Madhavan Srinivasan <maddy@xxxxxxxxxxxxxxxxxx> writes:Yes. Thats right. So incase of IMC, event are stored in the
From: Hemant Kumar <hemant@xxxxxxxxxxxxxxxxxx>This is probably because I haven't looked at this area recently, but
Parse device tree to detect IMC units. Traverse through each IMC unit
node to find supported events and corresponding unit/scale files (if any).
Here is the DTS file for reference:
https://github.com/open-power/ima-catalog/blob/master/81E00612.4E0100.dts
The device tree for IMC counters starts at the node "imc-counters".
This node contains all the IMC PMU nodes and event nodes
for these IMC PMUs. The PMU nodes have an "events" property which has a
phandle value for the actual events node. The events are separated from
the PMU nodes to abstract out the common events. For example, PMU node
"mcs0", "mcs1" etc. will contain a pointer to "nest-mcs-events" since,
the events are common between these PMUs. These events have a different
prefix based on their relation to different PMUs, and hence, the PMU
nodes themselves contain an "events-prefix" property. The value for this
property concatenated to the event name, forms the actual event
name. Also, the PMU have a "reg" field as the base offset for the events
which belong to this PMU. This "reg" field is added to an event in the
"events" node, which gives us the location of the counter data. Kernel
code uses this offset as event configuration value.
what do you mean by 'event configuration value'? If I understand
correctly, you're saying something like "kernel code stores this
calculated location in the event configuration data" - is that about
right?
Yes. Event names are from the DTS and can add a check
Apologies if this is a dumb question.
Device tree parser code also looks for scale/unit property in the eventThis seems to be an allocation/init function: should that be reflected
node and passes on the value as an event attr for perf interface to use
in the post processing by the perf tool. Some PMUs may have common scale
and unit properties which implies that all events supported by this PMU
inherit the scale and unit properties of the PMU itself. For those
events, we need to set the common unit and scale values.
For failure to initialize any unit or any event, disable that unit and
continue setting up the rest of them.
Signed-off-by: Hemant Kumar <hemant@xxxxxxxxxxxxxxxxxx>
Signed-off-by: Anju T Sudhakar <anju@xxxxxxxxxxxxxxxxxx>
Signed-off-by: Madhavan Srinivasan <maddy@xxxxxxxxxxxxxxxxxx>
---
arch/powerpc/platforms/powernv/opal-imc.c | 386 ++++++++++++++++++++++++++++++
1 file changed, 386 insertions(+)
diff --git a/arch/powerpc/platforms/powernv/opal-imc.c b/arch/powerpc/platforms/powernv/opal-imc.c
index c476d596c6a8..ba0203e669c0 100644
--- a/arch/powerpc/platforms/powernv/opal-imc.c
+++ b/arch/powerpc/platforms/powernv/opal-imc.c
@@ -33,6 +33,388 @@
#include <asm/imc-pmu.h>
struct perchip_nest_info nest_perchip_info[IMC_MAX_CHIPS];
+struct imc_pmu *per_nest_pmu_arr[IMC_MAX_PMUS];
+
+static int imc_event_info(char *name, struct imc_events *events)
in the name?
+{We trust the name will never become a dangling pointer? We don't need to
+ char *buf;
+
+ /* memory for content */
+ buf = kzalloc(IMC_MAX_PMU_NAME_LEN, GFP_KERNEL);
+ if (!buf)
+ return -ENOMEM;
+
+ events->ev_name = name;
duplicate it?
Should the pointer be const?
+ events->ev_value = buf;This creates and sets an initial value based on a property, ...
+ return 0;
+}
+
+static int imc_event_info_str(struct property *pp, char *name,
+ struct imc_events *events)
+static int imc_event_info_val(char *name, u32 val,... this creates and sets based on a u32.
+ struct imc_events *events)
Could you call them something that suggests their purpose a bit better?
Maybe event_info_from_{property,val}?
