[PATCH v3 1/6] futex: Prepare for futex_wait_multiple()

From: André Almeida
Date: Mon Sep 13 2021 - 13:53:18 EST


Make public functions and defines that will be used for
futex_wait_multiple() function in next commit.

Signed-off-by: André Almeida <andrealmeid@xxxxxxxxxxxxx>
---
kernel/futex.c | 134 +---------------------------------------------
kernel/futex.h | 140 +++++++++++++++++++++++++++++++++++++++++++++++++
2 files changed, 142 insertions(+), 132 deletions(-)
create mode 100644 kernel/futex.h

diff --git a/kernel/futex.c b/kernel/futex.c
index c15ad276fd15..32c91f9d7385 100644
--- a/kernel/futex.c
+++ b/kernel/futex.c
@@ -34,14 +34,11 @@
#include <linux/compat.h>
#include <linux/jhash.h>
#include <linux/pagemap.h>
-#include <linux/syscalls.h>
#include <linux/freezer.h>
#include <linux/memblock.h>
#include <linux/fault-inject.h>
-#include <linux/time_namespace.h>
-
-#include <asm/futex.h>

+#include "futex.h"
#include "locking/rtmutex_common.h"

/*
@@ -150,22 +147,6 @@
static int __read_mostly futex_cmpxchg_enabled;
#endif

-/*
- * Futex flags used to encode options to functions and preserve them across
- * restarts.
- */
-#ifdef CONFIG_MMU
-# define FLAGS_SHARED 0x01
-#else
-/*
- * NOMMU does not have per process address space. Let the compiler optimize
- * code away.
- */
-# define FLAGS_SHARED 0x00
-#endif
-#define FLAGS_CLOCKRT 0x02
-#define FLAGS_HAS_TIMEOUT 0x04
-
/*
* Priority Inheritance state:
*/
@@ -187,103 +168,6 @@ struct futex_pi_state {
union futex_key key;
} __randomize_layout;

-/**
- * struct futex_q - The hashed futex queue entry, one per waiting task
- * @list: priority-sorted list of tasks waiting on this futex
- * @task: the task waiting on the futex
- * @lock_ptr: the hash bucket lock
- * @key: the key the futex is hashed on
- * @pi_state: optional priority inheritance state
- * @rt_waiter: rt_waiter storage for use with requeue_pi
- * @requeue_pi_key: the requeue_pi target futex key
- * @bitset: bitset for the optional bitmasked wakeup
- * @requeue_state: State field for futex_requeue_pi()
- * @requeue_wait: RCU wait for futex_requeue_pi() (RT only)
- *
- * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
- * we can wake only the relevant ones (hashed queues may be shared).
- *
- * A futex_q has a woken state, just like tasks have TASK_RUNNING.
- * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
- * The order of wakeup is always to make the first condition true, then
- * the second.
- *
- * PI futexes are typically woken before they are removed from the hash list via
- * the rt_mutex code. See unqueue_me_pi().
- */
-struct futex_q {
- struct plist_node list;
-
- struct task_struct *task;
- spinlock_t *lock_ptr;
- union futex_key key;
- struct futex_pi_state *pi_state;
- struct rt_mutex_waiter *rt_waiter;
- union futex_key *requeue_pi_key;
- u32 bitset;
- atomic_t requeue_state;
-#ifdef CONFIG_PREEMPT_RT
- struct rcuwait requeue_wait;
-#endif
-} __randomize_layout;
-
-/*
- * On PREEMPT_RT, the hash bucket lock is a 'sleeping' spinlock with an
- * underlying rtmutex. The task which is about to be requeued could have
- * just woken up (timeout, signal). After the wake up the task has to
- * acquire hash bucket lock, which is held by the requeue code. As a task
- * can only be blocked on _ONE_ rtmutex at a time, the proxy lock blocking
- * and the hash bucket lock blocking would collide and corrupt state.
- *
- * On !PREEMPT_RT this is not a problem and everything could be serialized
- * on hash bucket lock, but aside of having the benefit of common code,
- * this allows to avoid doing the requeue when the task is already on the
- * way out and taking the hash bucket lock of the original uaddr1 when the
- * requeue has been completed.
- *
- * The following state transitions are valid:
- *
- * On the waiter side:
- * Q_REQUEUE_PI_NONE -> Q_REQUEUE_PI_IGNORE
- * Q_REQUEUE_PI_IN_PROGRESS -> Q_REQUEUE_PI_WAIT
- *
- * On the requeue side:
- * Q_REQUEUE_PI_NONE -> Q_REQUEUE_PI_INPROGRESS
- * Q_REQUEUE_PI_IN_PROGRESS -> Q_REQUEUE_PI_DONE/LOCKED
- * Q_REQUEUE_PI_IN_PROGRESS -> Q_REQUEUE_PI_NONE (requeue failed)
- * Q_REQUEUE_PI_WAIT -> Q_REQUEUE_PI_DONE/LOCKED
- * Q_REQUEUE_PI_WAIT -> Q_REQUEUE_PI_IGNORE (requeue failed)
- *
- * The requeue side ignores a waiter with state Q_REQUEUE_PI_IGNORE as this
- * signals that the waiter is already on the way out. It also means that
- * the waiter is still on the 'wait' futex, i.e. uaddr1.
- *
- * The waiter side signals early wakeup to the requeue side either through
- * setting state to Q_REQUEUE_PI_IGNORE or to Q_REQUEUE_PI_WAIT depending
- * on the current state. In case of Q_REQUEUE_PI_IGNORE it can immediately
- * proceed to take the hash bucket lock of uaddr1. If it set state to WAIT,
- * which means the wakeup is interleaving with a requeue in progress it has
- * to wait for the requeue side to change the state. Either to DONE/LOCKED
- * or to IGNORE. DONE/LOCKED means the waiter q is now on the uaddr2 futex
- * and either blocked (DONE) or has acquired it (LOCKED). IGNORE is set by
- * the requeue side when the requeue attempt failed via deadlock detection
- * and therefore the waiter q is still on the uaddr1 futex.
- */
-enum {
- Q_REQUEUE_PI_NONE = 0,
- Q_REQUEUE_PI_IGNORE,
- Q_REQUEUE_PI_IN_PROGRESS,
- Q_REQUEUE_PI_WAIT,
- Q_REQUEUE_PI_DONE,
- Q_REQUEUE_PI_LOCKED,
-};
-
-static const struct futex_q futex_q_init = {
- /* list gets initialized in queue_me()*/
- .key = FUTEX_KEY_INIT,
- .bitset = FUTEX_BITSET_MATCH_ANY,
- .requeue_state = ATOMIC_INIT(Q_REQUEUE_PI_NONE),
-};

