> + status = -ESHUTDOWN;
> + goto done_not_linked;
> + }
> + status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
> + if (unlikely(status))
> + goto done_not_linked;
> +
> + /* get qh and force any scheduling errors */
> + INIT_LIST_HEAD (&empty);
> + qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
> + if (qh == NULL) {
> + status = -ENOMEM;
> + goto done;
> + }
> + if (qh->qh_state == QH_STATE_IDLE) {
> + if ((status = qh_schedule (fotg210, qh)) != 0)
> + goto done;
> + }
> +
> + /* then queue the urb's tds to the qh */
> + qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
> + BUG_ON (qh == NULL);
> +
> + /* ... update usbfs periodic stats */
> + fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
> +
> +done:
> + if (unlikely(status))
> + usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
> +done_not_linked:
> + spin_unlock_irqrestore (&fotg210->lock, flags);
> + if (status)
> + qtd_list_free (fotg210, urb, qtd_list);
> +
> + return status;
> +}
> +
> +static void scan_intr(struct fotg210_hcd *fotg210)
> +{
> + struct fotg210_qh *qh;
> +
> + list_for_each_entry_safe(qh, fotg210->qh_scan_next, &fotg210->intr_qh_list,
> + intr_node) {
> + rescan:
> + /* clean any finished work for this qh */
> + if (!list_empty(&qh->qtd_list)) {
> + int temp;
> +
> + /*
> + * Unlinks could happen here; completion reporting
> + * drops the lock. That's why fotg210->qh_scan_next
> + * always holds the next qh to scan; if the next qh
> + * gets unlinked then fotg210->qh_scan_next is adjusted
> + * in qh_unlink_periodic().
> + */
> + temp = qh_completions(fotg210, qh);
> + if (unlikely(qh->needs_rescan ||
> + (list_empty(&qh->qtd_list) &&
> + qh->qh_state == QH_STATE_LINKED)))
> + start_unlink_intr(fotg210, qh);
> + else if (temp != 0)
> + goto rescan;
> + }
> + }
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +/* fotg210_iso_stream ops work with both ITD and SITD */
> +
> +static struct fotg210_iso_stream *
> +iso_stream_alloc (gfp_t mem_flags)
> +{
> + struct fotg210_iso_stream *stream;
> +
> + stream = kzalloc(sizeof *stream, mem_flags);
> + if (likely (stream != NULL)) {
> + INIT_LIST_HEAD(&stream->td_list);
> + INIT_LIST_HEAD(&stream->free_list);
> + stream->next_uframe = -1;
> + }
> + return stream;
> +}
> +
> +static void
> +iso_stream_init (
> + struct fotg210_hcd *fotg210,
> + struct fotg210_iso_stream *stream,
> + struct usb_device *dev,
> + int pipe,
> + unsigned interval
> +)
> +{
> + u32 buf1;
> + unsigned epnum, maxp;
> + int is_input;
> + long bandwidth;
> + unsigned multi;
> +
> + /*
> + * this might be a "high bandwidth" highspeed endpoint,
> + * as encoded in the ep descriptor's wMaxPacket field
> + */
> + epnum = usb_pipeendpoint (pipe);
> + is_input = usb_pipein (pipe) ? USB_DIR_IN : 0;
> + maxp = usb_maxpacket(dev, pipe, !is_input);
> + if (is_input) {
> + buf1 = (1 << 11);
> + } else {
> + buf1 = 0;
> + }
> +
> + maxp = max_packet(maxp);
> + multi = hb_mult(maxp);
> + buf1 |= maxp;
> + maxp *= multi;
> +
> + stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
> + stream->buf1 = cpu_to_hc32(fotg210, buf1);
> + stream->buf2 = cpu_to_hc32(fotg210, multi);
> +
> + /* usbfs wants to report the average usecs per frame tied up
> + * when transfers on this endpoint are scheduled ...
> + */
> + if (dev->speed == USB_SPEED_FULL) {
> + interval <<= 3;
> + stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
> + is_input, 1, maxp));
> + stream->usecs /= 8;
> + } else {
> + stream->highspeed = 1;
> + stream->usecs = HS_USECS_ISO (maxp);
> + }
> + bandwidth = stream->usecs * 8;
> + bandwidth /= interval;
> +
> + stream->bandwidth = bandwidth;
> + stream->udev = dev;
> + stream->bEndpointAddress = is_input | epnum;
> + stream->interval = interval;
> + stream->maxp = maxp;
> +}
> +
> +static struct fotg210_iso_stream *
> +iso_stream_find (struct fotg210_hcd *fotg210, struct urb *urb)
> +{
> + unsigned epnum;
> + struct fotg210_iso_stream *stream;
> + struct usb_host_endpoint *ep;
> + unsigned long flags;
> +
> + epnum = usb_pipeendpoint (urb->pipe);
> + if (usb_pipein(urb->pipe))
> + ep = urb->dev->ep_in[epnum];
> + else
> + ep = urb->dev->ep_out[epnum];
> +
> + spin_lock_irqsave (&fotg210->lock, flags);
> + stream = ep->hcpriv;
> +
> + if (unlikely (stream == NULL)) {
> + stream = iso_stream_alloc(GFP_ATOMIC);
> + if (likely (stream != NULL)) {
> + ep->hcpriv = stream;
> + stream->ep = ep;
> + iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
> + urb->interval);
> + }
> +
> + /* if dev->ep [epnum] is a QH, hw is set */
> + } else if (unlikely (stream->hw != NULL)) {
> + fotg210_dbg (fotg210, "dev %s ep%d%s, not iso??\n",
> + urb->dev->devpath, epnum,
> + usb_pipein(urb->pipe) ? "in" : "out");
> + stream = NULL;
> + }
> +
> + spin_unlock_irqrestore (&fotg210->lock, flags);
> + return stream;
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +/* fotg210_iso_sched ops can be ITD-only or SITD-only */
> +
> +static struct fotg210_iso_sched *
> +iso_sched_alloc (unsigned packets, gfp_t mem_flags)
> +{
> + struct fotg210_iso_sched *iso_sched;
> + int size = sizeof *iso_sched;
> +
> + size += packets * sizeof (struct fotg210_iso_packet);
> + iso_sched = kzalloc(size, mem_flags);
> + if (likely (iso_sched != NULL)) {
> + INIT_LIST_HEAD (&iso_sched->td_list);
> + }
> + return iso_sched;
> +}
> +
> +static inline void
> +itd_sched_init(
> + struct fotg210_hcd *fotg210,
> + struct fotg210_iso_sched *iso_sched,
> + struct fotg210_iso_stream *stream,
> + struct urb *urb
> +)
> +{
> + unsigned i;
> + dma_addr_t dma = urb->transfer_dma;
> +
> + /* how many uframes are needed for these transfers */
> + iso_sched->span = urb->number_of_packets * stream->interval;
> +
> + /* figure out per-uframe itd fields that we'll need later
> + * when we fit new itds into the schedule.
> + */
> + for (i = 0; i < urb->number_of_packets; i++) {
> + struct fotg210_iso_packet *uframe = &iso_sched->packet [i];
> + unsigned length;
> + dma_addr_t buf;
> + u32 trans;
> +
> + length = urb->iso_frame_desc [i].length;
> + buf = dma + urb->iso_frame_desc [i].offset;
> +
> + trans = FOTG210_ISOC_ACTIVE;
> + trans |= buf & 0x0fff;
> + if (unlikely (((i + 1) == urb->number_of_packets))
> + && !(urb->transfer_flags & URB_NO_INTERRUPT))
> + trans |= FOTG210_ITD_IOC;
> + trans |= length << 16;
> + uframe->transaction = cpu_to_hc32(fotg210, trans);
> +
> + /* might need to cross a buffer page within a uframe */
> + uframe->bufp = (buf & ~(u64)0x0fff);
> + buf += length;
> + if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff))))
> + uframe->cross = 1;
> + }
> +}
> +
> +static void
> +iso_sched_free (
> + struct fotg210_iso_stream *stream,
> + struct fotg210_iso_sched *iso_sched
> +)
> +{
> + if (!iso_sched)
> + return;
> + // caller must hold fotg210->lock!
> + list_splice (&iso_sched->td_list, &stream->free_list);
> + kfree (iso_sched);
> +}
> +
> +static int
> +itd_urb_transaction (
> + struct fotg210_iso_stream *stream,
> + struct fotg210_hcd *fotg210,
> + struct urb *urb,
> + gfp_t mem_flags
> +)
> +{
> + struct fotg210_itd *itd;
> + dma_addr_t itd_dma;
> + int i;
> + unsigned num_itds;
> + struct fotg210_iso_sched *sched;
> + unsigned long flags;
> +
> + sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
> + if (unlikely (sched == NULL))
> + return -ENOMEM;
> +
> + itd_sched_init(fotg210, sched, stream, urb);
> +
> + if (urb->interval < 8)
> + num_itds = 1 + (sched->span + 7) / 8;
> + else
> + num_itds = urb->number_of_packets;
> +
> + /* allocate/init ITDs */
> + spin_lock_irqsave (&fotg210->lock, flags);
> + for (i = 0; i < num_itds; i++) {
> +
> + /*
> + * Use iTDs from the free list, but not iTDs that may
> + * still be in use by the hardware.
> + */
> + if (likely(!list_empty(&stream->free_list))) {
> + itd = list_first_entry(&stream->free_list,
> + struct fotg210_itd, itd_list);
> + if (itd->frame == fotg210->now_frame)
> + goto alloc_itd;
> + list_del (&itd->itd_list);
> + itd_dma = itd->itd_dma;
> + } else {
> + alloc_itd:
> + spin_unlock_irqrestore (&fotg210->lock, flags);
> + itd = dma_pool_alloc (fotg210->itd_pool, mem_flags,
> + &itd_dma);
> + spin_lock_irqsave (&fotg210->lock, flags);
> + if (!itd) {
> + iso_sched_free(stream, sched);
> + spin_unlock_irqrestore(&fotg210->lock, flags);
> + return -ENOMEM;
> + }
> + }
> +
> + memset (itd, 0, sizeof *itd);
> + itd->itd_dma = itd_dma;
> + list_add (&itd->itd_list, &sched->td_list);
> + }
> + spin_unlock_irqrestore (&fotg210->lock, flags);
> +
> + /* temporarily store schedule info in hcpriv */
> + urb->hcpriv = sched;
> + urb->error_count = 0;
> + return 0;
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +static inline int
> +itd_slot_ok (
> + struct fotg210_hcd *fotg210,
> + u32 mod,
> + u32 uframe,
> + u8 usecs,
> + u32 period
> +)
> +{
> + uframe %= period;
> + do {
> + /* can't commit more than uframe_periodic_max usec */
> + if (periodic_usecs (fotg210, uframe >> 3, uframe & 0x7)
> + > (fotg210->uframe_periodic_max - usecs))
> + return 0;
> +
> + /* we know urb->interval is 2^N uframes */
> + uframe += period;
> + } while (uframe < mod);
> + return 1;
> +}
> +
> +/*
> + * This scheduler plans almost as far into the future as it has actual
> + * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
> + * "as small as possible" to be cache-friendlier.) That limits the size
> + * transfers you can stream reliably; avoid more than 64 msec per urb.
> + * Also avoid queue depths of less than fotg210's worst irq latency (affected
> + * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
> + * and other factors); or more than about 230 msec total (for portability,
> + * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler!
> + */
> +
> +#define SCHEDULE_SLOP 80 /* microframes */
> +
> +static int
> +iso_stream_schedule (
> + struct fotg210_hcd *fotg210,
> + struct urb *urb,
> + struct fotg210_iso_stream *stream
> +)
> +{
> + u32 now, next, start, period, span;
> + int status;
> + unsigned mod = fotg210->periodic_size << 3;
> + struct fotg210_iso_sched *sched = urb->hcpriv;
> +
> + period = urb->interval;
> + span = sched->span;
> +
> + if (span > mod - SCHEDULE_SLOP) {
> + fotg210_dbg (fotg210, "iso request %p too long\n", urb);
> + status = -EFBIG;
> + goto fail;
> + }
> +
> + now = fotg210_read_frame_index(fotg210) & (mod - 1);
> +
> + /* Typical case: reuse current schedule, stream is still active.