+{How do you know the buffer for ev_value was successfully allocated? Can
+ int ret;
+
+ ret = imc_event_info(name, events);
+ if (ret)
+ return ret;
+ sprintf(events->ev_value, "event=0x%x", val);
+
+ return 0;
+}
+
+static int set_event_property(struct property *pp, char *event_prop,
+ struct imc_events *events, char *ev_name)
+{
+ char *buf;
+ int ret;
+
+ buf = kzalloc(IMC_MAX_PMU_NAME_LEN, GFP_KERNEL);
+ if (!buf)
+ return -ENOMEM;
+
+ sprintf(buf, "%s.%s", ev_name, event_prop);
+ ret = imc_event_info_str(pp, buf, events);
+ if (ret) {
+ kfree(events->ev_name);
+ kfree(events->ev_value);
you be sure it is safe to free? (Consider imc_event_info returning -ENOMEM)
No, I would prefer the current way. Reason being, incase of
+ }I see you allocating memory here and in set_event_property for the
+
+ return ret;
+}
+
+/*
+ * imc_events_node_parser: Parse the event node "dev" and assign the parsed
+ * information to event "events".
+ *
+ * Parses the "reg" property of this event. "reg" gives us the event offset.
+ * Also, parse the "scale" and "unit" properties, if any.
+ */
+static int imc_events_node_parser(struct device_node *dev,
+ struct imc_events *events,
+ struct property *event_scale,
+ struct property *event_unit,
+ struct property *name_prefix,
+ u32 reg)
+{
+ struct property *name, *pp;
+ char *ev_name;
+ u32 val;
+ int idx = 0, ret;
+
+ if (!dev)
+ return -EINVAL;
+
+ /*
+ * Loop through each property of an event node
+ */
+ name = of_find_property(dev, "event-name", NULL);
+ if (!name)
+ return -ENODEV;
+
+ if (!name->value ||
+ (strnlen(name->value, name->length) == name->length) ||
+ (name->length > IMC_MAX_PMU_NAME_LEN))
+ return -EINVAL;
+
+ ev_name = kzalloc(IMC_MAX_PMU_NAME_LEN, GFP_KERNEL);
+ if (!ev_name)
+ return -ENOMEM;
name. Would it be better to move that into imc_event_info and make that
function responsible for the whole set of allocations regarding the
event?
OK, patch 8 fixed this. Let me pull that hunk and
(I'm happy to be talked out of this - it just seems like it would make
it much easier to reason about the lifecycles of the memory allocations.)
+Why do we increment the idx an extra two times if event_scale is
+ snprintf(ev_name, IMC_MAX_PMU_NAME_LEN, "%s%s",
+ (char *)name_prefix->value,
+ (char *)name->value);
+
+ /*
+ * Parse each property of this event node "dev". Property "reg" has
+ * the offset which is assigned to the event name. Other properties
+ * like "scale" and "unit" are assigned to event.scale and event.unit
+ * accordingly.
+ */
+ for_each_property_of_node(dev, pp) {
+ /*
+ * If there is an issue in parsing a single property of
+ * this event, we just clean up the buffers, but we still
+ * continue to parse.
+ */
+ if (strncmp(pp->name, "reg", 3) == 0) {
+ of_property_read_u32(dev, pp->name, &val);
+ val += reg;
+ ret = imc_event_info_val(ev_name, val, &events[idx]);
+ if (ret) {
+ kfree(events[idx].ev_name);
+ kfree(events[idx].ev_value);
+ continue;
+ }
+ /*
+ * If the common scale and unit properties available,
+ * then, assign them to this event
+ */
+ if (event_scale) {
+ idx++;
+ ret = set_event_property(event_scale, "scale",
+ &events[idx],
+ ev_name);
+ if (ret)
+ continue;
+ idx++;
provided? We don't do that for the other ones...
OK this is definitely true if we cant parse the "reg" property.
+ }I find it really difficult to convince myself of the control flow in
+ if (event_unit) {
+ ret = set_event_property(event_unit, "unit",
+ &events[idx],
+ ev_name);
+ if (ret)
+ continue;
+ }
+ idx++;
+ } else if (strncmp(pp->name, "unit", 4) == 0) {
+ ret = set_event_property(pp, "unit", &events[idx],
+ ev_name);
+ if (ret)
+ continue;
+ idx++;
+ } else if (strncmp(pp->name, "scale", 5) == 0) {
+ ret = set_event_property(pp, "scale", &events[idx],
+ ev_name);
+ if (ret)
+ continue;
+ idx++;
+ }
+ }
that loop.