/*
* Hash buckets are shared by all the futex_keys that hash to the same
@@ -453,7 +337,7 @@ enum futex_access {
* Return: Initialized hrtimer_sleeper structure or NULL if no timeout
* value given
*/
-static inline struct hrtimer_sleeper *
+inline struct hrtimer_sleeper *
futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
int flags, u64 range_ns)
{
@@ -4005,20 +3889,6 @@ static __always_inline bool futex_cmd_has_timeout(u32 cmd)
return false;
}

-static __always_inline int
-futex_init_timeout(u32 cmd, u32 op, struct timespec64 *ts, ktime_t *t)
-{
- if (!timespec64_valid(ts))
- return -EINVAL;
-
- *t = timespec64_to_ktime(*ts);
- if (cmd == FUTEX_WAIT)
- *t = ktime_add_safe(ktime_get(), *t);
- else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
- *t = timens_ktime_to_host(CLOCK_MONOTONIC, *t);
- return 0;
-}
-
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
const struct __kernel_timespec __user *, utime,
u32 __user *, uaddr2, u32, val3)
diff --git a/kernel/futex.h b/kernel/futex.h
new file mode 100644
index 000000000000..c914e0080cf1
--- /dev/null
+++ b/kernel/futex.h
@@ -0,0 +1,140 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _FUTEX_H
+#define _FUTEX_H
+
+#include <asm/futex.h>
+
+#include <linux/syscalls.h>
+#include <linux/time_namespace.h>
+
+/*
+ * Futex flags used to encode options to functions and preserve them across
+ * restarts.
+ */
+#ifdef CONFIG_MMU
+# define FLAGS_SHARED 0x01
+#else
+/*
+ * NOMMU does not have per process address space. Let the compiler optimize
+ * code away.
+ */
+# define FLAGS_SHARED 0x00
+#endif
+#define FLAGS_CLOCKRT 0x02
+#define FLAGS_HAS_TIMEOUT 0x04
+
+/**
+ * struct futex_q - The hashed futex queue entry, one per waiting task
+ * @list: priority-sorted list of tasks waiting on this futex
+ * @task: the task waiting on the futex
+ * @lock_ptr: the hash bucket lock
+ * @key: the key the futex is hashed on
+ * @pi_state: optional priority inheritance state
+ * @rt_waiter: rt_waiter storage for use with requeue_pi
+ * @requeue_pi_key: the requeue_pi target futex key
+ * @bitset: bitset for the optional bitmasked wakeup
+ *
+ * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
+ * we can wake only the relevant ones (hashed queues may be shared).
+ *
+ * A futex_q has a woken state, just like tasks have TASK_RUNNING.
+ * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
+ * The order of wakeup is always to make the first condition true, then
+ * the second.
+ *
+ * PI futexes are typically woken before they are removed from the hash list via
+ * the rt_mutex code. See unqueue_me_pi().
+ */
+struct futex_q {
+ struct plist_node list;
+
+ struct task_struct *task;
+ spinlock_t *lock_ptr;
+ union futex_key key;
+ struct futex_pi_state *pi_state;
+ struct rt_mutex_waiter *rt_waiter;
+ union futex_key *requeue_pi_key;
+ u32 bitset;
+ atomic_t requeue_state;
+#ifdef CONFIG_PREEMPT_RT
+ struct rcuwait requeue_wait;
+#endif
+} __randomize_layout;
+
+/*
+ * On PREEMPT_RT, the hash bucket lock is a 'sleeping' spinlock with an