> + * Hopefully there are no gaps from the host falling behind
> + * (irq delays etc), but if there are we'll take the next
> + * slot in the schedule, implicitly assuming URB_ISO_ASAP.
> + */
> + if (likely (!list_empty (&stream->td_list))) {
> + u32 excess;
> +
> + /* For high speed devices, allow scheduling within the
> + * isochronous scheduling threshold. For full speed devices
> + * and Intel PCI-based controllers, don't (work around for
> + * Intel ICH9 bug).
> + */
> + if (!stream->highspeed && fotg210->fs_i_thresh)
> + next = now + fotg210->i_thresh;
> + else
> + next = now;
> +
> + /* Fell behind (by up to twice the slop amount)?
> + * We decide based on the time of the last currently-scheduled
> + * slot, not the time of the next available slot.
> + */
> + excess = (stream->next_uframe - period - next) & (mod - 1);
> + if (excess >= mod - 2 * SCHEDULE_SLOP)
> + start = next + excess - mod + period *
> + DIV_ROUND_UP(mod - excess, period);
> + else
> + start = next + excess + period;
> + if (start - now >= mod) {
> + fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
> + urb, start - now - period, period,
> + mod);
> + status = -EFBIG;
> + goto fail;
> + }
> + }
> +
> + /* need to schedule; when's the next (u)frame we could start?
> + * this is bigger than fotg210->i_thresh allows; scheduling itself
> + * isn't free, the slop should handle reasonably slow cpus. it
> + * can also help high bandwidth if the dma and irq loads don't
> + * jump until after the queue is primed.
> + */
> + else {
> + int done = 0;
> + start = SCHEDULE_SLOP + (now & ~0x07);
> +
> + /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
> +
> + /* find a uframe slot with enough bandwidth.
> + * Early uframes are more precious because full-speed
> + * iso IN transfers can't use late uframes,
> + * and therefore they should be allocated last.
> + */
> + next = start;
> + start += period;
> + do {
> + start--;
> + /* check schedule: enough space? */
> + if (itd_slot_ok(fotg210, mod, start,
> + stream->usecs, period))
> + done = 1;
> + } while (start > next && !done);
> +
> + /* no room in the schedule */
> + if (!done) {
> + fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
> + urb, now, now + mod);
> + status = -ENOSPC;
> + goto fail;
> + }
> + }
> +
> + /* Tried to schedule too far into the future? */
> + if (unlikely(start - now + span - period
> + >= mod - 2 * SCHEDULE_SLOP)) {
> + fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
> + urb, start - now, span - period,
> + mod - 2 * SCHEDULE_SLOP);
> + status = -EFBIG;
> + goto fail;
> + }
> +
> + stream->next_uframe = start & (mod - 1);
> +
> + /* report high speed start in uframes; full speed, in frames */
> + urb->start_frame = stream->next_uframe;
> + if (!stream->highspeed)
> + urb->start_frame >>= 3;
> +
> + /* Make sure scan_isoc() sees these */
> + if (fotg210->isoc_count == 0)
> + fotg210->next_frame = now >> 3;
> + return 0;
> +
> + fail:
> + iso_sched_free(stream, sched);
> + urb->hcpriv = NULL;
> + return status;
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +static inline void
> +itd_init(struct fotg210_hcd *fotg210, struct fotg210_iso_stream *stream,
> + struct fotg210_itd *itd)
> +{
> + int i;
> +
> + /* it's been recently zeroed */
> + itd->hw_next = FOTG210_LIST_END(fotg210);
> + itd->hw_bufp [0] = stream->buf0;
> + itd->hw_bufp [1] = stream->buf1;
> + itd->hw_bufp [2] = stream->buf2;
> +
> + for (i = 0; i < 8; i++)
> + itd->index[i] = -1;
> +
> + /* All other fields are filled when scheduling */
> +}
> +
> +static inline void
> +itd_patch(
> + struct fotg210_hcd *fotg210,
> + struct fotg210_itd *itd,
> + struct fotg210_iso_sched *iso_sched,
> + unsigned index,
> + u16 uframe
> +)
> +{
> + struct fotg210_iso_packet *uf = &iso_sched->packet [index];
> + unsigned pg = itd->pg;
> +
> + // BUG_ON (pg == 6 && uf->cross);
> +
> + uframe &= 0x07;
> + itd->index [uframe] = index;
> +
> + itd->hw_transaction[uframe] = uf->transaction;
> + itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
> + itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
> + itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
> +
> + /* iso_frame_desc[].offset must be strictly increasing */
> + if (unlikely (uf->cross)) {
> + u64 bufp = uf->bufp + 4096;
> +
> + itd->pg = ++pg;
> + itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
> + itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
> + }
> +}
> +
> +static inline void
> +itd_link (struct fotg210_hcd *fotg210, unsigned frame, struct fotg210_itd *itd)
> +{
> + union fotg210_shadow *prev = &fotg210->pshadow[frame];
> + __hc32 *hw_p = &fotg210->periodic[frame];
> + union fotg210_shadow here = *prev;
> + __hc32 type = 0;
> +
> + /* skip any iso nodes which might belong to previous microframes */
> + while (here.ptr) {
> + type = Q_NEXT_TYPE(fotg210, *hw_p);
> + if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
> + break;
> + prev = periodic_next_shadow(fotg210, prev, type);
> + hw_p = shadow_next_periodic(fotg210, &here, type);
> + here = *prev;
> + }
> +
> + itd->itd_next = here;
> + itd->hw_next = *hw_p;
> + prev->itd = itd;
> + itd->frame = frame;
> + wmb ();
> + *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
> +}
> +
> +/* fit urb's itds into the selected schedule slot; activate as needed */
> +static void itd_link_urb(
> + struct fotg210_hcd *fotg210,
> + struct urb *urb,
> + unsigned mod,
> + struct fotg210_iso_stream *stream
> +)
> +{
> + int packet;
> + unsigned next_uframe, uframe, frame;
> + struct fotg210_iso_sched *iso_sched = urb->hcpriv;
> + struct fotg210_itd *itd;
> +
> + next_uframe = stream->next_uframe & (mod - 1);
> +
> + if (unlikely (list_empty(&stream->td_list))) {
> + fotg210_to_hcd(fotg210)->self.bandwidth_allocated
> + += stream->bandwidth;
> + fotg210_vdbg (fotg210,
> + "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
> + urb->dev->devpath, stream->bEndpointAddress & 0x0f,
> + (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
> + urb->interval,
> + next_uframe >> 3, next_uframe & 0x7);
> + }
> +
> + /* fill iTDs uframe by uframe */
> + for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) {
> + if (itd == NULL) {
> + /* ASSERT: we have all necessary itds */
> + // BUG_ON (list_empty (&iso_sched->td_list));
> +
> + /* ASSERT: no itds for this endpoint in this uframe */
> +
> + itd = list_entry (iso_sched->td_list.next,
> + struct fotg210_itd, itd_list);
> + list_move_tail (&itd->itd_list, &stream->td_list);
> + itd->stream = stream;
> + itd->urb = urb;
> + itd_init (fotg210, stream, itd);
> + }
> +
> + uframe = next_uframe & 0x07;
> + frame = next_uframe >> 3;
> +
> + itd_patch(fotg210, itd, iso_sched, packet, uframe);
> +
> + next_uframe += stream->interval;
> + next_uframe &= mod - 1;
> + packet++;
> +
> + /* link completed itds into the schedule */
> + if (((next_uframe >> 3) != frame)
> + || packet == urb->number_of_packets) {
> + itd_link(fotg210, frame & (fotg210->periodic_size - 1), itd);
> + itd = NULL;
> + }
> + }
> + stream->next_uframe = next_uframe;
> +
> + /* don't need that schedule data any more */
> + iso_sched_free (stream, iso_sched);
> + urb->hcpriv = NULL;
> +
> + ++fotg210->isoc_count;
> + enable_periodic(fotg210);
> +}
> +
> +#define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE | FOTG210_ISOC_XACTERR)
> +
> +/* Process and recycle a completed ITD. Return true iff its urb completed,
> + * and hence its completion callback probably added things to the hardware
> + * schedule.
> + *
> + * Note that we carefully avoid recycling this descriptor until after any
> + * completion callback runs, so that it won't be reused quickly. That is,
> + * assuming (a) no more than two urbs per frame on this endpoint, and also
> + * (b) only this endpoint's completions submit URBs. It seems some silicon
> + * corrupts things if you reuse completed descriptors very quickly...
> + */
> +static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
> +{
> + struct urb *urb = itd->urb;
> + struct usb_iso_packet_descriptor *desc;
> + u32 t;
> + unsigned uframe;
> + int urb_index = -1;
> + struct fotg210_iso_stream *stream = itd->stream;
> + struct usb_device *dev;
> + bool retval = false;
> +
> + /* for each uframe with a packet */
> + for (uframe = 0; uframe < 8; uframe++) {
> + if (likely (itd->index[uframe] == -1))
> + continue;
> + urb_index = itd->index[uframe];
> + desc = &urb->iso_frame_desc [urb_index];
> +
> + t = hc32_to_cpup(fotg210, &itd->hw_transaction [uframe]);
> + itd->hw_transaction [uframe] = 0;
> +
> + /* report transfer status */
> + if (unlikely (t & ISO_ERRS)) {
> + urb->error_count++;
> + if (t & FOTG210_ISOC_BUF_ERR)
> + desc->status = usb_pipein (urb->pipe)
> + ? -ENOSR /* hc couldn't read */
> + : -ECOMM; /* hc couldn't write */
> + else if (t & FOTG210_ISOC_BABBLE)
> + desc->status = -EOVERFLOW;
> + else /* (t & FOTG210_ISOC_XACTERR) */
> + desc->status = -EPROTO;
> +
> + /* HC need not update length with this error */
> + if (!(t & FOTG210_ISOC_BABBLE)) {
> + desc->actual_length = fotg210_itdlen(urb, desc, t);
> + urb->actual_length += desc->actual_length;
> + }
> + } else if (likely ((t & FOTG210_ISOC_ACTIVE) == 0)) {
> + desc->status = 0;
> + desc->actual_length = fotg210_itdlen(urb, desc, t);
> + urb->actual_length += desc->actual_length;
> + } else {
> + /* URB was too late */
> + desc->status = -EXDEV;
> + }
> + }
> +
> + /* handle completion now? */
> + if (likely ((urb_index + 1) != urb->number_of_packets))
> + goto done;
> +
> + /* ASSERT: it's really the last itd for this urb
> + list_for_each_entry (itd, &stream->td_list, itd_list)
> + BUG_ON (itd->urb == urb);
> + */
> +
> + /* give urb back to the driver; completion often (re)submits */
> + dev = urb->dev;
> + fotg210_urb_done(fotg210, urb, 0);
> + retval = true;
> + urb = NULL;
> +
> + --fotg210->isoc_count;
> + disable_periodic(fotg210);
> +
> + if (unlikely(list_is_singular(&stream->td_list))) {
> + fotg210_to_hcd(fotg210)->self.bandwidth_allocated
> + -= stream->bandwidth;
> + fotg210_vdbg (fotg210,
> + "deschedule devp %s ep%d%s-iso\n",
> + dev->devpath, stream->bEndpointAddress & 0x0f,
> + (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
> + }
> +
> +done:
> + itd->urb = NULL;
> +
> + /* Add to the end of the free list for later reuse */
> + list_move_tail(&itd->itd_list, &stream->free_list);
> +
> + /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
> + if (list_empty(&stream->td_list)) {
> + list_splice_tail_init(&stream->free_list,
> + &fotg210->cached_itd_list);
> + start_free_itds(fotg210);
> + }
> +
> + return retval;
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +static int itd_submit (struct fotg210_hcd *fotg210, struct urb *urb,
> + gfp_t mem_flags)
> +{
> + int status = -EINVAL;
> + unsigned long flags;
> + struct fotg210_iso_stream *stream;
> +
> + /* Get iso_stream head */
> + stream = iso_stream_find (fotg210, urb);
> + if (unlikely (stream == NULL)) {
> + fotg210_dbg (fotg210, "can't get iso stream\n");
> + return -ENOMEM;
> + }
> + if (unlikely (urb->interval != stream->interval &&
> + fotg210_port_speed(fotg210, 0) == USB_PORT_STAT_HIGH_SPEED)) {
> + fotg210_dbg (fotg210, "can't change iso interval %d --> %d\n",
> + stream->interval, urb->interval);
> + goto done;
> + }
> +
> +#ifdef FOTG210_URB_TRACE
> + fotg210_dbg (fotg210,
> + "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
> + __func__, urb->dev->devpath, urb,
> + usb_pipeendpoint (urb->pipe),
> + usb_pipein (urb->pipe) ? "in" : "out",
> + urb->transfer_buffer_length,
> + urb->number_of_packets, urb->interval,
> + stream);
> +#endif
> +
> + /* allocate ITDs w/o locking anything */
> + status = itd_urb_transaction (stream, fotg210, urb, mem_flags);
> + if (unlikely (status < 0)) {
> + fotg210_dbg (fotg210, "can't init itds\n");
> + goto done;
> + }
> +
> + /* schedule ... need to lock */
> + spin_lock_irqsave (&fotg210->lock, flags);
> + if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
> + status = -ESHUTDOWN;
> + goto done_not_linked;
> + }
> + status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
> + if (unlikely(status))
> + goto done_not_linked;
> + status = iso_stream_schedule(fotg210, urb, stream);
> + if (likely (status == 0))
> + itd_link_urb (fotg210, urb, fotg210->periodic_size << 3, stream);
> + else
> + usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
> + done_not_linked:
> + spin_unlock_irqrestore (&fotg210->lock, flags);
> + done:
> + return status;
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +static void scan_isoc(struct fotg210_hcd *fotg210)
> +{
> + unsigned uf, now_frame, frame;
> + unsigned fmask = fotg210->periodic_size - 1;
> + bool modified, live;
> +
> + /*
> + * When running, scan from last scan point up to "now"
> + * else clean up by scanning everything that's left.