In particular, the comment at the top claims:
+ * If there is an issue in parsing a single property ofI am not quite sure precisely what that means. I first thought it meant
+ * this event, we just clean up the buffers, but we still
+ * continue to parse.
that if you cannot parse one of the properties of the event
(scale/unit), you would clean up the entire event, and parse the next
entire event. It looks like the code in fact simply cleans up that
*property* and continues to parse other properties.
Does that make sense to do? If you can't parse the scale of an event for
instance, does it make sense to continue with the rest of that event?
Initially I was concerned that 'continue' wasn't sufficient to even
clean up the property, but I worked through the error conditions of
set_event_property and now I am satisfied.
+Should this be marked __init?
+ return idx;
+}
+
+/*
+ * imc_get_domain : Returns the domain for pmu "pmu_dev".
+ */
+int imc_get_domain(struct device_node *pmu_dev)
+{
+ if (of_device_is_compatible(pmu_dev, IMC_DTB_NEST_COMPAT))
+ return IMC_DOMAIN_NEST;
+ else
+ return IMC_DOMAIN_UNKNOWN;
+}
+
+/*
+ * get_nr_children : Returns the number of children for a pmu device node.
+ */
+static int get_nr_children(struct device_node *pmu_node)
+{
+ struct device_node *child;
+ int i = 0;
+
+ for_each_child_of_node(pmu_node, child)
+ i++;
+ return i;
+}
+
+/*
+ * imc_free_events : Cleanup the "events" list having "nr_entries" entries.
+ */
+static void imc_free_events(struct imc_events *events, int nr_entries)
+{
+ int i;
+
+ /* Nothing to clean, return */
+ if (!events)
+ return;
+ for (i = 0; i < nr_entries; i++) {
+ kfree(events[i].ev_name);
+ kfree(events[i].ev_value);
+ }
+
+ kfree(events);
+}
+
+/*
+ * imc_pmu_create : Takes the parent device which is the pmu unit and a
+ * pmu_index as the inputs.
+ * Allocates memory for the pmu, sets up its domain (NEST or CORE), and
+ * allocates memory for the events supported by this pmu. Assigns a name for
+ * the pmu. Calls imc_events_node_parser() to setup the individual events.
+ * If everything goes fine, it calls, init_imc_pmu() to setup the pmu device
+ * and register it.
+ */
+static int imc_pmu_create(struct device_node *parent, int pmu_index)
+{
+ struct device_node *ev_node = NULL, *dir = NULL;
+ struct imc_events *events;
+ struct imc_pmu *pmu_ptr;
+ u32 prop, reg;
+ struct property *pp, *scale_pp, *unit_pp, *name_prefix;
+ char *buf;
+ int idx = 0, ret = 0, nr_children = 0;
+
+ if (!parent)
+ return -EINVAL;
+
+ /* memory for pmu */
+ pmu_ptr = kzalloc(sizeof(struct imc_pmu), GFP_KERNEL);
+ if (!pmu_ptr)
+ return -ENOMEM;
+
+ pmu_ptr->domain = imc_get_domain(parent);
+ if (pmu_ptr->domain == IMC_DOMAIN_UNKNOWN)
+ goto free_pmu;
+
+ /* Needed for hotplug/migration */
+ per_nest_pmu_arr[pmu_index] = pmu_ptr;
+
+ /*
+ * "events" property inside a PMU node contains the phandle value
+ * for the actual events node. The "events" node for the IMC PMU
+ * is not in this node, rather inside "imc-counters" node, since,
+ * we want to factor out the common events (thereby, reducing the
+ * size of the device tree)
+ */
+ of_property_read_u32(parent, "events", &prop);
+ if (!prop)
+ return -EINVAL;
+
+ /*
+ * Fetch the actual node where the events for this PMU exist.
+ */
+ dir = of_find_node_by_phandle(prop);
+ if (!dir)
+ return -EINVAL;
+
+ /*
+ * Get the maximum no. of events in this node.