+ * underlying rtmutex. The task which is about to be requeued could have
+ * just woken up (timeout, signal). After the wake up the task has to
+ * acquire hash bucket lock, which is held by the requeue code. As a task
+ * can only be blocked on _ONE_ rtmutex at a time, the proxy lock blocking
+ * and the hash bucket lock blocking would collide and corrupt state.
+ *
+ * On !PREEMPT_RT this is not a problem and everything could be serialized
+ * on hash bucket lock, but aside of having the benefit of common code,
+ * this allows to avoid doing the requeue when the task is already on the
+ * way out and taking the hash bucket lock of the original uaddr1 when the
+ * requeue has been completed.
+ *
+ * The following state transitions are valid:
+ *
+ * On the waiter side:
+ * Q_REQUEUE_PI_NONE -> Q_REQUEUE_PI_IGNORE
+ * Q_REQUEUE_PI_IN_PROGRESS -> Q_REQUEUE_PI_WAIT
+ *
+ * On the requeue side:
+ * Q_REQUEUE_PI_NONE -> Q_REQUEUE_PI_INPROGRESS
+ * Q_REQUEUE_PI_IN_PROGRESS -> Q_REQUEUE_PI_DONE/LOCKED
+ * Q_REQUEUE_PI_IN_PROGRESS -> Q_REQUEUE_PI_NONE (requeue failed)
+ * Q_REQUEUE_PI_WAIT -> Q_REQUEUE_PI_DONE/LOCKED
+ * Q_REQUEUE_PI_WAIT -> Q_REQUEUE_PI_IGNORE (requeue failed)
+ *
+ * The requeue side ignores a waiter with state Q_REQUEUE_PI_IGNORE as this
+ * signals that the waiter is already on the way out. It also means that
+ * the waiter is still on the 'wait' futex, i.e. uaddr1.
+ *
+ * The waiter side signals early wakeup to the requeue side either through
+ * setting state to Q_REQUEUE_PI_IGNORE or to Q_REQUEUE_PI_WAIT depending
+ * on the current state. In case of Q_REQUEUE_PI_IGNORE it can immediately
+ * proceed to take the hash bucket lock of uaddr1. If it set state to WAIT,
+ * which means the wakeup is interleaving with a requeue in progress it has
+ * to wait for the requeue side to change the state. Either to DONE/LOCKED
+ * or to IGNORE. DONE/LOCKED means the waiter q is now on the uaddr2 futex
+ * and either blocked (DONE) or has acquired it (LOCKED). IGNORE is set by
+ * the requeue side when the requeue attempt failed via deadlock detection
+ * and therefore the waiter q is still on the uaddr1 futex.
+ */
+enum {
+ Q_REQUEUE_PI_NONE = 0,
+ Q_REQUEUE_PI_IGNORE,
+ Q_REQUEUE_PI_IN_PROGRESS,
+ Q_REQUEUE_PI_WAIT,
+ Q_REQUEUE_PI_DONE,
+ Q_REQUEUE_PI_LOCKED,
+};
+
+static const struct futex_q futex_q_init = {
+ /* list gets initialized in queue_me()*/
+ .key = FUTEX_KEY_INIT,
+ .bitset = FUTEX_BITSET_MATCH_ANY,
+ .requeue_state = ATOMIC_INIT(Q_REQUEUE_PI_NONE),
+};
+
+inline struct hrtimer_sleeper *
+futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
+ int flags, u64 range_ns);
+
+static __always_inline int
+futex_init_timeout(u32 cmd, u32 op, struct timespec64 *ts, ktime_t *t)
+{
+ if (!timespec64_valid(ts))
+ return -EINVAL;
+
+ *t = timespec64_to_ktime(*ts);
+ if (cmd == FUTEX_WAIT)
+ *t = ktime_add_safe(ktime_get(), *t);
+ else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
+ *t = timens_ktime_to_host(CLOCK_MONOTONIC, *t);
+ return 0;
+}
+
+#endif
--
2.33.0