> + * Touches as few pages as possible: cache-friendly.
> + */
> + if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
> + uf = fotg210_read_frame_index(fotg210);
> + now_frame = (uf >> 3) & fmask;
> + live = true;
> + } else {
> + now_frame = (fotg210->next_frame - 1) & fmask;
> + live = false;
> + }
> + fotg210->now_frame = now_frame;
> +
> + frame = fotg210->next_frame;
> + for (;;) {
> + union fotg210_shadow q, *q_p;
> + __hc32 type, *hw_p;
> +
> +restart:
> + /* scan each element in frame's queue for completions */
> + q_p = &fotg210->pshadow [frame];
> + hw_p = &fotg210->periodic [frame];
> + q.ptr = q_p->ptr;
> + type = Q_NEXT_TYPE(fotg210, *hw_p);
> + modified = false;
> +
> + while (q.ptr != NULL) {
> + switch (hc32_to_cpu(fotg210, type)) {
> + case Q_TYPE_ITD:
> + /* If this ITD is still active, leave it for
> + * later processing ... check the next entry.
> + * No need to check for activity unless the
> + * frame is current.
> + */
> + if (frame == now_frame && live) {
> + rmb();
> + for (uf = 0; uf < 8; uf++) {
> + if (q.itd->hw_transaction[uf] &
> + ITD_ACTIVE(fotg210))
> + break;
> + }
> + if (uf < 8) {
> + q_p = &q.itd->itd_next;
> + hw_p = &q.itd->hw_next;
> + type = Q_NEXT_TYPE(fotg210,
> + q.itd->hw_next);
> + q = *q_p;
> + break;
> + }
> + }
> +
> + /* Take finished ITDs out of the schedule
> + * and process them: recycle, maybe report
> + * URB completion. HC won't cache the
> + * pointer for much longer, if at all.
> + */
> + *q_p = q.itd->itd_next;
> + *hw_p = q.itd->hw_next;
> + type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
> + wmb();
> + modified = itd_complete (fotg210, q.itd);
> + q = *q_p;
> + break;
> + default:
> + fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
> + type, frame, q.ptr);
> + // BUG ();
> + /* FALL THROUGH */
> + case Q_TYPE_QH:
> + case Q_TYPE_FSTN:
> + /* End of the iTDs and siTDs */
> + q.ptr = NULL;
> + break;
> + }
> +
> + /* assume completion callbacks modify the queue */
> + if (unlikely(modified && fotg210->isoc_count > 0))
> + goto restart;
> + }
> +
> + /* Stop when we have reached the current frame */
> + if (frame == now_frame)
> + break;
> + frame = (frame + 1) & fmask;
> + }
> + fotg210->next_frame = now_frame;
> +}
> +/*-------------------------------------------------------------------------*/
> +/*
> + * Display / Set uframe_periodic_max
> + */
> +static ssize_t show_uframe_periodic_max(struct device *dev,
> + struct device_attribute *attr,
> + char *buf)
> +{
> + struct fotg210_hcd *fotg210;
> + int n;
> +
> + fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
> + n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
> + return n;
> +}
> +
> +
> +static ssize_t store_uframe_periodic_max(struct device *dev,
> + struct device_attribute *attr,
> + const char *buf, size_t count)
> +{
> + struct fotg210_hcd *fotg210;
> + unsigned uframe_periodic_max;
> + unsigned frame, uframe;
> + unsigned short allocated_max;
> + unsigned long flags;
> + ssize_t ret;
> +
> + fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
> + if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
> + return -EINVAL;
> +
> + if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
> + fotg210_info(fotg210, "rejecting invalid request for "
> + "uframe_periodic_max=%u\n", uframe_periodic_max);
> + return -EINVAL;
> + }
> +
> + ret = -EINVAL;
> +
> + /*
> + * lock, so that our checking does not race with possible periodic
> + * bandwidth allocation through submitting new urbs.
> + */
> + spin_lock_irqsave (&fotg210->lock, flags);
> +
> + /*
> + * for request to decrease max periodic bandwidth, we have to check
> + * every microframe in the schedule to see whether the decrease is
> + * possible.
> + */
> + if (uframe_periodic_max < fotg210->uframe_periodic_max) {
> + allocated_max = 0;
> +
> + for (frame = 0; frame < fotg210->periodic_size; ++frame)
> + for (uframe = 0; uframe < 7; ++uframe)
> + allocated_max = max(allocated_max,
> + periodic_usecs (fotg210, frame, uframe));
> +
> + if (allocated_max > uframe_periodic_max) {
> + fotg210_info(fotg210,
> + "cannot decrease uframe_periodic_max becase "
> + "periodic bandwidth is already allocated "
> + "(%u > %u)\n",
> + allocated_max, uframe_periodic_max);
> + goto out_unlock;
> + }
> + }
> +
> + /* increasing is always ok */
> +
> + fotg210_info(fotg210, "setting max periodic bandwidth to %u%% "
> + "(== %u usec/uframe)\n",
> + 100*uframe_periodic_max/125, uframe_periodic_max);
> +
> + if (uframe_periodic_max != 100)
> + fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
> +
> + fotg210->uframe_periodic_max = uframe_periodic_max;
> + ret = count;
> +
> +out_unlock:
> + spin_unlock_irqrestore (&fotg210->lock, flags);
> + return ret;
> +}
> +static DEVICE_ATTR(uframe_periodic_max, 0644, show_uframe_periodic_max, store_uframe_periodic_max);
> +
> +
> +static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
> +{
> + struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
> + int i = 0;
> +
> + if (i)
> + goto out;
> +
> + i = device_create_file(controller, &dev_attr_uframe_periodic_max);
> +out:
> + return i;
> +}
> +
> +static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
> +{
> + struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
> +
> + device_remove_file(controller, &dev_attr_uframe_periodic_max);
> +}
> +/*-------------------------------------------------------------------------*/
> +
> +/* On some systems, leaving remote wakeup enabled prevents system shutdown.
> + * The firmware seems to think that powering off is a wakeup event!
> + * This routine turns off remote wakeup and everything else, on all ports.
> + */
> +static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
> +{
> + u32 __iomem *status_reg = &fotg210->regs->port_status;
> +
> + fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
> +}
> +
> +/*
> + * Halt HC, turn off all ports, and let the BIOS use the companion controllers.
> + * Must be called with interrupts enabled and the lock not held.
> + */
> +static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
> +{
> + fotg210_halt(fotg210);
> +
> + spin_lock_irq(&fotg210->lock);
> + fotg210->rh_state = FOTG210_RH_HALTED;
> + fotg210_turn_off_all_ports(fotg210);
> + spin_unlock_irq(&fotg210->lock);
> +}
> +
> +/* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
> + * This forcibly disables dma and IRQs, helping kexec and other cases
> + * where the next system software may expect clean state.
> + */
> +static void fotg210_shutdown(struct usb_hcd *hcd)
> +{
> + struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
> +
> + spin_lock_irq(&fotg210->lock);
> + fotg210->shutdown = true;
> + fotg210->rh_state = FOTG210_RH_STOPPING;
> + fotg210->enabled_hrtimer_events = 0;
> + spin_unlock_irq(&fotg210->lock);
> +
> + fotg210_silence_controller(fotg210);
> +
> + hrtimer_cancel(&fotg210->hrtimer);
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +/*
> + * fotg210_work is called from some interrupts, timers, and so on.
> + * it calls driver completion functions, after dropping fotg210->lock.
> + */
> +static void fotg210_work (struct fotg210_hcd *fotg210)
> +{
> + /* another CPU may drop fotg210->lock during a schedule scan while
> + * it reports urb completions. this flag guards against bogus
> + * attempts at re-entrant schedule scanning.
> + */
> + if (fotg210->scanning) {
> + fotg210->need_rescan = true;
> + return;
> + }
> + fotg210->scanning = true;
> +
> + rescan:
> + fotg210->need_rescan = false;
> + if (fotg210->async_count)
> + scan_async(fotg210);
> + if (fotg210->intr_count > 0)
> + scan_intr(fotg210);
> + if (fotg210->isoc_count > 0)
> + scan_isoc(fotg210);
> + if (fotg210->need_rescan)
> + goto rescan;
> + fotg210->scanning = false;
> +
> + /* the IO watchdog guards against hardware or driver bugs that
> + * misplace IRQs, and should let us run completely without IRQs.
> + * such lossage has been observed on both VT6202 and VT8235.
> + */
> + turn_on_io_watchdog(fotg210);
> +}
> +
> +/*
> + * Called when the fotg210_hcd module is removed.
> + */
> +static void fotg210_stop (struct usb_hcd *hcd)
> +{
> + struct fotg210_hcd *fotg210 = hcd_to_fotg210 (hcd);
> +
> + fotg210_dbg (fotg210, "stop\n");
> +
> + /* no more interrupts ... */
> +
> + spin_lock_irq(&fotg210->lock);
> + fotg210->enabled_hrtimer_events = 0;
> + spin_unlock_irq(&fotg210->lock);
> +
> + fotg210_quiesce(fotg210);
> + fotg210_silence_controller(fotg210);
> + fotg210_reset (fotg210);
> +
> + hrtimer_cancel(&fotg210->hrtimer);
> + remove_sysfs_files(fotg210);
> + remove_debug_files (fotg210);
> +
> + /* root hub is shut down separately (first, when possible) */
> + spin_lock_irq (&fotg210->lock);
> + end_free_itds(fotg210);
> + spin_unlock_irq (&fotg210->lock);
> + fotg210_mem_cleanup (fotg210);
> +
> +#ifdef FOTG210_STATS
> + fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
> + fotg210->stats.normal, fotg210->stats.error, fotg210->stats.iaa,
> + fotg210->stats.lost_iaa);
> + fotg210_dbg (fotg210, "complete %ld unlink %ld\n",
> + fotg210->stats.complete, fotg210->stats.unlink);
> +#endif
> +
> + dbg_status (fotg210, "fotg210_stop completed",
> + fotg210_readl(fotg210, &fotg210->regs->status));
> +}
> +
> +/* one-time init, only for memory state */
> +static int hcd_fotg210_init(struct usb_hcd *hcd)
> +{
> + struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
> + u32 temp;
> + int retval;
> + u32 hcc_params;
> + struct fotg210_qh_hw *hw;
> +
> + spin_lock_init(&fotg210->lock);
> +
> + /*
> + * keep io watchdog by default, those good HCDs could turn off it later
> + */
> + fotg210->need_io_watchdog = 1;
> +
> + hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
> + fotg210->hrtimer.function = fotg210_hrtimer_func;
> + fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
> +
> + hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
> +
> + /*
> + * by default set standard 80% (== 100 usec/uframe) max periodic
> + * bandwidth as required by USB 2.0
> + */
> + fotg210->uframe_periodic_max = 100;
> +
> + /*
> + * hw default: 1K periodic list heads, one per frame.