+ * Multiply by 3 to account for .scale and .unit properties
+ * This number suggests the amount of memory needed to setup the
+ * events for this pmu.
+ */
+ nr_children = get_nr_children(dir) * 3;
+
+ /* memory for pmu events */
+ events = kzalloc((sizeof(struct imc_events) * nr_children),
+ GFP_KERNEL);
+ if (!events) {
+ ret = -ENOMEM;
+ goto free_pmu;
+ }
+
+ pp = of_find_property(parent, "name", NULL);
+ if (!pp) {
+ ret = -ENODEV;
+ goto free_events;
+ }
+
+ if (!pp->value ||
+ (strnlen(pp->value, pp->length) == pp->length) ||
+ (pp->length > IMC_MAX_PMU_NAME_LEN)) {
+ ret = -EINVAL;
+ goto free_events;
+ }
+
+ buf = kzalloc(IMC_MAX_PMU_NAME_LEN, GFP_KERNEL);
+ if (!buf) {
+ ret = -ENOMEM;
+ goto free_events;
+ }
+
+ /* Save the name to register it later */
+ sprintf(buf, "nest_%s", (char *)pp->value);
+ pmu_ptr->pmu.name = (char *)buf;
+
+ /*
+ * Check if there is a common "scale" and "unit" properties inside
+ * the PMU node for all the events supported by this PMU.
+ */
+ scale_pp = of_find_property(parent, "scale", NULL);
+ unit_pp = of_find_property(parent, "unit", NULL);
+
+ /*
+ * Get the event-prefix property from the PMU node
+ * which needs to be attached with the event names.
+ */
+ name_prefix = of_find_property(parent, "events-prefix", NULL);
+ if (!name_prefix)
+ return -ENODEV;
+
+ /*
+ * "reg" property gives out the base offset of the counters data
+ * for this PMU.
+ */
+ of_property_read_u32(parent, "reg", ®);
+
+ if (!name_prefix->value ||
+ (strnlen(name_prefix->value, name_prefix->length) == name_prefix->length) ||
+ (name_prefix->length > IMC_MAX_PMU_NAME_LEN))
+ return -EINVAL;
+
+ /* Loop through event nodes */
+ for_each_child_of_node(dir, ev_node) {
+ ret = imc_events_node_parser(ev_node, &events[idx], scale_pp,
+ unit_pp, name_prefix, reg);
+ if (ret < 0) {
+ /* Unable to parse this event */
+ if (ret == -ENOMEM)
+ goto free_events;
+ continue;
+ }
+
+ /*
+ * imc_event_node_parser will return number of
+ * event entries created for this. This could include
+ * event scale and unit files also.
+ */
+ idx += ret;
+ }
+
+ return 0;
+
+free_events:
+ imc_free_events(events, idx);
+free_pmu:
+ kfree(pmu_ptr);
+ return ret;
+}
+
+/*
+ * imc_pmu_setup : Setup the IMC PMUs (children of "parent").
+ */
+static void imc_pmu_setup(struct device_node *parent)
+{Regards,
+ struct device_node *child;
+ int pmu_count = 0, rc = 0;
+ const struct property *pp;
+
+ if (!parent)
+ return;
+
+ /* Setup all the IMC pmus */
+ for_each_child_of_node(parent, child) {
+ pp = of_get_property(child, "compatible", NULL);
+ if (pp) {
+ /*
+ * If there is a node with a "compatible" field,
+ * that's a PMU node
+ */
+ rc = imc_pmu_create(child, pmu_count);
+ if (rc)
+ return;
+ pmu_count++;
+ }
+ }
+}
static int opal_imc_counters_probe(struct platform_device *pdev)
{
@@ -102,6 +484,10 @@ static int opal_imc_counters_probe(struct platform_device *pdev)
} while (i < (pcni->size / PAGE_SIZE));
}
+#ifdef CONFIG_PERF_EVENTS
+ imc_pmu_setup(imc_dev);
+#endif
+
return 0;
err:
return -ENODEV;
--
2.7.4
Daniel