> + * periodic_size can shrink by USBCMD update if hcc_params allows.
> + */
> + fotg210->periodic_size = DEFAULT_I_TDPS;
> + INIT_LIST_HEAD(&fotg210->intr_qh_list);
> + INIT_LIST_HEAD(&fotg210->cached_itd_list);
> +
> + if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
> + /* periodic schedule size can be smaller than default */
> + switch (FOTG210_TUNE_FLS) {
> + case 0: fotg210->periodic_size = 1024; break;
> + case 1: fotg210->periodic_size = 512; break;
> + case 2: fotg210->periodic_size = 256; break;
> + default: BUG();
> + }
> + }
> + if ((retval = fotg210_mem_init(fotg210, GFP_KERNEL)) < 0)
> + return retval;
> +
> + /* controllers may cache some of the periodic schedule ... */
> + fotg210->i_thresh = 2;
> +
> + /*
> + * dedicate a qh for the async ring head, since we couldn't unlink
> + * a 'real' qh without stopping the async schedule [4.8]. use it
> + * as the 'reclamation list head' too.
> + * its dummy is used in hw_alt_next of many tds, to prevent the qh
> + * from automatically advancing to the next td after short reads.
> + */
> + fotg210->async->qh_next.qh = NULL;
> + hw = fotg210->async->hw;
> + hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
> + hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
> + hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
> + hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
> + fotg210->async->qh_state = QH_STATE_LINKED;
> + hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
> +
> + /* clear interrupt enables, set irq latency */
> + if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
> + log2_irq_thresh = 0;
> + temp = 1 << (16 + log2_irq_thresh);
> + if (HCC_CANPARK(hcc_params)) {
> + /* HW default park == 3, on hardware that supports it (like
> + * NVidia and ALI silicon), maximizes throughput on the async
> + * schedule by avoiding QH fetches between transfers.
> + *
> + * With fast usb storage devices and NForce2, "park" seems to
> + * make problems: throughput reduction (!), data errors...
> + */
> + if (park) {
> + park = min(park, (unsigned) 3);
> + temp |= CMD_PARK;
> + temp |= park << 8;
> + }
> + fotg210_dbg(fotg210, "park %d\n", park);
> + }
> + if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
> + /* periodic schedule size can be smaller than default */
> + temp &= ~(3 << 2);
> + temp |= (FOTG210_TUNE_FLS << 2);
> + }
> + fotg210->command = temp;
> +
> + /* Accept arbitrarily long scatter-gather lists */
> + if (!(hcd->driver->flags & HCD_LOCAL_MEM))
> + hcd->self.sg_tablesize = ~0;
> + return 0;
> +}
> +
> +/* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
> +static int fotg210_run (struct usb_hcd *hcd)
> +{
> + struct fotg210_hcd *fotg210 = hcd_to_fotg210 (hcd);
> + u32 temp;
> + u32 hcc_params;
> +
> + hcd->uses_new_polling = 1;
> +
> + /* EHCI spec section 4.1 */
> +
> + fotg210_writel(fotg210, fotg210->periodic_dma, &fotg210->regs->frame_list);
> + fotg210_writel(fotg210, (u32)fotg210->async->qh_dma, &fotg210->regs->async_next);
> +
> + /*
> + * hcc_params controls whether fotg210->regs->segment must (!!!)
> + * be used; it constrains QH/ITD/SITD and QTD locations.
> + * pci_pool consistent memory always uses segment zero.
> + * streaming mappings for I/O buffers, like pci_map_single(),
> + * can return segments above 4GB, if the device allows.
> + *
> + * NOTE: the dma mask is visible through dma_supported(), so
> + * drivers can pass this info along ... like NETIF_F_HIGHDMA,
> + * Scsi_Host.highmem_io, and so forth. It's readonly to all
> + * host side drivers though.
> + */
> + hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
> +
> + // Philips, Intel, and maybe others need CMD_RUN before the
> + // root hub will detect new devices (why?); NEC doesn't
> + fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
> + fotg210->command |= CMD_RUN;
> + fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
> + dbg_cmd (fotg210, "init", fotg210->command);
> +
> + /*
> + * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
> + * are explicitly handed to companion controller(s), so no TT is
> + * involved with the root hub. (Except where one is integrated,
> + * and there's no companion controller unless maybe for USB OTG.)
> + *
> + * Turning on the CF flag will transfer ownership of all ports
> + * from the companions to the EHCI controller. If any of the
> + * companions are in the middle of a port reset at the time, it
> + * could cause trouble. Write-locking ehci_cf_port_reset_rwsem
> + * guarantees that no resets are in progress. After we set CF,
> + * a short delay lets the hardware catch up; new resets shouldn't
> + * be started before the port switching actions could complete.
> + */
> + down_write(&ehci_cf_port_reset_rwsem);
> + fotg210->rh_state = FOTG210_RH_RUNNING;
> + fotg210_readl(fotg210, &fotg210->regs->command); /* unblock posted writes */
> + msleep(5);
> + up_write(&ehci_cf_port_reset_rwsem);
> + fotg210->last_periodic_enable = ktime_get_real();
> +
> + temp = HC_VERSION(fotg210, fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
> + fotg210_info (fotg210,
> + "USB %x.%x started, EHCI %x.%02x\n",
> + ((fotg210->sbrn & 0xf0)>>4), (fotg210->sbrn & 0x0f),
> + temp >> 8, temp & 0xff);
> +
> + fotg210_writel(fotg210, INTR_MASK,
> + &fotg210->regs->intr_enable); /* Turn On Interrupts */
> +
> + /* GRR this is run-once init(), being done every time the HC starts.
> + * So long as they're part of class devices, we can't do it init()
> + * since the class device isn't created that early.
> + */
> + create_debug_files(fotg210);
> + create_sysfs_files(fotg210);
> +
> + return 0;
> +}
> +
> +static int fotg210_setup(struct usb_hcd *hcd)
> +{
> + struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
> + int retval;
> +
> + fotg210->regs = (void __iomem *)fotg210->caps +
> + HC_LENGTH(fotg210, fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
> + dbg_hcs_params(fotg210, "reset");
> + dbg_hcc_params(fotg210, "reset");
> +
> + /* cache this readonly data; minimize chip reads */
> + fotg210->hcs_params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
> +
> + fotg210->sbrn = HCD_USB2;
> +
> + /* data structure init */
> + retval = hcd_fotg210_init(hcd);
> + if (retval)
> + return retval;
> +
> + retval = fotg210_halt(fotg210);
> + if (retval)
> + return retval;
> +
> + fotg210_reset(fotg210);
> +
> + return 0;
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +static irqreturn_t fotg210_irq (struct usb_hcd *hcd)
> +{
> + struct fotg210_hcd *fotg210 = hcd_to_fotg210 (hcd);
> + u32 status, masked_status, pcd_status = 0, cmd;
> + int bh;
> +
> + spin_lock (&fotg210->lock);
> +
> + status = fotg210_readl(fotg210, &fotg210->regs->status);
> +
> + /* e.g. cardbus physical eject */
> + if (status == ~(u32) 0) {
> + fotg210_dbg (fotg210, "device removed\n");
> + goto dead;
> + }
> +
> + /*
> + * We don't use STS_FLR, but some controllers don't like it to
> + * remain on, so mask it out along with the other status bits.
> + */
> + masked_status = status & (INTR_MASK | STS_FLR);
> +
> + /* Shared IRQ? */
> + if (!masked_status || unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
> + spin_unlock(&fotg210->lock);
> + return IRQ_NONE;
> + }
> +
> + /* clear (just) interrupts */
> + fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
> + cmd = fotg210_readl(fotg210, &fotg210->regs->command);
> + bh = 0;
> +
> +#ifdef VERBOSE_DEBUG
> + /* unrequested/ignored: Frame List Rollover */
> + dbg_status (fotg210, "irq", status);
> +#endif
> +
> + /* INT, ERR, and IAA interrupt rates can be throttled */
> +
> + /* normal [4.15.1.2] or error [4.15.1.1] completion */
> + if (likely ((status & (STS_INT|STS_ERR)) != 0)) {
> + if (likely ((status & STS_ERR) == 0))
> + COUNT (fotg210->stats.normal);
> + else
> + COUNT (fotg210->stats.error);
> + bh = 1;
> + }
> +
> + /* complete the unlinking of some qh [4.15.2.3] */
> + if (status & STS_IAA) {
> +
> + /* Turn off the IAA watchdog */
> + fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
> +
> + /*
> + * Mild optimization: Allow another IAAD to reset the
> + * hrtimer, if one occurs before the next expiration.
> + * In theory we could always cancel the hrtimer, but
> + * tests show that about half the time it will be reset
> + * for some other event anyway.
> + */
> + if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
> + ++fotg210->next_hrtimer_event;
> +
> + /* guard against (alleged) silicon errata */
> + if (cmd & CMD_IAAD)
> + fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
> + if (fotg210->async_iaa) {
> + COUNT(fotg210->stats.iaa);
> + end_unlink_async(fotg210);
> + } else
> + fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
> + }
> +
> + /* remote wakeup [4.3.1] */
> + if (status & STS_PCD) {
> + int pstatus;
> + u32 __iomem *status_reg = &fotg210->regs->port_status;
> +
> + /* kick root hub later */
> + pcd_status = status;
> +
> + /* resume root hub? */
> + if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
> + usb_hcd_resume_root_hub(hcd);
> +
> + pstatus = fotg210_readl(fotg210, status_reg);
> +
> + if (test_bit(0, &fotg210->suspended_ports) &&
> + ((pstatus & PORT_RESUME) ||
> + !(pstatus & PORT_SUSPEND)) &&
> + (pstatus & PORT_PE) &&
> + fotg210->reset_done[0] == 0) {
> +
> + /* start 20 msec resume signaling from this port,
> + * and make khubd collect PORT_STAT_C_SUSPEND to
> + * stop that signaling. Use 5 ms extra for safety,
> + * like usb_port_resume() does.
> + */
> + fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
> + set_bit(0, &fotg210->resuming_ports);
> + fotg210_dbg (fotg210, "port 1 remote wakeup\n");
> + mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
> + }
> + }
> +
> + /* PCI errors [4.15.2.4] */
> + if (unlikely ((status & STS_FATAL) != 0)) {
> + fotg210_err(fotg210, "fatal error\n");
> + dbg_cmd(fotg210, "fatal", cmd);
> + dbg_status(fotg210, "fatal", status);
> +dead:
> + usb_hc_died(hcd);
> +
> + /* Don't let the controller do anything more */
> + fotg210->shutdown = true;
> + fotg210->rh_state = FOTG210_RH_STOPPING;
> + fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
> + fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
> + fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
> + fotg210_handle_controller_death(fotg210);
> +
> + /* Handle completions when the controller stops */
> + bh = 0;
> + }
> +
> + if (bh)
> + fotg210_work (fotg210);
> + spin_unlock (&fotg210->lock);
> + if (pcd_status)
> + usb_hcd_poll_rh_status(hcd);
> + return IRQ_HANDLED;
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +/*
> + * non-error returns are a promise to giveback() the urb later
> + * we drop ownership so next owner (or urb unlink) can get it
> + *
> + * urb + dev is in hcd.self.controller.urb_list
> + * we're queueing TDs onto software and hardware lists
> + *
> + * hcd-specific init for hcpriv hasn't been done yet
> + *
> + * NOTE: control, bulk, and interrupt share the same code to append TDs
> + * to a (possibly active) QH, and the same QH scanning code.
> + */
> +static int fotg210_urb_enqueue (
> + struct usb_hcd *hcd,
> + struct urb *urb,
> + gfp_t mem_flags
> +) {
> + struct fotg210_hcd *fotg210 = hcd_to_fotg210 (hcd);
> + struct list_head qtd_list;
> +
> + INIT_LIST_HEAD (&qtd_list);
> +
> + switch (usb_pipetype (urb->pipe)) {
> + case PIPE_CONTROL:
> + /* qh_completions() code doesn't handle all the fault cases
> + * in multi-TD control transfers. Even 1KB is rare anyway.
> + */
> + if (urb->transfer_buffer_length > (16 * 1024))
> + return -EMSGSIZE;
> + /* FALLTHROUGH */
> + /* case PIPE_BULK: */
> + default:
> + if (!qh_urb_transaction (fotg210, urb, &qtd_list, mem_flags))
> + return -ENOMEM;
> + return submit_async(fotg210, urb, &qtd_list, mem_flags);
> +
> + case PIPE_INTERRUPT:
> + if (!qh_urb_transaction (fotg210, urb, &qtd_list, mem_flags))
> + return -ENOMEM;
> + return intr_submit(fotg210, urb, &qtd_list, mem_flags);
> +
> + case PIPE_ISOCHRONOUS:
> + return itd_submit (fotg210, urb, mem_flags);
> + }
> +}
> +
> +/* remove from hardware lists
> + * completions normally happen asynchronously
> + */
> +
> +static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
> +{
> + struct fotg210_hcd *fotg210 = hcd_to_fotg210 (hcd);
> + struct fotg210_qh *qh;
> + unsigned long flags;
> + int rc;
> +
> + spin_lock_irqsave (&fotg210->lock, flags);
> + rc = usb_hcd_check_unlink_urb(hcd, urb, status);
> + if (rc)
> + goto done;
> +
> + switch (usb_pipetype (urb->pipe)) {
> + // case PIPE_CONTROL:
> + // case PIPE_BULK:
> + default:
> + qh = (struct fotg210_qh *) urb->hcpriv;
> + if (!qh)
> + break;
> + switch (qh->qh_state) {
> + case QH_STATE_LINKED:
> + case QH_STATE_COMPLETING:
> + start_unlink_async(fotg210, qh);
> + break;
> + case QH_STATE_UNLINK:
> + case QH_STATE_UNLINK_WAIT:
> + /* already started */
> + break;
> + case QH_STATE_IDLE:
> + /* QH might be waiting for a Clear-TT-Buffer */
> + qh_completions(fotg210, qh);
> + break;
> + }
> + break;
> +
> + case PIPE_INTERRUPT:
> + qh = (struct fotg210_qh *) urb->hcpriv;
> + if (!qh)
> + break;
> + switch (qh->qh_state) {
> + case QH_STATE_LINKED:
> + case QH_STATE_COMPLETING:
> + start_unlink_intr(fotg210, qh);
> + break;
> + case QH_STATE_IDLE:
> + qh_completions (fotg210, qh);
> + break;
> + default:
> + fotg210_dbg (fotg210, "bogus qh %p state %d\n",
> + qh, qh->qh_state);
> + goto done;
> + }
> + break;
> +
> + case PIPE_ISOCHRONOUS:
> + // itd...
> +
> + // wait till next completion, do it then.
> + // completion irqs can wait up to 1024 msec,
> + break;
> + }
> +done:
> + spin_unlock_irqrestore (&fotg210->lock, flags);
> + return rc;
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +// bulk qh holds the data toggle
> +
> +static void
> +fotg210_endpoint_disable (struct usb_hcd *hcd, struct usb_host_endpoint *ep)
> +{
> + struct fotg210_hcd *fotg210 = hcd_to_fotg210 (hcd);
> + unsigned long flags;
> + struct fotg210_qh *qh, *tmp;
> +
> + /* ASSERT: any requests/urbs are being unlinked */
> + /* ASSERT: nobody can be submitting urbs for this any more */
> +
> +rescan:
> + spin_lock_irqsave (&fotg210->lock, flags);
> + qh = ep->hcpriv;
> + if (!qh)
> + goto done;
> +
> + /* endpoints can be iso streams. for now, we don't
> + * accelerate iso completions ... so spin a while.
> + */
> + if (qh->hw == NULL) {
> + struct fotg210_iso_stream *stream = ep->hcpriv;
> +
> + if (!list_empty(&stream->td_list))
> + goto idle_timeout;
> +
> + /* BUG_ON(!list_empty(&stream->free_list)); */
> + kfree(stream);
> + goto done;
> + }
> +
> + if (fotg210->rh_state < FOTG210_RH_RUNNING)
> + qh->qh_state = QH_STATE_IDLE;
> + switch (qh->qh_state) {
> + case QH_STATE_LINKED:
> + case QH_STATE_COMPLETING:
> + for (tmp = fotg210->async->qh_next.qh;
> + tmp && tmp != qh;
> + tmp = tmp->qh_next.qh)
> + continue;
> + /* periodic qh self-unlinks on empty, and a COMPLETING qh
> + * may already be unlinked.
> + */
> + if (tmp)
> + start_unlink_async(fotg210, qh);
> + /* FALL THROUGH */
> + case QH_STATE_UNLINK: /* wait for hw to finish? */
> + case QH_STATE_UNLINK_WAIT:
> +idle_timeout:
> + spin_unlock_irqrestore (&fotg210->lock, flags);
> + schedule_timeout_uninterruptible(1);
> + goto rescan;
> + case QH_STATE_IDLE: /* fully unlinked */
> + if (qh->clearing_tt)
> + goto idle_timeout;
> + if (list_empty (&qh->qtd_list)) {
> + qh_destroy(fotg210, qh);
> + break;
> + }
> + /* else FALL THROUGH */
> + default:
> + /* caller was supposed to have unlinked any requests;
> + * that's not our job. just leak this memory.
> + */
> + fotg210_err (fotg210, "qh %p (#%02x) state %d%s\n",
> + qh, ep->desc.bEndpointAddress, qh->qh_state,
> + list_empty (&qh->qtd_list) ? "" : "(has tds)");
> + break;
> + }
> + done:
> + ep->hcpriv = NULL;
> + spin_unlock_irqrestore (&fotg210->lock, flags);
> +}
> +
> +static void
> +fotg210_endpoint_reset(struct usb_hcd *hcd, struct usb_host_endpoint *ep)
> +{
> + struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
> + struct fotg210_qh *qh;
> + int eptype = usb_endpoint_type(&ep->desc);
> + int epnum = usb_endpoint_num(&ep->desc);
> + int is_out = usb_endpoint_dir_out(&ep->desc);
> + unsigned long flags;
> +
> + if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
> + return;
> +
> + spin_lock_irqsave(&fotg210->lock, flags);
> + qh = ep->hcpriv;
> +
> + /* For Bulk and Interrupt endpoints we maintain the toggle state
> + * in the hardware; the toggle bits in udev aren't used at all.
> + * When an endpoint is reset by usb_clear_halt() we must reset
> + * the toggle bit in the QH.
> + */
> + if (qh) {
> + usb_settoggle(qh->dev, epnum, is_out, 0);
> + if (!list_empty(&qh->qtd_list)) {
> + WARN_ONCE(1, "clear_halt for a busy endpoint\n");
> + } else if (qh->qh_state == QH_STATE_LINKED ||
> + qh->qh_state == QH_STATE_COMPLETING) {
> +
> + /* The toggle value in the QH can't be updated
> + * while the QH is active. Unlink it now;
> + * re-linking will call qh_refresh().
> + */
> + if (eptype == USB_ENDPOINT_XFER_BULK)
> + start_unlink_async(fotg210, qh);
> + else
> + start_unlink_intr(fotg210, qh);
> + }
> + }
> + spin_unlock_irqrestore(&fotg210->lock, flags);
> +}
> +
> +static int fotg210_get_frame (struct usb_hcd *hcd)
> +{
> + struct fotg210_hcd *fotg210 = hcd_to_fotg210 (hcd);
> + return (fotg210_read_frame_index(fotg210) >> 3) % fotg210->periodic_size;
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +/*
> + * The EHCI in ChipIdea HDRC cannot be a separate module or device,
> + * because its registers (and irq) are shared between host/gadget/otg
> + * functions and in order to facilitate role switching we cannot
> + * give the fotg210 driver exclusive access to those.
> + */
> +MODULE_DESCRIPTION(DRIVER_DESC);
> +MODULE_AUTHOR (DRIVER_AUTHOR);
> +MODULE_LICENSE ("GPL");
> +
> +static const struct hc_driver fotg210_fotg210_hc_driver = {
> + .description = hcd_name,
> + .product_desc = "Faraday USB2.0 Host Controller",
> + .hcd_priv_size = sizeof(struct fotg210_hcd),
> +
> + /*
> + * generic hardware linkage
> + */
> + .irq = fotg210_irq,
> + .flags = HCD_MEMORY | HCD_USB2,
> +
> + /*
> + * basic lifecycle operations
> + */
> + .reset = hcd_fotg210_init,
> + .start = fotg210_run,
> + .stop = fotg210_stop,
> + .shutdown = fotg210_shutdown,
> +
> + /*
> + * managing i/o requests and associated device resources
> + */
> + .urb_enqueue = fotg210_urb_enqueue,
> + .urb_dequeue = fotg210_urb_dequeue,
> + .endpoint_disable = fotg210_endpoint_disable,
> + .endpoint_reset = fotg210_endpoint_reset,
> +
> + /*
> + * scheduling support
> + */
> + .get_frame_number = fotg210_get_frame,
> +
> + /*
> + * root hub support
> + */
> + .hub_status_data = fotg210_hub_status_data,
> + .hub_control = fotg210_hub_control,
> + .bus_suspend = fotg210_bus_suspend,
> + .bus_resume = fotg210_bus_resume,
> +
> + .relinquish_port = fotg210_relinquish_port,
> + .port_handed_over = fotg210_port_handed_over,
> +
> + .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
> +};
> +
> +static void fotg210_init(struct fotg210_hcd *fotg210)
> +{
> + u32 value;
> +
> + iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
> + &fotg210->regs->gmir);
> +
> + value = ioread32(&fotg210->regs->otgcsr);
> + value &= ~OTGCSR_A_BUS_DROP;
> + value |= OTGCSR_A_BUS_REQ;
> + iowrite32(value, &fotg210->regs->otgcsr);
> +}
> +
> +/**
> + * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
> + *
> + * Allocates basic resources for this USB host controller, and
> + * then invokes the start() method for the HCD associated with it
> + * through the hotplug entry's driver_data.
> + */
> +static int fotg210_hcd_probe(struct platform_device *pdev)
> +{
> + struct device *dev = &pdev->dev;
> + struct usb_hcd *hcd;
> + struct resource *res;
> + int irq;
> + int retval = -ENODEV;
> + struct fotg210_hcd *fotg210;
> +
> + if (usb_disabled())
> + return -ENODEV;
> +
> + pdev->dev.power.power_state = PMSG_ON;
> +
> + res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
> + if (!res) {
> + dev_err(dev,
> + "Found HC with no IRQ. Check %s setup!\n",
> + dev_name(dev));
> + return -ENODEV;
> + }
> +
> + irq = res->start;
> +
> + hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
> + dev_name(dev));
> + if (!hcd) {
> + dev_err(dev, "failed to create hcd with err %d\n", retval);
> + retval = -ENOMEM;
> + goto fail_create_hcd;
> + }
> +
> + res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
> + if (!res) {
> + dev_err(dev,
> + "Found HC with no register addr. Check %s setup!\n",
> + dev_name(dev));
> + retval = -ENODEV;
> + goto fail_request_resource;
> + }
> +
> + hcd->rsrc_start = res->start;
> + hcd->rsrc_len = resource_size(res);
> + hcd->has_tt = 1;
> +
> + if (!request_mem_region(hcd->rsrc_start, hcd->rsrc_len,
> + fotg210_fotg210_hc_driver.description)) {
> + dev_dbg(dev, "controller already in use\n");
> + retval = -EBUSY;
> + goto fail_request_resource;
> + }
> +
> + res = platform_get_resource(pdev, IORESOURCE_IO, 0);
> + if (!res) {
> + dev_err(dev,
> + "Found HC with no register addr. Check %s setup!\n",
> + dev_name(dev));
> + retval = -ENODEV;
> + goto fail_request_resource;
> + }
> +
> + hcd->regs = ioremap_nocache(res->start, resource_size(res));
> + if (hcd->regs == NULL) {
> + dev_dbg(dev, "error mapping memory\n");
> + retval = -EFAULT;
> + goto fail_ioremap;
> + }
> +
> + fotg210 = hcd_to_fotg210(hcd);
> +
> + fotg210->caps = hcd->regs;
> +
> + retval = fotg210_setup(hcd);
> + if (retval)
> + goto fail_add_hcd;
> +
> + fotg210_init(fotg210);
> +
> + retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
> + if (retval) {
> + dev_err(dev, "failed to add hcd with err %d\n", retval);
> + goto fail_add_hcd;
> + }
> +
> + return retval;
> +
> +fail_add_hcd:
> + iounmap(hcd->regs);
> +fail_ioremap:
> + release_mem_region(hcd->rsrc_start, hcd->rsrc_len);
> +fail_request_resource:
> + usb_put_hcd(hcd);
> +fail_create_hcd:
> + dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
> + return retval;
> +}
> +
> +/**
> + * fotg210_hcd_remove - shutdown processing for EHCI HCDs
> + * @dev: USB Host Controller being removed
> + *
> + */
> +static int fotg210_hcd_remove(struct platform_device *pdev)
> +{
> + struct device *dev = &pdev->dev;
> + struct usb_hcd *hcd = dev_get_drvdata(dev);
> +
> + if (!hcd)
> + return 0;
> +
> + usb_remove_hcd(hcd);
> + iounmap(hcd->regs);
> + release_mem_region(hcd->rsrc_start, hcd->rsrc_len);
> + usb_put_hcd(hcd);
> +
> + return 0;
> +}
> +
> +static struct platform_driver fotg210_hcd_fotg210_driver = {
> + .driver = {
> + .name = "fotg210-hcd",
> + },
> + .probe = fotg210_hcd_probe,
> + .remove = fotg210_hcd_remove,
> +};
> +
> +static int __init fotg210_hcd_init(void)
> +{
> + int retval = 0;
> +
> + if (usb_disabled())
> + return -ENODEV;
> +
> + pr_info("%s: " DRIVER_DESC "\n", hcd_name);
> + set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
> + if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
> + test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
> + pr_warning(KERN_WARNING "Warning! fotg210_hcd should always be loaded"
> + " before uhci_hcd and ohci_hcd, not after\n");
> +
> + pr_debug("%s: block sizes: qh %Zd qtd %Zd itd %Zd\n",
> + hcd_name,
> + sizeof(struct fotg210_qh), sizeof(struct fotg210_qtd),
> + sizeof(struct fotg210_itd));
> +
> +#ifdef DEBUG
> + fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
> + if (!fotg210_debug_root) {
> + retval = -ENOENT;
> + goto err_debug;
> + }
> +#endif
> +
> + retval = platform_driver_register(&fotg210_hcd_fotg210_driver);
> + if (retval < 0)
> + goto clean;
> + return retval;
> +
> + platform_driver_unregister(&fotg210_hcd_fotg210_driver);
> +clean:
> +#ifdef DEBUG
> + debugfs_remove(fotg210_debug_root);
> + fotg210_debug_root = NULL;
> +err_debug:
> +#endif
> + clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
> + return retval;
> +}
> +module_init(fotg210_hcd_init);
> +
> +static void __exit fotg210_hcd_cleanup(void)
> +{
> + platform_driver_unregister(&fotg210_hcd_fotg210_driver);
> +#ifdef DEBUG
> + debugfs_remove(fotg210_debug_root);
> +#endif
> + clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
> +}
> +module_exit(fotg210_hcd_cleanup);
> diff --git a/drivers/usb/host/fotg210.h b/drivers/usb/host/fotg210.h
> new file mode 100644
> index 0000000..f1454a7
> --- /dev/null
> +++ b/drivers/usb/host/fotg210.h
> @@ -0,0 +1,746 @@
> +#ifndef __LINUX_FOTG210_H
> +#define __LINUX_FOTG210_H
> +
> +/* definitions used for the EHCI driver */
> +
> +/*
> + * __hc32 and __hc16 are "Host Controller" types, they may be equivalent to
> + * __leXX (normally) or __beXX (given FOTG210_BIG_ENDIAN_DESC), depending on
> + * the host controller implementation.
> + *
> + * To facilitate the strongest possible byte-order checking from "sparse"
> + * and so on, we use __leXX unless that's not practical.
> + */
> +#define __hc32 __le32
> +#define __hc16 __le16
> +
> +/* statistics can be kept for tuning/monitoring */
> +struct fotg210_stats {
> + /* irq usage */
> + unsigned long normal;
> + unsigned long error;
> + unsigned long iaa;
> + unsigned long lost_iaa;
> +
> + /* termination of urbs from core */
> + unsigned long complete;
> + unsigned long unlink;
> +};
> +
> +/* fotg210_hcd->lock guards shared data against other CPUs:
> + * fotg210_hcd: async, unlink, periodic (and shadow), ...
> + * usb_host_endpoint: hcpriv
> + * fotg210_qh: qh_next, qtd_list
> + * fotg210_qtd: qtd_list
> + *
> + * Also, hold this lock when talking to HC registers or
> + * when updating hw_* fields in shared qh/qtd/... structures.
> + */
> +
> +#define FOTG210_MAX_ROOT_PORTS 1 /* see HCS_N_PORTS */
> +
> +/*
> + * fotg210_rh_state values of FOTG210_RH_RUNNING or above mean that the
> + * controller may be doing DMA. Lower values mean there's no DMA.
> + */
> +enum fotg210_rh_state {
> + FOTG210_RH_HALTED,
> + FOTG210_RH_SUSPENDED,
> + FOTG210_RH_RUNNING,
> + FOTG210_RH_STOPPING
> +};
> +
> +/*
> + * Timer events, ordered by increasing delay length.
> + * Always update event_delays_ns[] and event_handlers[] (defined in
> + * ehci-timer.c) in parallel with this list.
> + */
> +enum fotg210_hrtimer_event {
> + FOTG210_HRTIMER_POLL_ASS, /* Poll for async schedule off */
> + FOTG210_HRTIMER_POLL_PSS, /* Poll for periodic schedule off */
> + FOTG210_HRTIMER_POLL_DEAD, /* Wait for dead controller to stop */
> + FOTG210_HRTIMER_UNLINK_INTR, /* Wait for interrupt QH unlink */
> + FOTG210_HRTIMER_FREE_ITDS, /* Wait for unused iTDs and siTDs */
> + FOTG210_HRTIMER_ASYNC_UNLINKS, /* Unlink empty async QHs */
> + FOTG210_HRTIMER_IAA_WATCHDOG, /* Handle lost IAA interrupts */
> + FOTG210_HRTIMER_DISABLE_PERIODIC, /* Wait to disable periodic sched */
> + FOTG210_HRTIMER_DISABLE_ASYNC, /* Wait to disable async sched */
> + FOTG210_HRTIMER_IO_WATCHDOG, /* Check for missing IRQs */
> + FOTG210_HRTIMER_NUM_EVENTS /* Must come last */
> +};
> +#define FOTG210_HRTIMER_NO_EVENT 99
> +
> +struct fotg210_hcd { /* one per controller */
> + /* timing support */
> + enum fotg210_hrtimer_event next_hrtimer_event;
> + unsigned enabled_hrtimer_events;
> + ktime_t hr_timeouts[FOTG210_HRTIMER_NUM_EVENTS];
> + struct hrtimer hrtimer;
> +
> + int PSS_poll_count;
> + int ASS_poll_count;
> + int died_poll_count;
> +
> + /* glue to PCI and HCD framework */
> + struct fotg210_caps __iomem *caps;
> + struct fotg210_regs __iomem *regs;
> + struct fotg210_dbg_port __iomem *debug;
> +
> + __u32 hcs_params; /* cached register copy */
> + spinlock_t lock;
> + enum fotg210_rh_state rh_state;
> +
> + /* general schedule support */
> + bool scanning:1;
> + bool need_rescan:1;
> + bool intr_unlinking:1;
> + bool async_unlinking:1;
> + bool shutdown:1;
> + struct fotg210_qh *qh_scan_next;
> +
> + /* async schedule support */
> + struct fotg210_qh *async;
> + struct fotg210_qh *dummy; /* For AMD quirk use */
> + struct fotg210_qh *async_unlink;
> + struct fotg210_qh *async_unlink_last;
> + struct fotg210_qh *async_iaa;
> + unsigned async_unlink_cycle;
> + unsigned async_count; /* async activity count */
> +
> + /* periodic schedule support */
> +#define DEFAULT_I_TDPS 1024 /* some HCs can do less */
> + unsigned periodic_size;
> + __hc32 *periodic; /* hw periodic table */
> + dma_addr_t periodic_dma;
> + struct list_head intr_qh_list;
> + unsigned i_thresh; /* uframes HC might cache */
> +
> + union fotg210_shadow *pshadow; /* mirror hw periodic table */
> + struct fotg210_qh *intr_unlink;
> + struct fotg210_qh *intr_unlink_last;
> + unsigned intr_unlink_cycle;
> + unsigned now_frame; /* frame from HC hardware */
> + unsigned next_frame; /* scan periodic, start here */
> + unsigned intr_count; /* intr activity count */
> + unsigned isoc_count; /* isoc activity count */
> + unsigned periodic_count; /* periodic activity count */
> + unsigned uframe_periodic_max; /* max periodic time per uframe */
> +
> +
> + /* list of itds completed while now_frame was still active */
> + struct list_head cached_itd_list;
> + struct fotg210_itd *last_itd_to_free;
> +
> + /* per root hub port */
> + unsigned long reset_done [FOTG210_MAX_ROOT_PORTS];
> +
> + /* bit vectors (one bit per port) */
> + unsigned long bus_suspended; /* which ports were
> + already suspended at the start of a bus suspend */
> + unsigned long companion_ports; /* which ports are
> + dedicated to the companion controller */
> + unsigned long owned_ports; /* which ports are
> + owned by the companion during a bus suspend */
> + unsigned long port_c_suspend; /* which ports have
> + the change-suspend feature turned on */
> + unsigned long suspended_ports; /* which ports are
> + suspended */
> + unsigned long resuming_ports; /* which ports have
> + started to resume */
> +
> + /* per-HC memory pools (could be per-bus, but ...) */
> + struct dma_pool *qh_pool; /* qh per active urb */
> + struct dma_pool *qtd_pool; /* one or more per qh */
> + struct dma_pool *itd_pool; /* itd per iso urb */
> +
> + unsigned random_frame;
> + unsigned long next_statechange;
> + ktime_t last_periodic_enable;
> + u32 command;
> +
> + /* SILICON QUIRKS */
> + unsigned need_io_watchdog:1;
> + unsigned fs_i_thresh:1; /* Intel iso scheduling */
> +
> + u8 sbrn; /* packed release number */
> +
> + /* irq statistics */
> +#ifdef FOTG210_STATS
> + struct fotg210_stats stats;
> +# define COUNT(x) do { (x)++; } while (0)
> +#else
> +# define COUNT(x) do {} while (0)
> +#endif
> +
> + /* debug files */
> +#ifdef DEBUG
> + struct dentry *debug_dir;
> +#endif
> +};
> +
> +/* convert between an HCD pointer and the corresponding FOTG210_HCD */
> +static inline struct fotg210_hcd *hcd_to_fotg210 (struct usb_hcd *hcd)
> +{
> + return (struct fotg210_hcd *) (hcd->hcd_priv);
> +}
> +static inline struct usb_hcd *fotg210_to_hcd (struct fotg210_hcd *fotg210)
> +{
> + return container_of ((void *) fotg210, struct usb_hcd, hcd_priv);
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +/* EHCI register interface, corresponds to EHCI Revision 0.95 specification */
> +
> +/* Section 2.2 Host Controller Capability Registers */
> +struct fotg210_caps {
> + /* these fields are specified as 8 and 16 bit registers,
> + * but some hosts can't perform 8 or 16 bit PCI accesses.
> + * some hosts treat caplength and hciversion as parts of a 32-bit
> + * register, others treat them as two separate registers, this
> + * affects the memory map for big endian controllers.
> + */
> + u32 hc_capbase;
> +#define HC_LENGTH(fotg210, p) (0x00ff&((p) >> /* bits 7:0 / offset 00h */ \
> + (fotg210_big_endian_capbase(fotg210) ? 24 : 0)))
> +#define HC_VERSION(fotg210, p) (0xffff&((p) >> /* bits 31:16 / offset 02h */ \
> + (fotg210_big_endian_capbase(fotg210) ? 0 : 16)))
> + u32 hcs_params; /* HCSPARAMS - offset 0x4 */
> +#define HCS_N_PORTS(p) (((p)>>0)&0xf) /* bits 3:0, ports on HC */
> +
> + u32 hcc_params; /* HCCPARAMS - offset 0x8 */
> +#define HCC_CANPARK(p) ((p)&(1 << 2)) /* true: can park on async qh */
> +#define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1)) /* true: periodic_size changes*/
> + u8 portroute[8]; /* nibbles for routing - offset 0xC */
> +};
> +
> +
> +/* Section 2.3 Host Controller Operational Registers */
> +struct fotg210_regs {
> +
> + /* USBCMD: offset 0x00 */
> + u32 command;
> +
> +/* EHCI 1.1 addendum */
> +/* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */
> +#define CMD_PARK (1<<11) /* enable "park" on async qh */
> +#define CMD_PARK_CNT(c) (((c)>>8)&3) /* how many transfers to park for */
> +#define CMD_IAAD (1<<6) /* "doorbell" interrupt async advance */
> +#define CMD_ASE (1<<5) /* async schedule enable */
> +#define CMD_PSE (1<<4) /* periodic schedule enable */
> +/* 3:2 is periodic frame list size */
> +#define CMD_RESET (1<<1) /* reset HC not bus */
> +#define CMD_RUN (1<<0) /* start/stop HC */
> +
> + /* USBSTS: offset 0x04 */
> + u32 status;
> +#define STS_ASS (1<<15) /* Async Schedule Status */
> +#define STS_PSS (1<<14) /* Periodic Schedule Status */
> +#define STS_RECL (1<<13) /* Reclamation */
> +#define STS_HALT (1<<12) /* Not running (any reason) */
> +/* some bits reserved */
> + /* these STS_* flags are also intr_enable bits (USBINTR) */
> +#define STS_IAA (1<<5) /* Interrupted on async advance */
> +#define STS_FATAL (1<<4) /* such as some PCI access errors */
> +#define STS_FLR (1<<3) /* frame list rolled over */
> +#define STS_PCD (1<<2) /* port change detect */
> +#define STS_ERR (1<<1) /* "error" completion (overflow, ...) */
> +#define STS_INT (1<<0) /* "normal" completion (short, ...) */
> +
> + /* USBINTR: offset 0x08 */
> + u32 intr_enable;
> +
> + /* FRINDEX: offset 0x0C */
> + u32 frame_index; /* current microframe number */
> + /* CTRLDSSEGMENT: offset 0x10 */
> + u32 segment; /* address bits 63:32 if needed */
> + /* PERIODICLISTBASE: offset 0x14 */
> + u32 frame_list; /* points to periodic list */
> + /* ASYNCLISTADDR: offset 0x18 */
> + u32 async_next; /* address of next async queue head */
> +
> + u32 reserved1;
> + /* PORTSC: offset 0x20 */
> + u32 port_status;
> +/* 31:23 reserved */
> +#define PORT_USB11(x) (((x)&(3<<10)) == (1<<10)) /* USB 1.1 device */
> +#define PORT_RESET (1<<8) /* reset port */
> +#define PORT_SUSPEND (1<<7) /* suspend port */
> +#define PORT_RESUME (1<<6) /* resume it */
> +#define PORT_PEC (1<<3) /* port enable change */
> +#define PORT_PE (1<<2) /* port enable */
> +#define PORT_CSC (1<<1) /* connect status change */
> +#define PORT_CONNECT (1<<0) /* device connected */
> +#define PORT_RWC_BITS (PORT_CSC | PORT_PEC)
> + u32 reserved2[19];
> +
> + /* OTGCSR: offet 0x70 */
> + u32 otgcsr;
> +#define OTGCSR_HOST_SPD_TYP (3 << 22)
> +#define OTGCSR_A_BUS_DROP (1 << 5)
> +#define OTGCSR_A_BUS_REQ (1 << 4)
> +
> + /* OTGISR: offset 0x74 */
> + u32 otgisr;
> +#define OTGISR_OVC (1 << 10)
> +
> + u32 reserved3[15];
> +
> + /* GMIR: offset 0xB4 */
> + u32 gmir;
> +#define GMIR_INT_POLARITY (1 << 3) /*Active High*/
> +#define GMIR_MHC_INT (1 << 2)
> +#define GMIR_MOTG_INT (1 << 1)
> +#define GMIR_MDEV_INT (1 << 0)
> +};
> +
> +/* Appendix C, Debug port ... intended for use with special "debug devices"
> + * that can help if there's no serial console. (nonstandard enumeration.)
> + */
> +struct fotg210_dbg_port {
> + u32 control;
> +#define DBGP_OWNER (1<<30)
> +#define DBGP_ENABLED (1<<28)
> +#define DBGP_DONE (1<<16)
> +#define DBGP_INUSE (1<<10)
> +#define DBGP_ERRCODE(x) (((x)>>7)&0x07)
> +# define DBGP_ERR_BAD 1
> +# define DBGP_ERR_SIGNAL 2
> +#define DBGP_ERROR (1<<6)
> +#define DBGP_GO (1<<5)
> +#define DBGP_OUT (1<<4)
> +#define DBGP_LEN(x) (((x)>>0)&0x0f)
> + u32 pids;
> +#define DBGP_PID_GET(x) (((x)>>16)&0xff)
> +#define DBGP_PID_SET(data, tok) (((data)<<8)|(tok))
> + u32 data03;
> + u32 data47;
> + u32 address;
> +#define DBGP_EPADDR(dev, ep) (((dev)<<8)|(ep))
> +};
> +
> +#ifdef CONFIG_EARLY_PRINTK_DBGP
> +#include <linux/init.h>
> +extern int __init early_dbgp_init(char *s);
> +extern struct console early_dbgp_console;
> +#endif /* CONFIG_EARLY_PRINTK_DBGP */
> +
> +struct usb_hcd;
> +
> +static inline int xen_dbgp_reset_prep(struct usb_hcd *hcd)
> +{
> + return 1; /* Shouldn't this be 0? */
> +}
> +
> +static inline int xen_dbgp_external_startup(struct usb_hcd *hcd)
> +{
> + return -1;
> +}
> +
> +#ifdef CONFIG_EARLY_PRINTK_DBGP
> +/* Call backs from fotg210 host driver to fotg210 debug driver */
> +extern int dbgp_external_startup(struct usb_hcd *);
> +extern int dbgp_reset_prep(struct usb_hcd *hcd);
> +#else
> +static inline int dbgp_reset_prep(struct usb_hcd *hcd)
> +{
> + return xen_dbgp_reset_prep(hcd);
> +}
> +static inline int dbgp_external_startup(struct usb_hcd *hcd)
> +{
> + return xen_dbgp_external_startup(hcd);
> +}
> +#endif
> +
> +/*-------------------------------------------------------------------------*/
> +
> +#define QTD_NEXT(fotg210, dma) cpu_to_hc32(fotg210, (u32)dma)
> +
> +/*
> + * EHCI Specification 0.95 Section 3.5
> + * QTD: describe data transfer components (buffer, direction, ...)
> + * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram".
> + *
> + * These are associated only with "QH" (Queue Head) structures,
> + * used with control, bulk, and interrupt transfers.
> + */
> +struct fotg210_qtd {
> + /* first part defined by EHCI spec */
> + __hc32 hw_next; /* see EHCI 3.5.1 */
> + __hc32 hw_alt_next; /* see EHCI 3.5.2 */
> + __hc32 hw_token; /* see EHCI 3.5.3 */
> +#define QTD_TOGGLE (1 << 31) /* data toggle */
> +#define QTD_LENGTH(tok) (((tok)>>16) & 0x7fff)
> +#define QTD_IOC (1 << 15) /* interrupt on complete */
> +#define QTD_CERR(tok) (((tok)>>10) & 0x3)
> +#define QTD_PID(tok) (((tok)>>8) & 0x3)
> +#define QTD_STS_ACTIVE (1 << 7) /* HC may execute this */
> +#define QTD_STS_HALT (1 << 6) /* halted on error */
> +#define QTD_STS_DBE (1 << 5) /* data buffer error (in HC) */
> +#define QTD_STS_BABBLE (1 << 4) /* device was babbling (qtd halted) */
> +#define QTD_STS_XACT (1 << 3) /* device gave illegal response */
> +#define QTD_STS_MMF (1 << 2) /* incomplete split transaction */
> +#define QTD_STS_STS (1 << 1) /* split transaction state */
> +#define QTD_STS_PING (1 << 0) /* issue PING? */
> +
> +#define ACTIVE_BIT(fotg210) cpu_to_hc32(fotg210, QTD_STS_ACTIVE)
> +#define HALT_BIT(fotg210) cpu_to_hc32(fotg210, QTD_STS_HALT)
> +#define STATUS_BIT(fotg210) cpu_to_hc32(fotg210, QTD_STS_STS)
> +
> + __hc32 hw_buf [5]; /* see EHCI 3.5.4 */
> + __hc32 hw_buf_hi [5]; /* Appendix B */
> +
> + /* the rest is HCD-private */
> + dma_addr_t qtd_dma; /* qtd address */
> + struct list_head qtd_list; /* sw qtd list */
> + struct urb *urb; /* qtd's urb */
> + size_t length; /* length of buffer */
> +} __attribute__ ((aligned (32)));
> +
> +/* mask NakCnt+T in qh->hw_alt_next */
> +#define QTD_MASK(fotg210) cpu_to_hc32 (fotg210, ~0x1f)
> +
> +#define IS_SHORT_READ(token) (QTD_LENGTH (token) != 0 && QTD_PID (token) == 1)
> +
> +/*-------------------------------------------------------------------------*/
> +
> +/* type tag from {qh,itd,fstn}->hw_next */
> +#define Q_NEXT_TYPE(fotg210,dma) ((dma) & cpu_to_hc32(fotg210, 3 << 1))
> +
> +/*
> + * Now the following defines are not converted using the
> + * cpu_to_le32() macro anymore, since we have to support
> + * "dynamic" switching between be and le support, so that the driver
> + * can be used on one system with SoC EHCI controller using big-endian
> + * descriptors as well as a normal little-endian PCI EHCI controller.
> + */
> +/* values for that type tag */
> +#define Q_TYPE_ITD (0 << 1)
> +#define Q_TYPE_QH (1 << 1)
> +#define Q_TYPE_SITD (2 << 1)
> +#define Q_TYPE_FSTN (3 << 1)
> +
> +/* next async queue entry, or pointer to interrupt/periodic QH */
> +#define QH_NEXT(fotg210,dma) (cpu_to_hc32(fotg210, (((u32)dma)&~0x01f)|Q_TYPE_QH))
> +
> +/* for periodic/async schedules and qtd lists, mark end of list */
> +#define FOTG210_LIST_END(fotg210) cpu_to_hc32(fotg210, 1) /* "null pointer" to hw */
> +
> +/*
> + * Entries in periodic shadow table are pointers to one of four kinds
> + * of data structure. That's dictated by the hardware; a type tag is
> + * encoded in the low bits of the hardware's periodic schedule. Use
> + * Q_NEXT_TYPE to get the tag.
> + *
> + * For entries in the async schedule, the type tag always says "qh".
> + */
> +union fotg210_shadow {
> + struct fotg210_qh *qh; /* Q_TYPE_QH */
> + struct fotg210_itd *itd; /* Q_TYPE_ITD */
> + struct fotg210_fstn *fstn; /* Q_TYPE_FSTN */
> + __hc32 *hw_next; /* (all types) */
> + void *ptr;
> +};
> +
> +/*-------------------------------------------------------------------------*/
> +
> +/*
> + * EHCI Specification 0.95 Section 3.6
> + * QH: describes control/bulk/interrupt endpoints
> + * See Fig 3-7 "Queue Head Structure Layout".
> + *
> + * These appear in both the async and (for interrupt) periodic schedules.
> + */
> +
> +/* first part defined by EHCI spec */
> +struct fotg210_qh_hw {
> + __hc32 hw_next; /* see EHCI 3.6.1 */
> + __hc32 hw_info1; /* see EHCI 3.6.2 */
> +#define QH_CONTROL_EP (1 << 27) /* FS/LS control endpoint */
> +#define QH_HEAD (1 << 15) /* Head of async reclamation list */
> +#define QH_TOGGLE_CTL (1 << 14) /* Data toggle control */
> +#define QH_HIGH_SPEED (2 << 12) /* Endpoint speed */
> +#define QH_LOW_SPEED (1 << 12)
> +#define QH_FULL_SPEED (0 << 12)
> +#define QH_INACTIVATE (1 << 7) /* Inactivate on next transaction */
> + __hc32 hw_info2; /* see EHCI 3.6.2 */
> +#define QH_SMASK 0x000000ff
> +#define QH_CMASK 0x0000ff00
> +#define QH_HUBADDR 0x007f0000
> +#define QH_HUBPORT 0x3f800000
> +#define QH_MULT 0xc0000000
> + __hc32 hw_current; /* qtd list - see EHCI 3.6.4 */
> +
> + /* qtd overlay (hardware parts of a struct fotg210_qtd) */
> + __hc32 hw_qtd_next;
> + __hc32 hw_alt_next;
> + __hc32 hw_token;
> + __hc32 hw_buf [5];
> + __hc32 hw_buf_hi [5];
> +} __attribute__ ((aligned(32)));
> +
> +struct fotg210_qh {
> + struct fotg210_qh_hw *hw; /* Must come first */
> + /* the rest is HCD-private */
> + dma_addr_t qh_dma; /* address of qh */
> + union fotg210_shadow qh_next; /* ptr to qh; or periodic */
> + struct list_head qtd_list; /* sw qtd list */
> + struct list_head intr_node; /* list of intr QHs */
> + struct fotg210_qtd *dummy;
> + struct fotg210_qh *unlink_next; /* next on unlink list */
> +
> + unsigned unlink_cycle;
> +
> + u8 needs_rescan; /* Dequeue during giveback */
> + u8 qh_state;
> +#define QH_STATE_LINKED 1 /* HC sees this */
> +#define QH_STATE_UNLINK 2 /* HC may still see this */
> +#define QH_STATE_IDLE 3 /* HC doesn't see this */
> +#define QH_STATE_UNLINK_WAIT 4 /* LINKED and on unlink q */
> +#define QH_STATE_COMPLETING 5 /* don't touch token.HALT */
> +
> + u8 xacterrs; /* XactErr retry counter */
> +#define QH_XACTERR_MAX 32 /* XactErr retry limit */
> +
> + /* periodic schedule info */
> + u8 usecs; /* intr bandwidth */
> + u8 gap_uf; /* uframes split/csplit gap */
> + u8 c_usecs; /* ... split completion bw */
> + u16 tt_usecs; /* tt downstream bandwidth */
> + unsigned short period; /* polling interval */
> + unsigned short start; /* where polling starts */
> +#define NO_FRAME ((unsigned short)~0) /* pick new start */
> +
> + struct usb_device *dev; /* access to TT */
> + unsigned is_out:1; /* bulk or intr OUT */
> + unsigned clearing_tt:1; /* Clear-TT-Buf in progress */
> +};
> +
> +/*-------------------------------------------------------------------------*/
> +
> +/* description of one iso transaction (up to 3 KB data if highspeed) */
> +struct fotg210_iso_packet {
> + /* These will be copied to iTD when scheduling */
> + u64 bufp; /* itd->hw_bufp{,_hi}[pg] |= */
> + __hc32 transaction; /* itd->hw_transaction[i] |= */
> + u8 cross; /* buf crosses pages */
> + /* for full speed OUT splits */
> + u32 buf1;
> +};
> +
> +/* temporary schedule data for packets from iso urbs (both speeds)
> + * each packet is one logical usb transaction to the device (not TT),
> + * beginning at stream->next_uframe
> + */
> +struct fotg210_iso_sched {
> + struct list_head td_list;
> + unsigned span;
> + struct fotg210_iso_packet packet [0];
> +};
> +
> +/*
> + * fotg210_iso_stream - groups all (s)itds for this endpoint.
> + * acts like a qh would, if EHCI had them for ISO.
> + */
> +struct fotg210_iso_stream {
> + /* first field matches fotg210_hq, but is NULL */
> + struct fotg210_qh_hw *hw;
> +
> + u8 bEndpointAddress;
> + u8 highspeed;
> + struct list_head td_list; /* queued itds */
> + struct list_head free_list; /* list of unused itds */
> + struct usb_device *udev;
> + struct usb_host_endpoint *ep;
> +
> + /* output of (re)scheduling */
> + int next_uframe;
> + __hc32 splits;
> +
> + /* the rest is derived from the endpoint descriptor,
> + * trusting urb->interval == f(epdesc->bInterval) and
> + * including the extra info for hw_bufp[0..2]
> + */
> + u8 usecs, c_usecs;
> + u16 interval;
> + u16 tt_usecs;
> + u16 maxp;
> + u16 raw_mask;
> + unsigned bandwidth;
> +
> + /* This is used to initialize iTD's hw_bufp fields */
> + __hc32 buf0;
> + __hc32 buf1;
> + __hc32 buf2;
> +
> + /* this is used to initialize sITD's tt info */
> + __hc32 address;
> +};
> +
> +/*-------------------------------------------------------------------------*/
> +
> +/*
> + * EHCI Specification 0.95 Section 3.3
> + * Fig 3-4 "Isochronous Transaction Descriptor (iTD)"
> + *
> + * Schedule records for high speed iso xfers
> + */
> +struct fotg210_itd {
> + /* first part defined by EHCI spec */
> + __hc32 hw_next; /* see EHCI 3.3.1 */
> + __hc32 hw_transaction [8]; /* see EHCI 3.3.2 */
> +#define FOTG210_ISOC_ACTIVE (1<<31) /* activate transfer this slot */
> +#define FOTG210_ISOC_BUF_ERR (1<<30) /* Data buffer error */
> +#define FOTG210_ISOC_BABBLE (1<<29) /* babble detected */
> +#define FOTG210_ISOC_XACTERR (1<<28) /* XactErr - transaction error */
> +#define FOTG210_ITD_LENGTH(tok) (((tok)>>16) & 0x0fff)
> +#define FOTG210_ITD_IOC (1 << 15) /* interrupt on complete */
> +
> +#define ITD_ACTIVE(fotg210) cpu_to_hc32(fotg210, FOTG210_ISOC_ACTIVE)
> +
> + __hc32 hw_bufp [7]; /* see EHCI 3.3.3 */
> + __hc32 hw_bufp_hi [7]; /* Appendix B */
> +
> + /* the rest is HCD-private */
> + dma_addr_t itd_dma; /* for this itd */
> + union fotg210_shadow itd_next; /* ptr to periodic q entry */
> +
> + struct urb *urb;
> + struct fotg210_iso_stream *stream; /* endpoint's queue */
> + struct list_head itd_list; /* list of stream's itds */
> +
> + /* any/all hw_transactions here may be used by that urb */
> + unsigned frame; /* where scheduled */
> + unsigned pg;
> + unsigned index[8]; /* in urb->iso_frame_desc */
> +} __attribute__ ((aligned (32)));
> +
> +/*-------------------------------------------------------------------------*/
> +
> +/*
> + * EHCI Specification 0.96 Section 3.7
> + * Periodic Frame Span Traversal Node (FSTN)
> + *
> + * Manages split interrupt transactions (using TT) that span frame boundaries
> + * into uframes 0/1; see 4.12.2.2. In those uframes, a "save place" FSTN
> + * makes the HC jump (back) to a QH to scan for fs/ls QH completions until
> + * it hits a "restore" FSTN; then it returns to finish other uframe 0/1 work.
> + */
> +struct fotg210_fstn {
> + __hc32 hw_next; /* any periodic q entry */
> + __hc32 hw_prev; /* qh or FOTG210_LIST_END */
> +
> + /* the rest is HCD-private */
> + dma_addr_t fstn_dma;
> + union fotg210_shadow fstn_next; /* ptr to periodic q entry */
> +} __attribute__ ((aligned (32)));
> +
> +/*-------------------------------------------------------------------------*/
> +
> +/* Prepare the PORTSC wakeup flags during controller suspend/resume */
> +
> +#define fotg210_prepare_ports_for_controller_suspend(fotg210, do_wakeup) \
> + fotg210_adjust_port_wakeup_flags(fotg210, true, do_wakeup);
> +
> +#define fotg210_prepare_ports_for_controller_resume(fotg210) \
> + fotg210_adjust_port_wakeup_flags(fotg210, false, false);
> +
> +/*-------------------------------------------------------------------------*/
> +
> +/*
> + * Some EHCI controllers have a Transaction Translator built into the
> + * root hub. This is a non-standard feature. Each controller will need
> + * to add code to the following inline functions, and call them as
> + * needed (mostly in root hub code).
> + */
> +
> +static inline unsigned int
> +fotg210_get_speed(struct fotg210_hcd *fotg210, unsigned int portsc)
> +{
> + return (readl(&fotg210->regs->otgcsr)
> + & OTGCSR_HOST_SPD_TYP) >> 22;
> +}
> +
> +/* Returns the speed of a device attached to a port on the root hub. */
> +static inline unsigned int
> +fotg210_port_speed(struct fotg210_hcd *fotg210, unsigned int portsc)
> +{
> + switch (fotg210_get_speed(fotg210, portsc)) {
> + case 0:
> + return 0;
> + case 1:
> + return USB_PORT_STAT_LOW_SPEED;
> + case 2:
> + default:
> + return USB_PORT_STAT_HIGH_SPEED;
> + }
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +#define fotg210_has_fsl_portno_bug(e) (0)
> +
> +/*
> + * While most USB host controllers implement their registers in
> + * little-endian format, a minority (celleb companion chip) implement
> + * them in big endian format.
> + *
> + * This attempts to support either format at compile time without a
> + * runtime penalty, or both formats with the additional overhead
> + * of checking a flag bit.
> + *
> + */
> +
> +#define fotg210_big_endian_mmio(e) 0
> +#define fotg210_big_endian_capbase(e) 0
> +
> +static inline unsigned int fotg210_readl(const struct fotg210_hcd *fotg210,
> + __u32 __iomem * regs)
> +{
> + return readl(regs);
> +}
> +
> +static inline void fotg210_writel(const struct fotg210_hcd *fotg210,
> + const unsigned int val, __u32 __iomem *regs)
> +{
> + writel(val, regs);
> +}
> +
> +/* cpu to fotg210 */
> +static inline __hc32 cpu_to_hc32 (const struct fotg210_hcd *fotg210, const u32 x)
> +{
> + return cpu_to_le32(x);
> +}
> +
> +/* fotg210 to cpu */
> +static inline u32 hc32_to_cpu (const struct fotg210_hcd *fotg210, const __hc32 x)
> +{
> + return le32_to_cpu(x);
> +}
> +
> +static inline u32 hc32_to_cpup (const struct fotg210_hcd *fotg210, const __hc32 *x)
> +{
> + return le32_to_cpup(x);
> +}
> +
> +/*-------------------------------------------------------------------------*/
> +
> +static inline unsigned fotg210_read_frame_index(struct fotg210_hcd *fotg210)
> +{
> + return fotg210_readl(fotg210, &fotg210->regs->frame_index);
> +}
> +
> +#define fotg210_itdlen(urb, desc, t) ({ \
> + usb_pipein((urb)->pipe) ? \
> + (desc)->length - FOTG210_ITD_LENGTH(t) : \
> + FOTG210_ITD_LENGTH(t); \
> +})
> +/*-------------------------------------------------------------------------*/
> +
> +#ifndef DEBUG
> +#define STUB_DEBUG_FILES
> +#endif /* DEBUG */
> +
> +/*-------------------------------------------------------------------------*/
> +
> +#endif /* __LINUX_FOTG210_H */
> --
> 1.7.4.1
>
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/